Effective browsing of image search results via diversified visual summarization by clustering and refining clusters

The unprecedented growth in applications making use of digital images and multimedia references raised the requirement for image and topic search. Systematic processing of this information is a basic prerequisite for effective analysis of this information, as well as organization and management of i...

Full description

Saved in:
Bibliographic Details
Published inSignal, image and video processing Vol. 8; no. 4; pp. 699 - 721
Main Authors Alamdar, Fatemeh, Keyvanpour, Mohammad Reza
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2014
Subjects
Online AccessGet full text
ISSN1863-1703
1863-1711
DOI10.1007/s11760-013-0587-2

Cover

Loading…
Abstract The unprecedented growth in applications making use of digital images and multimedia references raised the requirement for image and topic search. Systematic processing of this information is a basic prerequisite for effective analysis of this information, as well as organization and management of it. Likewise, large collections of images are available on the Web, and many search engines provide the possibility of Web image searching based on the keywords. However, there are some problems in finding the desirable image according to the user needs. These problems include inexpressiveness of queries in description of user requirement, large number of irrelevant images to the intended search, lack of summarization, time-consuming review of overall images and lack of diversity. Clustering of image search results can be an efficient solution in solving these problems. In this work, several Folding-based algorithms have been proposed for clustering of image search results. In these algorithms, the efficiency, in comparison with Folding algorithm, is improved through a more effective selection of cluster’s representatives, fuzziness, weight and utilization of hierarchical algorithm preferences. In the represented system, in order to fit clusters with data more appropriately, an algorithm is proposed for refining the clusters. The proposed clustering causes a more convenient task in retrieval process for the user and also causes the efficient retrieval of images. According to the experiences, the proposed method improves the acceptable precision of image clustering.
AbstractList The unprecedented growth in applications making use of digital images and multimedia references raised the requirement for image and topic search. Systematic processing of this information is a basic prerequisite for effective analysis of this information, as well as organization and management of it. Likewise, large collections of images are available on the Web, and many search engines provide the possibility of Web image searching based on the keywords. However, there are some problems in finding the desirable image according to the user needs. These problems include inexpressiveness of queries in description of user requirement, large number of irrelevant images to the intended search, lack of summarization, time-consuming review of overall images and lack of diversity. Clustering of image search results can be an efficient solution in solving these problems. In this work, several Folding-based algorithms have been proposed for clustering of image search results. In these algorithms, the efficiency, in comparison with Folding algorithm, is improved through a more effective selection of cluster’s representatives, fuzziness, weight and utilization of hierarchical algorithm preferences. In the represented system, in order to fit clusters with data more appropriately, an algorithm is proposed for refining the clusters. The proposed clustering causes a more convenient task in retrieval process for the user and also causes the efficient retrieval of images. According to the experiences, the proposed method improves the acceptable precision of image clustering.
Author Alamdar, Fatemeh
Keyvanpour, Mohammad Reza
