Viscoelastic damping in crystalline composites: A molecular dynamics study
Molecular dynamics (MD) simulations were used to study viscoelastic behavior of model Lennard-Jones (LJ) crystalline composites subject to an oscillatory shear deformation. The two crystals, namely a soft and a stiff phase, individually show highly elastic behavior and very small loss modulus. On th...
Saved in:
Published in | Composites. Part B, Engineering Vol. 93; pp. 273 - 279 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular dynamics (MD) simulations were used to study viscoelastic behavior of model Lennard-Jones (LJ) crystalline composites subject to an oscillatory shear deformation. The two crystals, namely a soft and a stiff phase, individually show highly elastic behavior and very small loss modulus. On the other hand, when the stiff phase is included within the soft matrix as a sphere, the composite exhibits significant viscous damping and a large phase shift between stress and strain. In fact, the maximum loss modulus in these model composites was found to be about 20 times greater than that given by the theoretical Hashin-Shtrikman upper bound. We attribute this behavior to the fact that in composites shear strain is highly inhomogeneous and mostly accommodated by the soft phase. This is corroborated by mode-dependent Grüneisen parameter analysis showing that in the low frequency regime, Grüneisen parameters, which measure degree of anharmonicity, are about twice greater for the composite than each individual homogenous crystal. Interestingly, the frequency at which the damping is greatest scales with the microstructural length scale of the composite, a feature we also observe for superlattice structures. |
---|---|
AbstractList | Molecular dynamics (MD) simulations were used to study viscoelastic behavior of model Lennard-Jones (LJ) crystalline composites subject to an oscillatory shear deformation. The two crystals, namely a soft and a stiff phase, individually show highly elastic behavior and very small loss modulus. On the other hand, when the stiff phase is included within the soft matrix as a sphere, the composite exhibits significant viscous damping and a large phase shift between stress and strain. In fact, the maximum loss modulus in these model composites was found to be about 20 times greater than that given by the theoretical Hashin-Shtrikman upper bound. We attribute this behavior to the fact that in composites shear strain is highly inhomogeneous and mostly accommodated by the soft phase. This is corroborated by mode-dependent Grueneisen parameter analysis showing that in the low frequency regime, Grueneisen parameters, which measure degree of anharmonicity, are about twice greater for the composite than each individual homogenous crystal. Interestingly, the frequency at which the damping is greatest scales with the microstructural length scale of the composite, a feature we also observe for superlattice structures. Molecular dynamics (MD) simulations were used to study viscoelastic behavior of model Lennard-Jones (LJ) crystalline composites subject to an oscillatory shear deformation. The two crystals, namely a soft and a stiff phase, individually show highly elastic behavior and very small loss modulus. On the other hand, when the stiff phase is included within the soft matrix as a sphere, the composite exhibits significant viscous damping and a large phase shift between stress and strain. In fact, the maximum loss modulus in these model composites was found to be about 20 times greater than that given by the theoretical Hashin-Shtrikman upper bound. We attribute this behavior to the fact that in composites shear strain is highly inhomogeneous and mostly accommodated by the soft phase. This is corroborated by mode-dependent Grüneisen parameter analysis showing that in the low frequency regime, Grüneisen parameters, which measure degree of anharmonicity, are about twice greater for the composite than each individual homogenous crystal. Interestingly, the frequency at which the damping is greatest scales with the microstructural length scale of the composite, a feature we also observe for superlattice structures. |