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Alamdar
  fullname: Alamdar, Fatemeh
  organization: Department of Computer Engineering, Alzahra University
– sequence: 2
  givenname: Mohammad Reza
  surname: Keyvanpour
  fullname: Keyvanpour, Mohammad Reza
  email: keyvanpour@alzahra.ac.ir
  organization: Department of Computer Engineering, Alzahra University
BookMark eNp9kMtOwzAQRS1UJErpB7DzDwTsTGKnS1SVh1SJDawjxxkXV2lSeZKi8vU4FLFg0dnMQ3NGc-81m7Rdi4zdSnEnhdD3JKVWIhESEpEXOkkv2FQWChKppZz81QKu2JxoK2JAqgtVTBmtnEPb-wPyKnSf5NsN7xz3O7NBTmiC_eABaWh64gdveB03A3nnsY49DabhNOx2Jvgv0_uu5dWR22agHsN4yrR1xJ1vx-Z3Tjfs0pmGcP6bZ-z9cfW2fE7Wr08vy4d1YiHP-gRSqUBVqIxW1cJZhKIu6hRUDQpRLyxiigCZLBYiA7R5LqUxmdYIlashgxmTp7s2dETxjXIforBwLKUoR-PKk3FlNK4cjSvTyOh_jPX9j7I-GN-cJdMTSftROoZy2w2hjQLPQN_ftYcE
CitedBy_id crossref_primary_10_1007_s10115_021_01650_9
crossref_primary_10_1007_s00530_023_01099_6
crossref_primary_10_1016_j_compeleceng_2016_04_003
crossref_primary_10_1016_j_ipm_2015_12_005
Cites_doi 10.1145/1459359.1459448
10.1007/978-3-642-04617-9_20
10.1109/ICTAI.2004.50
10.1145/1026711.1026726
10.1109/76.927424
10.1145/1076034.1076120
10.1109/ICCV.2005.142
10.1007/s00530-010-0224-7
10.1145/1027527.1027747
10.1109/TPAMI.2008.121
10.1145/1101149.1101167
10.1016/j.patrec.2004.03.008
10.1109/34.730558
10.1016/j.jmva.2006.11.013
10.1145/1526709.1526756
10.1145/957013.957094
10.2307/2257960
10.1145/1386352.1386390
10.1016/j.proenv.2011.09.126
10.1117/12.205668
10.1007/978-3-642-15405-8_14
10.1109/DEXA.2008.113
10.1109/TSMC.1978.4309999
10.1007/BF02294245
10.1007/s11760-007-0049-9
10.1016/S0921-8890(97)00046-8
10.1007/978-3-662-05300-3
10.1109/ICICISYS.2010.5658548
10.1016/0031-3203(93)90145-M
10.1023/A:1012801612483
10.1007/s00530-004-0141-8
10.1080/01621459.1983.10478008
10.1145/1180639.1180743
10.1007/s00530-006-0020-6
10.1145/1460096.1460109
10.1109/TIP.2009.2035866
ContentType Journal Article
Copyright Springer-Verlag London 2013
Copyright_xml – notice: Springer-Verlag London 2013
DBID AAYXX
CITATION
DOI 10.1007/s11760-013-0587-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 721
ExternalDocumentID 10_1007_s11760_013_0587_2
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c354t-321636be6a76b9fce38d8d236d36ee79cee2e334189043ec5511aa477e3bfd343
IEDL.DBID U2A
ISSN 1863-1703
IngestDate Thu Apr 24 23:00:56 EDT 2025
Tue Jul 01 03:24:12 EDT 2025
Fri Feb 21 02:32:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Effective browsing
Image clustering
Feature extraction
Folding algorithm
Image search engine
Refining of clusters
Visual diversity
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-321636be6a76b9fce38d8d236d36ee79cee2e334189043ec5511aa477e3bfd343
PageCount 23
ParticipantIDs crossref_primary_10_1007_s11760_013_0587_2
crossref_citationtrail_10_1007_s11760_013_0587_2
springer_journals_10_1007_s11760_013_0587_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2014
Publisher Springer London
Publisher_xml – name: Springer London
References TamuraHMoriSYamawakiTTextural features corresponding visual perceptionIEEE Trans. Syst. Man Cybern.1978846047310.1109/TSMC.1978.4309999
Alamdar, F., bahmani, Z., Haratizadeh, S.: Color quantization with clustering By F-PSO-GA. In: Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), China, pp. 233–238 (2010)
Liu, H., Xie, X., Tang, X., Li, Z., Ma, W.Y.: Effective browsing of web image search results. In: Proceedings of the Multimedia, Information Retrieval, pp. 84–90 (2004)
HalkidiMBaistakisYVazirgiannisMOn clustering validation techniquesJ. Intell. Inf. Syst.20011710714510.1023/A:10128016124830998.68154
Salvador, S., Chan, P.: Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms. In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 576–584 (2004)
WilliamsWLambertJMultivariate methods in plant ecology: V. Similarity analyses and information-analysisJ. Ecol.19665442744510.2307/2257960
MilliganGCooperMAn examination of procedures for determining the number of clusters in a data setPsychometrika19855015917910.1007/BF02294245