Author | Ranganathan, Raghavan Ozisik, Rahmi Keblinski, Pawel |
Author_xml | – sequence: 1 givenname: Raghavan surname: Ranganathan fullname: Ranganathan, Raghavan email: rangar2@rpi.edu – sequence: 2 givenname: Rahmi surname: Ozisik fullname: Ozisik, Rahmi – sequence: 3 givenname: Pawel surname: Keblinski fullname: Keblinski, Pawel email: keblip@rpi.edu |
BookMark | eNqNkE9LAzEQxYNUsK1-h_XmZWs22exmvUgp_qXgpXgNaXYiKdlkTbJCv71bKiieCgMzDO-9YX4zNHHeAULXBV4UuKhudwvlu95HkyBuF2RcLTAdqz5D04LXTV7gqpmMM2VNzmnFL9Asxh3GuGSUTNHru4nKg5UxGZW1suuN-8iMy1TYxyStNQ6y3xN32TLrvAU1WBmydu9kZ1TMYhra_SU619JGuPrpc7R5fNisnvP129PLarnOFWVlyglsS0245sA4U1Ujm0ppTFVDsMZEU863Gm9rqKUkLceSN1IDJgCEMkkZnaObY2wf_OcAMYlufAGslQ78EEXBiwozXjI-Su-PUhV8jAG0UCbJZLxLQRorCiwOEMVO_IEoDhAFpmPVY0LzL6EPppNhf5J3dfTCCOPLQBBRGXAKWhNAJdF6c0LKN3BWmI8 |
CitedBy_id | crossref_primary_10_1007_s12666_022_02524_6 crossref_primary_10_1038_s41598_022_14257_z crossref_primary_10_1063_5_0217552 crossref_primary_10_3390_nano12193333 crossref_primary_10_1557_s43578_024_01480_9 crossref_primary_10_1007_s12540_019_00566_y crossref_primary_10_1103_PhysRevB_95_214112 crossref_primary_10_1016_j_compositesb_2018_07_054 crossref_primary_10_1016_j_compositesb_2018_05_046 crossref_primary_10_1002_mats_202300021 crossref_primary_10_1016_j_compositesb_2017_05_018 crossref_primary_10_1002_app_48032 crossref_primary_10_1021_acs_jpcb_1c04609 crossref_primary_10_1063_1_5006036 |
Cites_doi | 10.1063/1.4899055 10.1016/j.carbon.2009.12.040 10.1021/ma035487l 10.1016/j.jsv.2012.10.020 10.1016/j.cma.2014.10.007 10.1103/PhysRev.184.151 10.1016/j.jallcom.2014.03.050 10.1016/j.ijsolstr.2013.01.014 10.1016/j.compositesb.2015.09.040 10.1016/S0925-8388(03)00238-X 10.1016/S0263-8223(99)00041-0 10.1016/S0167-6636(02)00210-7 10.1016/0141-0296(95)00034-5 10.1016/S1359-8368(98)00024-9 10.1016/S0020-7683(02)00404-3 10.1016/S0022-460X(03)00106-8 10.1021/jp400938x 10.1117/12.2012150 10.1103/PhysRevLett.86.2897 10.1016/j.compositesb.2015.12.046 10.1103/PhysRevA.31.1695 10.1016/S0925-8388(03)00239-1 10.1016/0020-7683(70)90029-6 10.1126/science.1135837 10.1063/1.4827103 10.1038/nmat906 10.1016/0022-5096(63)90060-7 10.1016/j.compstruct.2007.10.024 10.1016/j.commatsci.2009.02.035 10.1016/j.compositesb.2015.03.081 10.1006/jcph.1995.1039 10.1016/0079-6425(68)90018-2 10.1038/35069035 10.1016/j.compscitech.2005.06.016 10.1016/S0925-8388(02)01131-3 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7SR 7TB 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.compositesb.2016.03.037 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1069 |
EndPage | 279 |
ExternalDocumentID | 10_1016_j_compositesb_2016_03_037 S1359836816300610 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K ZMT ~02 ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AI. AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- SEW SSH VH1 7SR 7TB 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c354t-2eb4f28f8e585c69a96cf03c920f02f388bf0b7e7aa2d80a89afe02ee235a353 |
IEDL.DBID | .~1 |
ISSN | 1359-8368 |