MeilăMComparing clusterings: an information based distanceJ. Multivar. Anal.20079887389510.1016/j.jmva.2006.11.01305170498
LammingDCronly-DillonJContrast sensitivity Chapter 5Vision and Visual Dysfunction1991LondonMacmillan Press
van Leuken, R.H., Garcia, L., Olivares, X.: Visual Diversification of Image Search Result. In: Proceedings of the 18th International Conference on World Wide Web, ACM, USA, pp. 341–350 (2009)
Jia, Y., Wang, J., Zhang, C., Hua, X.S.: Finding image exemplars using fast sparse affinity propagation. In: Proceedings of the ACM Multimedia, pp. 639–642 (2008)
TianXTaoDHuaXSWuXActive reranking for web image searchIEEE Trans. Image Process.20101980582010.1109/TIP.2009.20358662756572
Ma, Y., Zhang, H.: Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of the Eleventh ACM International Conference on Multimedia, Berkeley, CA, USA (2003)
WangXWangYWangLImproving fuzzy c-means clustering based on feature-weight learningPattern Recogn. Lett.2004251123113210.1016/j.patrec.2004.03.008
DuranBOdellPCluster Analysis: A Survey, Volume 100 of Lecture Notes in Economics and Mathematical Systems1974BerlinSpringer
WangJJiaLHuaXSInteractive browsing via diversified visual summarization for image search resultsMultimed. Syst.20101737939110.1007/s00530-010-0224-7
Deselaers, T., Keysers, D., Ney, H.: Clustering Visually Similar Images to Improve Image Search Engines. In: Proceedings of the Informatiktage 2003 der Gesellschaft für Informatik, Germany (2003)
AlamdarF.KeyvanpourM.R.Effects of quaghistogram on image retrieval and clusteringInt. J. Comput. Sci. Appl.20124141153
Hirota, M., Yokoyama, S., Fukuta, N., Ishikawa, H.: Constraint-based clustering of image search results using photo metadata and low-level image features. In: Proceedings of the Computer and Information Science. Springer, Berlin, Heidelberg, pp. 165–178 (2010)
Fergus, R., Fei-Fei, L., Perona, P., Zisserman, A.: Learning object categories from Google’s image search. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV), pp. 1816–1823 (2005)
Moëllic, P.A. , Haugeard, J.E. , Pitel, G.: Image clustering based on a shared nearest neighbors approach for tagged collections. In: Proceedings of the CIVR, pp. 269–278 (2008)
NieburEKochCParasuramanRComputational architectures for attentionThe Attentive Brain1998Cambridge, MAMIT Press163186
Ahmad, S.: VISIT: a neural model of covert attention. Adv. Neural Inf. Process. Syst. 4, 420–427 (1991)
ShenHTTanKZhouXCuiBICICLE: a semantic-based retrieval system for WWW imagesMultimed. Syst.20061143845410.1007/s00530-006-0020-6
EidenbergerHStatistical analysis of content-based MPEG-7 descriptors for image retrievalMultimed. Syst.200410849710.1007/s00530-004-0141-8
van Zwol, R., Murdock, V., Garcia, L., Ramirez, G.: Diversifying image search with user generated content. In: Proceedings of the International ACM Conference on Multimedia Information Retrieval, Canada (2008)
WangHMissuraOGärtnerTWrobelSContext-Based Clustering of Image Search ResultsLect. Notes Comput. Sci.2009580315316010.1007/978-3-642-04617-9_20
GuldoganEGabboujMFeature selection for content-based image retrievalSignal Image Video Process.20082324125010.1007/s11760-007-0049-91151.68717
HassanzadehH.KeyvanpourM.R.Semantic web requirements through web mining techniquesInt. J. Comput. Theory Eng.20124616620
Zhang, B., Li, H., Liu, Y., Ji, L., Xi, W., Fan, W., Chen, Z., Ma, W.Y.: Improving web search results using affinity graph. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, USA, pp. 504–511 (2005)
FowlkesEMallowsCA method for comparing two hierarchical clusteringsJ. Am. Stat. Assoc.19837855356910.1080/01621459.1983.104780080545.62042
BobergJSalakoskiTGeneral formulation and evaluation of agglomerative clustering methods with metric and non-metric distancesPattern Recogn.1993261395140610.1016/0031-3203(93)90145-M
BalujaSPomerleauDAExpectation-based selective attention for visual monitoring and control of a robot vehicleRobot. Auton. Syst.19972232934410.1016/S0921-8890(97)00046-8
Asbaghi, Sh., Keyvanpour, M.R., Amiri, A.: Learning-based approach for semantic image retrieval by using a dynamic semantic network. In: Proceedings of 19th International Conference on Database and Expert Systems Application, Italy, pp. 107–111 (2008)
JingYBalujaSVisualRank: applying PageRamk to large-scale image searchIEEE Trans. Pattern Anal. Mach. Intell.2008301877189010.1109/TPAMI.2008.121
AlamdarFKeyvanpourMRA new color feature extraction method based on QuadHistogramProc. Environ. Sci.20111077778310.1016/j.proenv.2011.09.126
Gao, B., Liu, T.Y., Qin, T., Zheng, X., Cheng, Q., Ma, W.Y.: Web image clustering by consistent utilization of visual features and surrounding texts. In: Proceedings of the ACM multimedia, pp. 112–121 (2005)
Li, Z., Xu, G., Li, M., W.Yi. Ma, Zhang, H.J.: Grouping WWW image search results by novel inhomogeneous clustering method. In: Proceedings of the 11th International Multimedia Modeling Conference, pp. 255–261 (2005)
IttiLKochCNieburEA model of saliency-based visual attention for rapid scene analysisIEEE Trans. Pattern Anal. Mach. Intell.1998201254125910.1109/34.730558
MilaneseRGilSPunTAttentive mechanism for dynamic and static scene analysisOpt. Eng.1995342428243410.1117/12.205668
Cai, D., He, X., Li, Z., Ma, W.Y., Wen, J.R. : Hierarchical clustering of WWW image search results using visual, textual and link information. In: Proceedings of the ACM Multimedia, pp. 952–959 (2004)
ManjunathBSOhmJVasudevanVVYamadaAColor and texture descriptorsIEEE Trans. Circuits Syst. Video Technol.20101170371510.1109/76.927424
Jing, F., Wang, C., Yao, Y., Deng, K., Zhang, L., Ma, W.: IGroup: A Web Image Search Engine with Semantic Clustering of Search Results. In: Proceedings of the ACM, California, USA, pp. 377–384 (2006)
Feng, H., Chua, T.S.: A bootstrapping approach to annotating large image collection. In: Proceedings of the ACM International Conference on Multimedia, Information Retrieval, pp 55–62 (2003)
DaviesDLBouldinDWCluster separation measureIEEE Trans. Pattern Anal. Mach. Intell.1979195104
BS Manjunath (587_CR28) 2010; 11
M Halkidi (587_CR35) 2001; 17
587_CR10
587_CR32
587_CR11
B Duran (587_CR41) 1974
587_CR14
587_CR15
S Baluja (587_CR24) 1997; 22
587_CR37
587_CR16
G Milligan (587_CR36) 1985; 50
E Fowlkes (587_CR44) 1983; 78
H Tamura (587_CR30) 1978; 8
X Wang (587_CR33) 2004; 25
E Niebur (587_CR22) 1998
DL Davies (587_CR39) 1979; 1
F Alamdar (587_CR31) 2011; 10
E Guldogan (587_CR34) 2008; 2
L Itti (587_CR25) 1998; 20
587_CR20
D Lamming (587_CR21) 1991
J Boberg (587_CR38) 1993; 26
R Milanese (587_CR23) 1995; 34
587_CR26
587_CR27
W Williams (587_CR40) 1966; 54
Y Jing (587_CR42) 2008; 30
587_CR6
587_CR17
587_CR7
H Wang (587_CR12) 2009; 5803
587_CR18
587_CR19
J Wang (587_CR8) 2010; 17
587_CR9
587_CR2
587_CR3
587_CR4
587_CR5
X Tian (587_CR43) 2010; 19
M Meilă (587_CR45) 2007; 98
587_CR1
HT Shen (587_CR13) 2006; 11
H Eidenberger (587_CR29) 2004; 10
References_xml – reference: WangXWangYWangLImproving fuzzy c-means clustering based on feature-weight learningPattern Recogn. Lett.2004251123113210.1016/j.patrec.2004.03.008
– reference: Li, Z., Xu, G., Li, M., W.Yi. Ma, Zhang, H.J.: Grouping WWW image search results by novel inhomogeneous clustering method. In: Proceedings of the 11th International Multimedia Modeling Conference, pp. 255–261 (2005)
– reference: LammingDCronly-DillonJContrast sensitivity Chapter 5Vision and Visual Dysfunction1991LondonMacmillan Press
– reference: DaviesDLBouldinDWCluster separation measureIEEE Trans. Pattern Anal. Mach. Intell.1979195104
– reference: BalujaSPomerleauDAExpectation-based selective attention for visual monitoring and control of a robot vehicleRobot. Auton. Syst.19972232934410.1016/S0921-8890(97)00046-8
– reference: TamuraHMoriSYamawakiTTextural features corresponding visual perceptionIEEE Trans. Syst. Man Cybern.1978846047310.1109/TSMC.1978.4309999
– reference: AlamdarF.KeyvanpourM.R.Effects of quaghistogram on image retrieval and clusteringInt. J. Comput. Sci. Appl.20124141153