IngestDate | Mon Jul 21 09:53:24 EDT 2025 Tue Jul 01 02:02:42 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Fri Feb 23 02:35:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Crystalline nano-composites B. Mechanical properties C. Computational modeling Viscoelastic damping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-2eb4f28f8e585c69a96cf03c920f02f388bf0b7e7aa2d80a89afe02ee235a353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1816058458 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1816058458 crossref_citationtrail_10_1016_j_compositesb_2016_03_037 crossref_primary_10_1016_j_compositesb_2016_03_037 elsevier_sciencedirect_doi_10_1016_j_compositesb_2016_03_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-15 |
PublicationDateYYYYMMDD | 2016-05-15 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Composites. Part B, Engineering |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Katiyar, Kumar (bib8) 2013; 8689 Feng, Guo (bib15) 2016; 85 Schaller (bib11) 2003; 355 Hashin, Shtrikman (bib23) 1963; 11 Skirlo, Demkowicz (bib44) 2013; 103 Jung, Aref (bib7) 2003; 35 Treviso, Van Genechten, Mundo, Tournour (bib13) 2015; 78 Sharafi, Li (bib14) 2016; 91 Benchekchou, Coni, Howarth, White (bib12) 1998; 8368 Gruneisen (bib38) 1926 Lakes (bib4) 2009 Kim, Swan, Lakes (bib27) 2002; 39 Ashcroft, Mermin (bib39) 1976 Srikanth, Gaofeng, Gupta (bib18) 2003; 352 Ma, Liaw, Gao, Qiao, Wang, Zhang (bib16) 2014; 604 Thompson, Plimpton, Mattson (bib33) 2009; 131 Mitra, Cook, Švrček, Blackley, Zhou, Kovač (bib3) 2013; 117 Muthusamy, Wang, Chung (bib17) 2010; 48 Chandra, Singh, Gupta (bib10) 1999; 46 Attipou, Nezamabadi, Daya, Zahrouni (bib28) 2013; 332 Painter, Coleman (bib41) 2008 Hansen, Verlet (bib32) 1969; 184 Tang, Kotov, Magonov, Ozturk (bib1) 2003; 2 Shenogin, Ozisik (bib40) 2007 Hashin (bib24) 1970; 6 Nose (bib34) 1984; 81 Berthelot, Assarar, Sefrani, Mahi (bib25) 2008; 85 Samali, Kwok (bib6) 1995; 17 Lee, Zeng, Cao, Han, Shen, Xu (bib2) 2005; 65 Meaud, Sain, Hulbert, Waas (bib26) 2013; 50 Krautkramer, Krautkramer (bib42) 1990 Jaglinski, Kochmann, Stone, Lakes (bib20) 2007; 315 Rao (bib5) 2003; 262 Adams, Maheri (bib9) 2003; 355 Sen, Sen, Kumar, Kumar, Keblinski, Keblinski (bib30) 2005; 38 Hoover (bib35) 1985; 31 Plimpton (bib37) 1995; 117 Stoloff, Davies (bib43) 1968; 13 Nose, Yonezawa (bib36) 1986; 84 Yagyu, Utsumi (bib31) 2009; 46 Lakes (bib21) 2001; 86 Lakes, Lee, Bersie, Wang (bib22) 2001; 410 Huang, Zhou, Sun, Li, Xie (bib29) 2015; 283 Wojnar, le Graverend, Kochmann (bib19) 2014; 105 Samali (10.1016/j.compositesb.2016.03.037_bib6) 1995; 17 Katiyar (10.1016/j.compositesb.2016.03.037_bib8) 2013; 8689 Yagyu (10.1016/j.compositesb.2016.03.037_bib31) 2009; 46 Jung (10.1016/j.compositesb.2016.03.037_bib7) 2003; 35 Treviso (10.1016/j.compositesb.2016.03.037_bib13) 2015; 78 Hoover (10.1016/j.compositesb.2016.03.037_bib35) 1985; 31 Nose (10.1016/j.compositesb.2016.03.037_bib36) 1986; 84 Hashin (10.1016/j.compositesb.2016.03.037_bib24) 1970; 6 Stoloff (10.1016/j.compositesb.2016.03.037_bib43) 1968; 13 Tang (10.1016/j.compositesb.2016.03.037_bib1) 2003; 2 Berthelot (10.1016/j.compositesb.2016.03.037_bib25) 2008; 85 Thompson (10.1016/j.compositesb.2016.03.037_bib33) 2009; 131 Schaller (10.1016/j.compositesb.2016.03.037_bib11) 2003; 355 Attipou (10.1016/j.compositesb.2016.03.037_bib28) 2013; 332 Kim (10.1016/j.compositesb.2016.03.037_bib27) 2002; 39 Sharafi (10.1016/j.compositesb.2016.03.037_bib14) 2016; 91 Muthusamy (10.1016/j.compositesb.2016.03.037_bib17) 2010; 48 Krautkramer (10.1016/j.compositesb.2016.03.037_bib42) 1990 Jaglinski (10.1016/j.compositesb.2016.03.037_bib20) 2007; 315 Lakes (10.1016/j.compositesb.2016.03.037_bib21) 2001; 86 Painter (10.1016/j.compositesb.2016.03.037_bib41) 2008 Feng (10.1016/j.compositesb.2016.03.037_bib15) 2016; 85 Hashin (10.1016/j.compositesb.2016.03.037_bib23) 1963; 11 Meaud (10.1016/j.compositesb.2016.03.037_bib26) 2013; 50 Lakes (10.1016/j.compositesb.2016.03.037_bib22) 2001; 410 