– reference: MilaneseRGilSPunTAttentive mechanism for dynamic and static scene analysisOpt. Eng.1995342428243410.1117/12.205668
– reference: ManjunathBSOhmJVasudevanVVYamadaAColor and texture descriptorsIEEE Trans. Circuits Syst. Video Technol.20101170371510.1109/76.927424
– reference: DuranBOdellPCluster Analysis: A Survey, Volume 100 of Lecture Notes in Economics and Mathematical Systems1974BerlinSpringer
– reference: MeilăMComparing clusterings: an information based distanceJ. Multivar. Anal.20079887389510.1016/j.jmva.2006.11.01305170498
– reference: Cai, D., He, X., Li, Z., Ma, W.Y., Wen, J.R. : Hierarchical clustering of WWW image search results using visual, textual and link information. In: Proceedings of the ACM Multimedia, pp. 952–959 (2004)
– reference: Jing, F., Wang, C., Yao, Y., Deng, K., Zhang, L., Ma, W.: IGroup: A Web Image Search Engine with Semantic Clustering of Search Results. In: Proceedings of the ACM, California, USA, pp. 377–384 (2006)
– reference: Liu, H., Xie, X., Tang, X., Li, Z., Ma, W.Y.: Effective browsing of web image search results. In: Proceedings of the Multimedia, Information Retrieval, pp. 84–90 (2004)
– reference: Hirota, M., Yokoyama, S., Fukuta, N., Ishikawa, H.: Constraint-based clustering of image search results using photo metadata and low-level image features. In: Proceedings of the Computer and Information Science. Springer, Berlin, Heidelberg, pp. 165–178 (2010)
– reference: NieburEKochCParasuramanRComputational architectures for attentionThe Attentive Brain1998Cambridge, MAMIT Press163186
– reference: FowlkesEMallowsCA method for comparing two hierarchical clusteringsJ. Am. Stat. Assoc.19837855356910.1080/01621459.1983.104780080545.62042
– reference: Jia, Y., Wang, J., Zhang, C., Hua, X.S.: Finding image exemplars using fast sparse affinity propagation. In: Proceedings of the ACM Multimedia, pp. 639–642 (2008)
– reference: WangHMissuraOGärtnerTWrobelSContext-Based Clustering of Image Search ResultsLect. Notes Comput. Sci.2009580315316010.1007/978-3-642-04617-9_20
– reference: WangJJiaLHuaXSInteractive browsing via diversified visual summarization for image search resultsMultimed. Syst.20101737939110.1007/s00530-010-0224-7
– reference: Gao, B., Liu, T.Y., Qin, T., Zheng, X., Cheng, Q., Ma, W.Y.: Web image clustering by consistent utilization of visual features and surrounding texts. In: Proceedings of the ACM multimedia, pp. 112–121 (2005)
– reference: Moëllic, P.A. , Haugeard, J.E. , Pitel, G.: Image clustering based on a shared nearest neighbors approach for tagged collections. In: Proceedings of the CIVR, pp. 269–278 (2008)
– reference: WilliamsWLambertJMultivariate methods in plant ecology: V. Similarity analyses and information-analysisJ. Ecol.19665442744510.2307/2257960
– reference: Asbaghi, Sh., Keyvanpour, M.R., Amiri, A.: Learning-based approach for semantic image retrieval by using a dynamic semantic network. In: Proceedings of 19th International Conference on Database and Expert Systems Application, Italy, pp. 107–111 (2008)
– reference: Fergus, R., Fei-Fei, L., Perona, P., Zisserman, A.: Learning object categories from Google’s image search. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV), pp. 1816–1823 (2005)
– reference: Feng, H., Chua, T.S.: A bootstrapping approach to annotating large image collection. In: Proceedings of the ACM International Conference on Multimedia, Information Retrieval, pp 55–62 (2003)
– reference: JingYBalujaSVisualRank: applying PageRamk to large-scale image searchIEEE Trans. Pattern Anal. Mach. Intell.2008301877189010.1109/TPAMI.2008.121
– reference: van Leuken, R.H., Garcia, L., Olivares, X.: Visual Diversification of Image Search Result. In: Proceedings of the 18th International Conference on World Wide Web, ACM, USA, pp. 341–350 (2009)
– reference: AlamdarFKeyvanpourMRA new color feature extraction method based on QuadHistogramProc. Environ. Sci.20111077778310.1016/j.proenv.2011.09.126
– reference: GuldoganEGabboujMFeature selection for content-based image retrievalSignal Image Video Process.20082324125010.1007/s11760-007-0049-91151.68717
– reference: IttiLKochCNieburEA model of saliency-based visual attention for rapid scene analysisIEEE Trans. Pattern Anal. Mach. Intell.1998201254125910.1109/34.730558
– reference: HalkidiMBaistakisYVazirgiannisMOn clustering validation techniquesJ. Intell. Inf. Syst.20011710714510.1023/A:10128016124830998.68154
– reference: Deselaers, T., Keysers, D., Ney, H.: Clustering Visually Similar Images to Improve Image Search Engines. In: Proceedings of the Informatiktage 2003 der Gesellschaft für Informatik, Germany (2003)
– reference: van Zwol, R., Murdock, V., Garcia, L., Ramirez, G.: Diversifying image search with user generated content. In: Proceedings of the International ACM Conference on Multimedia Information Retrieval, Canada (2008)
– reference: MilliganGCooperMAn examination of procedures for determining the number of clusters in a data setPsychometrika19855015917910.1007/BF02294245
– reference: BobergJSalakoskiTGeneral formulation and evaluation of agglomerative clustering methods with metric and non-metric distancesPattern Recogn.1993261395140610.1016/0031-3203(93)90145-M
– reference: TianXTaoDHuaXSWuXActive reranking for web image searchIEEE Trans. Image Process.20101980582010.1109/TIP.2009.20358662756572
– reference: ShenHTTanKZhouXCuiBICICLE: a semantic-based retrieval system for WWW imagesMultimed. Syst.20061143845410.1007/s00530-006-0020-6
– reference: Zhang, B., Li, H., Liu, Y., Ji, L., Xi, W., Fan, W., Chen, Z., Ma, W.Y.: Improving web search results using affinity graph. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, USA, pp. 504–511 (2005)
– reference: Ma, Y., Zhang, H.: Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of the Eleventh ACM International Conference on Multimedia, Berkeley, CA, USA (2003)
– reference: EidenbergerHStatistical analysis of content-based MPEG-7 descriptors for image retrievalMultimed. Syst.200410849710.1007/s00530-004-0141-8
– reference: Alamdar, F., bahmani, Z., Haratizadeh, S.: Color quantization with clustering By F-PSO-GA. In: Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), China, pp. 233–238 (2010)
– reference: HassanzadehH.KeyvanpourM.R.Semantic web requirements through web mining techniquesInt. J. Comput. Theory Eng.20124616620
– reference: Salvador, S., Chan, P.: Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms. In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 576–584 (2004)
– reference: Ahmad, S.: VISIT: a neural model of covert attention. Adv. Neural Inf. Process. Syst. 4, 420–427 (1991)
– ident: 587_CR14
  doi: 10.1145/1459359.1459448
– volume: 5803
  start-page: 153
  year: 2009
  ident: 587_CR12
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-642-04617-9_20
– ident: 587_CR37
  doi: 10.1109/ICTAI.2004.50
– ident: 587_CR1
  doi: 10.1145/1026711.1026726
– volume: 11
  start-page: 703
  year: 2010
  ident: 587_CR28
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/76.927424
– ident: 587_CR6
  doi: 10.1145/1076034.1076120
– ident: 587_CR7
  doi: 10.1109/ICCV.2005.142
– volume: 17
  start-page: 379
  year: 2010
  ident: 587_CR8
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-010-0224-7
– ident: 587_CR9
  doi: 10.1145/1027527.1027747
– ident: 587_CR2
– ident: 587_CR26
– volume: 30
  start-page: 1877
  year: 2008
  ident: 587_CR42
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.121
– ident: 587_CR15
  doi: 10.1145/1101149.1101167
– volume: 25
  start-page: 1123
  year: 2004
  ident: 587_CR33
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2004.03.008
– volume: 20
  start-page: 1254
  year: 1998
  ident: 587_CR25
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.730558
– volume: 98
  start-page: 873
  year: 2007
  ident: 587_CR45
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2006.11.013
– ident: 587_CR32
– ident: 587_CR4
  doi: 10.1145/1526709.1526756
– ident: 587_CR20
  doi: 10.1145/957013.957094
– volume: 54
  start-page: 427
  year: 1966
  ident: 587_CR40
  publication-title: J. Ecol.