Skirlo (10.1016/j.compositesb.2016.03.037_bib44) 2013; 103 Benchekchou (10.1016/j.compositesb.2016.03.037_bib12) 1998; 8368 Ma (10.1016/j.compositesb.2016.03.037_bib16) 2014; 604 Mitra (10.1016/j.compositesb.2016.03.037_bib3) 2013; 117 Chandra (10.1016/j.compositesb.2016.03.037_bib10) 1999; 46 Hansen (10.1016/j.compositesb.2016.03.037_bib32) 1969; 184 Lakes (10.1016/j.compositesb.2016.03.037_bib4) 2009 Sen (10.1016/j.compositesb.2016.03.037_bib30) 2005; 38 Lee (10.1016/j.compositesb.2016.03.037_bib2) 2005; 65 Gruneisen (10.1016/j.compositesb.2016.03.037_bib38) 1926 Srikanth (10.1016/j.compositesb.2016.03.037_bib18) 2003; 352 Nose (10.1016/j.compositesb.2016.03.037_bib34) 1984; 81 Rao (10.1016/j.compositesb.2016.03.037_bib5) 2003; 262 Plimpton (10.1016/j.compositesb.2016.03.037_bib37) 1995; 117 Wojnar (10.1016/j.compositesb.2016.03.037_bib19) 2014; 105 Shenogin (10.1016/j.compositesb.2016.03.037_bib40) Huang (10.1016/j.compositesb.2016.03.037_bib29) 2015; 283 Ashcroft (10.1016/j.compositesb.2016.03.037_bib39) 1976 Adams (10.1016/j.compositesb.2016.03.037_bib9) 2003; 355 |
References_xml | – volume: 86 start-page: 2897 year: 2001 end-page: 2900 ident: bib21 article-title: Extreme damping in composite materials with a negative stiffness phase publication-title: Phys Rev Lett – volume: 85 start-page: 161 year: 2016 end-page: 169 ident: bib15 article-title: Temperature-frequency-dependent mechanical properties model of epoxy resin and its composites publication-title: Compos Part B Eng – volume: 131 start-page: 1 year: 2009 end-page: 6 ident: bib33 article-title: General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions publication-title: J Chem Phys – volume: 84 start-page: 1803 year: 1986 end-page: 1814 ident: bib36 article-title: Isothermal-isobaric computer simulations of melting and crystallization of a Lennard-Jones system publication-title: J Chem Phys – volume: 46 start-page: 41 year: 1999 end-page: 51 ident: bib10 article-title: Damping studies in fiber-reinforced composites - a review publication-title: Compos Struct – volume: 2 start-page: 413 year: 2003 end-page: 418 ident: bib1 article-title: Nanostructured artificial nacre publication-title: Nat Mater – volume: 262 start-page: 457 year: 2003 end-page: 474 ident: bib5 article-title: Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes publication-title: J Sound Vib – volume: 78 start-page: 144 year: 2015 end-page: 152 ident: bib13 article-title: Damping in composite materials: properties and models publication-title: Compos Part B Eng – volume: 332 start-page: 725 year: 2013 end-page: 739 ident: bib28 article-title: A multiscale approach for the vibration analysis of heterogeneous materials: application to passive damping publication-title: J Sound Vib – volume: 352 start-page: 106 year: 2003 end-page: 110 ident: bib18 article-title: Enhanced damping of a magnesium alloy by addition of copper publication-title: J Alloys Compd – year: 1926 ident: bib38 article-title: Handbook of physics – year: 1990 ident: bib42 article-title: Ultrasonic testing of materials – volume: 91 start-page: 306 year: 2016 end-page: 314 ident: bib14 article-title: Multiscale modeling of vibration damping response of shape memory polymer fibers publication-title: Compos Part B Eng – volume: 35 start-page: 831 year: 2003 end-page: 844 ident: bib7 article-title: A combined honeycomb and solid viscoelastic material for structural damping applications publication-title: Mech Mater – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: bib37 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J Comput Phys – year: 2007 ident: bib40 – volume: 410 start-page: 565 year: 2001 end-page: 567 ident: bib22 article-title: Extreme damping in composite materials with negative-stiffness inclusions publication-title: Nature – year: 2009 ident: bib4 article-title: Viscoelastic materials – volume: 184 start-page: 151 year: 1969 end-page: 161 ident: bib32 article-title: Phase transition of the Lennard-Jones system publication-title: Phys Rev A – volume: 604 start-page: 331 year: 2014 end-page: 339 ident: bib16 article-title: Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer publication-title: J Alloys Compd – volume: 81 start-page: 511 year: 1984 end-page: 519 ident: bib34 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J Chem Phys – volume: 8689 start-page: 86891M year: 2013 ident: bib8 article-title: A study of damping characteristics of alumina-filled epoxy nano-composites publication-title: Proc SPIE – volume: 105 start-page: 162912 year: 2014 ident: bib19 article-title: Broadband control of the viscoelasticity of ferroelectrics via domain switching publication-title: Appl Phys Lett – year: 2008 ident: bib41 article-title: Essentials of polymer science and engineering – volume: 85 start-page: 189 year: 2008 end-page: 204 ident: bib25 article-title: Damping analysis of composite materials and structures publication-title: Compos Struct – volume: 31 start-page: 1695 year: 1985 end-page: 1697 ident: bib35 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys Rev A – volume: 355 start-page: 131 year: 2003 end-page: 135 ident: bib11 article-title: Metal matrix composites, a smart choice for high damping materials publication-title: J Alloys Compd – volume: 6 start-page: 539 year: 1970 end-page: 552 ident: bib24 article-title: Complex moduli of viscoelastic composites—I. General theory and application to particulate composites publication-title: Int J Solids Struct – volume: 38 start-page: 650 year: 2005 end-page: 653 ident: bib30 article-title: Viscoelastic properties of polymer melts from equilibrium molecular dynamics simulations publication-title: Macromolecules – volume: 315 start-page: 620 year: 2007 end-page: 622 ident: bib20 article-title: Composite materials with viscoelastic stiffness greater than diamond publication-title: Science – volume: 11 start-page: 127 year: 1963 end-page: 140 ident: bib23 article-title: A variational approach to the theory of the elastic behaviour of multiphase materials publication-title: J Mech Phys Solids – volume: 39 start-page: 5799 year: 2002 end-page: 5812 ident: bib27 article-title: Computational studies on high-stiffness, high-damping SiC-InSn particulate reinforced composites publication-title: Int J Solids Struct – volume: 13 start-page: 1 year: 1968 end-page: 84 ident: bib43 article-title: The mechanical properties of ordered alloys publication-title: Prog Mater Sci – volume: 48 start-page: 1457 year: 2010 end-page: 1464 ident: bib17 article-title: Unprecedented vibration damping with high values of loss modulus and loss tangent, exhibited by cement-matrix graphite network composite publication-title: Carbon – volume: 65 start-page: 2344 year: 2005 end-page: 2363 ident: bib2 article-title: Polymer nanocomposite foams publication-title: Compos Sci Technol – volume: 283 start-page: 503 year: 2015 end-page: 516 ident: bib29 article-title: Topology optimization for microstructures of viscoelastic composite materials publication-title: Comput Methods Appl Mech Eng – volume: 103 start-page: 171908 year: 2013 ident: bib44 article-title: Viscoelasticity of stepped interfaces publication-title: Appl Phys Lett – volume: 46 start-page: 286 year: 2009 end-page: 292 ident: bib31 article-title: Coarse-grained molecular dynamics simulation of nanofilled crosslinked rubber publication-title: Comput Mater Sci – volume: 8368 start-page: 809 year: 1998 end-page: 817 ident: bib12 article-title: Some aspects of vibration damping improvement in composite materials publication-title: Compos Part B Eng – volume: 17 start-page: 639 year: 1995 end-page: 654 ident: bib6 article-title: Use of viscoelastic dampers in reducing wind- and earthquake-induced motion of building structures publication-title: Eng Struct – year: 1976 ident: bib39 article-title: Solid state physics – volume: 117 start-page: 23198 year: 2013 end-page: 23207 ident: bib3 article-title: Improved optoelectronic properties of silicon nanocrystals/polymer nanocomposites by microplasma-induced liquid chemistry publication-title: J Phys Chem C – volume: 50 start-page: 1342 year: 2013 end-page: 1353 ident: bib26 article-title: Analysis and optimal design of layered composites with high stiffness and high damping publication-title: Int J Solids Struct – volume: 355 start-page: 126 year: 2003 end-page: 130 ident: bib9 article-title: Damping in advanced polymer-matrix composites publication-title: J Alloys Compd – volume: 105 start-page: 162912 year: 2014 ident: 10.1016/j.compositesb.2016.03.037_bib19 article-title: Broadband control of the viscoelasticity of ferroelectrics via domain switching publication-title: Appl Phys Lett doi: 10.1063/1.4899055 – volume: 48 start-page: 1457 year: 2010 ident: 10.1016/j.compositesb.2016.03.037_bib17 article-title: Unprecedented vibration damping with high values of loss modulus and loss tangent, exhibited by cement-matrix graphite network composite publication-title: Carbon doi: 10.1016/j.carbon.2009.12.040 – volume: 38 start-page: 650 year: 2005 ident: 10.1016/j.compositesb.2016.03.037_bib30 article-title: Viscoelastic properties of polymer melts from equilibrium molecular dynamics simulations publication-title: Macromolecules doi: 10.1021/ma035487l – volume: 84 start-page: 1803 year: 1986 ident: 10.1016/j.compositesb.2016.03.037_bib36 article-title: Isothermal-isobaric computer simulations of melting and crystallization of a Lennard-Jones system publication-title: J Chem Phys – volume: 332 start-page: 725 year: 2013 ident: 10.1016/j.compositesb.2016.03.037_bib28 article-title: A multiscale approach for the vibration analysis of heterogeneous materials: application to passive damping publication-title: J Sound Vib doi: 10.1016/j.jsv.2012.10.020 – year: 2008 ident: 10.1016/j.compositesb.2016.03.037_bib41 – year: 1926 ident: 10.1016/j.compositesb.2016.03.037_bib38 – volume: 283 start-page: 503 year: 2015 ident: 10.1016/j.compositesb.2016.03.037_bib29 article-title: Topology optimization for microstructures of viscoelastic composite materials publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2014.10.007 – volume: 184 start-page: 151 year: 1969 ident: 10.1016/j.compositesb.2016.03.037_bib32 article-title: Phase transition of the Lennard-Jones system publication-title: Phys Rev A doi: 10.1103/PhysRev.184.151 – volume: 604 start-page: 331 year: 2014 ident: 10.1016/j.compositesb.2016.03.037_bib16 article-title: Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2014.03.050 – volume: 50 start-page: 1342 year: 2013 ident: 10.1016/j.compositesb.2016.03.037_bib26 article-title: Analysis and optimal design of layered composites with high stiffness and high damping publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2013.01.014 – year: 2009 ident: 10.1016/j.compositesb.2016.03.037_bib4 – volume: 85 start-page: 161 year: 2016 ident: 10.1016/j.compositesb.2016.03.037_bib15 article-title: Temperature-frequency-dependent mechanical properties model of epoxy resin and its composites publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2015.09.040 – volume: 355 start-page: 126 year: 2003 ident: 10.1016/j.compositesb.2016.03.037_bib9 article-title: Damping in advanced polymer-matrix composites publication-title: J Alloys Compd doi: 10.1016/S0925-8388(03)00238-X – year: 1990 ident: 10.1016/j.compositesb.2016.03.037_bib42 – volume: 46 start-page: 41 year: 1999 ident: 10.1016/j.compositesb.2016.03.037_bib10 article-title: Damping studies in fiber-reinforced composites - a review publication-title: Compos Struct doi: 10.1016/S0263-8223(99)00041-0 – volume: 35 start-page: 831 year: 2003 ident: 10.1016/j.compositesb.2016.03.037_bib7 article-title: A combined honeycomb and solid viscoelastic material for structural damping applications publication-title: Mech Mater doi: 10.1016/S0167-6636(02)00210-7 – volume: 17 start-page: 639 year: 1995 ident: 10.1016/j.compositesb.2016.03.037_bib6 article-title: Use of viscoelastic dampers in reducing wind- and earthquake-induced motion of building structures publication-title: Eng Struct doi: 10.1016/0141-0296(95)00034-5 – volume: 8368 start-page: 809 year: 1998 ident: 10.1016/j.compositesb.2016.03.037_bib12 article-title: Some aspects of vibration damping improvement in composite materials publication-title: Compos Part B Eng doi: 10.1016/S1359-8368(98)00024-9 – volume: 39 start-page: 5799 year: 2002 ident: 10.1016/j.compositesb.2016.03.037_bib27 article-title: Computational studies on high-stiffness, high-damping SiC-InSn particulate reinforced composites publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(02)00404-3 – volume: 262 start-page: 457 year: 2003 ident: 10.1016/j.compositesb.2016.03.037_bib5 article-title: Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes publication-title: J Sound Vib doi: 10.1016/S0022-460X(03)00106-8 – volume: 117 start-page: 23198 year: 2013 ident: 10.1016/j.compositesb.2016.03.037_bib3 article-title: Improved optoelectronic properties of silicon nanocrystals/polymer nanocomposites by microplasma-induced liquid chemistry publication-title: J Phys Chem C doi: 10.1021/jp400938x – volume: 8689 start-page: 86891M year: 2013 ident: 10.1016/j.compositesb.2016.03.037_bib8 article-title: A study of damping characteristics of alumina-filled epoxy nano-composites publication-title: Proc SPIE doi: 10.1117/12.2012150 – volume: 86 start-page: 2897 year: 2001 ident: 10.1016/j.compositesb.2016.03.037_bib21 article-title: Extreme damping in composite materials with a negative stiffness phase publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.86.2897 – volume: 91 start-page: 306 year: 2016 ident: 10.1016/j.compositesb.2016.03.037_bib14 article-title: Multiscale modeling of vibration damping response of shape memory polymer fibers publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2015.12.046 – volume: 31 start-page: 1695 year: 1985 ident: 10.1016/j.compositesb.2016.03.037_bib35 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys Rev A doi: 10.1103/PhysRevA.31.1695 – volume: 355 start-page: 131 year: 2003 ident: 10.1016/j.compositesb.2016.03.037_bib11 article-title: Metal matrix composites, a smart choice for high damping materials publication-title: J Alloys Compd doi: 10.1016/S0925-8388(03)00239-1 – volume: 6 start-page: 539 year: 1970 ident: 10.1016/j.compositesb.2016.03.037_bib24 article-title: Complex moduli of viscoelastic composites—I. General theory and application to particulate composites publication-title: Int J Solids Struct doi: 10.1016/0020-7683(70)90029-6 – year: 1976 ident: 10.1016/j.compositesb.2016.03.037_bib39 – ident: 10.1016/j.compositesb.2016.03.037_bib40 – volume: 315 start-page: 620 year: 2007 ident: 10.1016/j.compositesb.2016.03.037_bib20 article-title: Composite materials with viscoelastic stiffness greater than diamond publication-title: Science doi: 10.1126/science.1135837 – volume: 103 start-page: 171908 year: 2013 ident: 10.1016/j.compositesb.2016.03.037_bib44 article-title: Viscoelasticity of stepped interfaces publication-title: Appl Phys Lett doi: 10.1063/1.4827103 – volume: 2 start-page: 413 year: 2003 ident: 10.1016/j.compositesb.2016.03.037_bib1 article-title: Nanostructured artificial nacre publication-title: Nat Mater doi: 10.1038/nmat906 – volume: 11 start-page: 127 year: 1963 ident: 10.1016/j.compositesb.2016.03.037_bib23 article-title: A variational approach to the theory of the elastic behaviour of multiphase materials publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(63)90060-7 – volume: 85 start-page: 189 year: 2008 ident: 10.1016/j.compositesb.2016.03.037_bib25 article-title: Damping analysis of composite materials and structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2007.10.024 – volume: 46 start-page: 286 year: 2009 ident: 10.1016/j.compositesb.2016.03.037_bib31 article-title: Coarse-grained molecular dynamics simulation of nanofilled crosslinked rubber publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2009.02.035 – volume: 78 start-page: 144 year: 2015 ident: 10.1016/j.compositesb.2016.03.037_bib13 article-title: Damping in composite materials: properties and models publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2015.03.081 – volume: 117 start-page: 1 year: 1995 ident: 10.1016/j.compositesb.2016.03.037_bib37 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J Comput Phys doi: 10.1006/jcph.1995.1039 – volume: 131 start-page: 1 year: 2009 ident: 10.1016/j.compositesb.2016.03.037_bib33 article-title: General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions publication-title: J Chem Phys – volume: 13 start-page: 1 year: 1968 ident: 10.1016/j.compositesb.2016.03.037_bib43 article-title: The mechanical properties of ordered alloys publication-title: Prog Mater Sci doi: 10.1016/0079-6425(68)90018-2 – volume: 410 start-page: 565 year: 2001 ident: 10.1016/j.compositesb.2016.03.037_bib22 article-title: Extreme damping in composite materials with negative-stiffness inclusions publication-title: Nature doi: 10.1038/35069035 – volume: 81 start-page: 511 year: 1984 ident: 10.1016/j.compositesb.2016.03.037_bib34 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J Chem Phys – volume: 65 start-page: 2344 year: 2005 ident: 10.1016/j.compositesb.2016.03.037_bib2 article-title: Polymer nanocomposite foams publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2005.06.016 – volume: 352 start-page: 106 year: 2003 ident: 10.1016/j.compositesb.2016.03.037_bib18 article-title: Enhanced damping of a magnesium alloy by addition of copper publication-title: J Alloys Compd doi: 10.1016/S0925-8388(02)01131-3 |
SSID | ssj0004532 |
Score | 2.2308888 |
Snippet | Molecular dynamics (MD) simulations were used to study viscoelastic behavior of model Lennard-Jones (LJ) crystalline composites subject to an oscillatory shear... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 273 |
SubjectTerms | B. Mechanical properties C. Computational modeling Crystal structure Crystalline nano-composites Crystals Loss modulus Mathematical models Molecular dynamics Phase shift Shear deformation Superlattice structures Viscoelastic damping |
Title | Viscoelastic damping in crystalline composites: A molecular dynamics study |
URI | https://dx.doi.org/10.1016/j.compositesb.2016.03.037 https://www.proquest.com/docview/1816058458 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iIHoQP3F-jAy81qX5aipexlDmRC9O8RaSNIWJ68RtBy_-7eZ1rU7xIAi9tLzQ8PL68iv5vd9D6MTxlBqZyShLLIhqCxfZhMtIpNQSS5yPU6hGvrmVvXvefxSPS6hb18IArbLK_fOcXmbr6km78mb7ZThs38UgPsekikE1SpZlVpwnEOWn7_GCYnjZpAyMI7BeRa0vjhfQtoEb5ScWWF6y1DuFlui_71E_snW5BV1uoo0KO-LOfHpbaMkX22h9QVFwB_UfhhM39gESBxucmRGUQ-Fhgd3rW8CBIMDt8dd8znAHj-oGuTibd6ef4FJzdhcNLi8G3