  doi: 10.2307/2257960
– ident: 587_CR11
– ident: 587_CR17
  doi: 10.1145/1386352.1386390
– volume: 10
  start-page: 777
  year: 2011
  ident: 587_CR31
  publication-title: Proc. Environ. Sci.
  doi: 10.1016/j.proenv.2011.09.126
– start-page: 163
  volume-title: The Attentive Brain
  year: 1998
  ident: 587_CR22
– volume: 34
  start-page: 2428
  year: 1995
  ident: 587_CR23
  publication-title: Opt. Eng.
  doi: 10.1117/12.205668
– ident: 587_CR19
  doi: 10.1007/978-3-642-15405-8_14
– volume: 1
  start-page: 95
  year: 1979
  ident: 587_CR39
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 587_CR3
  doi: 10.1109/DEXA.2008.113
– volume: 8
  start-page: 460
  year: 1978
  ident: 587_CR30
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1978.4309999
– volume: 50
  start-page: 159
  year: 1985
  ident: 587_CR36
  publication-title: Psychometrika
  doi: 10.1007/BF02294245
– volume: 2
  start-page: 241
  issue: 3
  year: 2008
  ident: 587_CR34
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-007-0049-9
– volume: 22
  start-page: 329
  year: 1997
  ident: 587_CR24
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/S0921-8890(97)00046-8
– ident: 587_CR18
  doi: 10.1007/978-3-662-05300-3
– ident: 587_CR27
  doi: 10.1109/ICICISYS.2010.5658548
– volume: 26
  start-page: 1395
  year: 1993
  ident: 587_CR38
  publication-title: Pattern Recogn.
  doi: 10.1016/0031-3203(93)90145-M
– volume: 17
  start-page: 107
  year: 2001
  ident: 587_CR35
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1023/A:1012801612483
– volume: 10
  start-page: 84
  year: 2004
  ident: 587_CR29
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-004-0141-8
– volume: 78
  start-page: 553
  year: 1983
  ident: 587_CR44
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1983.10478008
– ident: 587_CR10
  doi: 10.1145/1180639.1180743
– volume: 11
  start-page: 438
  year: 2006
  ident: 587_CR13
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-006-0020-6
– volume-title: Cluster Analysis: A Survey, Volume 100 of Lecture Notes in Economics and Mathematical Systems
  year: 1974
  ident: 587_CR41
– volume-title: Vision and Visual Dysfunction
  year: 1991
  ident: 587_CR21
– ident: 587_CR5
  doi: 10.1145/1460096.1460109
– ident: 587_CR16
– volume: 19
  start-page: 805
  year: 2010
  ident: 587_CR43
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2035866
SSID ssj0000327868
Score 1.9647716
Snippet The unprecedented growth in applications making use of digital images and multimedia references raised the requirement for image and topic search. Systematic...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 699
SubjectTerms Computer Imaging
Computer Science
Image Processing and Computer Vision
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Vision
Title Effective browsing of image search results via diversified visual summarization by clustering and refining clusters
URI https://link.springer.com/article/10.1007/s11760-013-0587-2
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yXfTgx1ScHyMHT0qhbdIkPW6yORR3cjBPJWkTGMxNbCv43_vStJsDFTyVlpcU8pL3kffe7yF0HYDWFoQZz1CuPUq58ZSUygN3KMq0EqmqQJKeJmw8pQ-zaFbXcedNtnsTkqwk9abYLeDMJlHZfDM4GSB32xG47jaPbxr21xcrPgm5cCVwgln4TZ800cyfZtnWR9vB0ErHjA7Rfm0c4r7j5hHa0csOOmgaL-D6HHbQ3jcUwWOUOwRiEFtYgVNtnX-8Mnj-CqICu52MwakuF0WOP-YSZy4Vw4DxCe95CX90JWx1SSZWnzhdlBZBwU4llxkMN1UjieZ7foKmo-Hz3direyl4KYlo4ZEQDC-mNJOcqdikmohMZCFhGWFa8xh0ZagJqDQR-5ToFAypQErKuSbKZISSU9Rarpb6DGEZZTLmfihtUa2WSnGR0sBwJewtXRB0kd-saJLWQOO238Ui2UAkWyYkwITEMiEJu-hmPeTNoWz8RXzbsCmpD1z-O_X5v6gv0C5YRNRlNF6iVvFe6iuwOgrVQ-3-aDCY2Of9y-OwV-26Lzo10r8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hMgAD5SnK0wMTKCiJXdsdEQLKc2qlMkV2YkuI0iKSIMGv51wnFBAgMSaynfhxT999B7AfodSWlNvAMmECxoQNtFI6QHOonRktUz0BSbq55d0-uxy0B1Ued15Hu9dXkhNOPU12iwR3QVQu3gwpA_nuLEMTnDVg9vj87mrqWglpLKRPgpPcAXCGtL7P_GmcrxLp63XoRMqcNaFX_58PLnk4Kgt9lL59g2785wSWYLHSOsmxPybLMGNGK9CsKzqQisBXYOETPOEq5B7aGPkh0WitO68CGVty_4g8iHgSIWitl8MiJy_3imQ-xsOiVovPeYlf9LlxVa4n0a8kHZYOmsENpUYZdreTChX1-3wN-menvZNuUBVpCFLaZkVAY9TouDZcCa47NjVUZjKLKc8oN0Z0UAjHhqKslJ2QUZOihhYpxYQwVNuMMroOjdF4ZDaAqHamOiKMlcvWNUprIVMWWaGlc_9FUQvCeqOStEIwd4U0hskUe9ktcYJLnLglTuIWHHx0efLwHX81Pqw3LqkoOf-99ea_Wu_BXLd3c51cX9xebcE8ql3Mh01uQ6N4Ls0OqjaF3q2O8jvUKO9i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5Vi1TBgQUK4lGKDz0VBZLYa3uPqLDlVdQDSHAKdmxLq27DiiRI8OsZrxO2VFAJcUxkO_Fjnp75BuBrglJbUu4ix4SNGBMu0krpCM2hnrFa5noCkvTzjB9esOPL3mVT57Rso93bK8mQ0-BRmopqd2zc7jTxLRHcB1T52DOkEuTBM8xjs3dgZu_H1cnUzRLTVMiQECe5B-OMaXu3-dI4z6XT86vRicQZdOG6_dcQaPJ7p670Tv7wD4zjOyazAPONNkr2wvFZhA-2WIJuW-mBNIS_BHN_wRZ-gjJAHiOfJBqteO9tIDeODP8gbyKBdAha8fWoKsndUBETYj8carv4XNb4xZAz1-SAEn1P8lHtIRv8UKow2N1NKle078tluBgcnH8_jJriDVFOe6yKaIqaHteWK8F13-WWSiNNSrmh3FrRR-GcWooyVPZjRm2OmluiFBPCUu0MZXQFOsVNYVeBqJ5RfRGnymfxWqW1kDlLnNDSuwWTZA3idtOyvEE29wU2RtkUk9kvcYZLnPklztI1-PbUZRxgPf7XeLvdxKyh8PL11utvar0FH3_tD7LTo7OTDZhFbYyFaMrP0Klua7uJGk-lvzSn-hGILPhG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+browsing+of+image+search+results+via+diversified+visual+summarization+by+clustering+and+refining+clusters&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Alamdar%2C+Fatemeh&rft.au=Keyvanpour%2C+Mohammad+Reza&rft.date=2014-05-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=8&rft.issue=4&rft.spage=699&rft.epage=721&rft_id=info:doi/10.1007%2Fs11760-013-0587-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_013_0587_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon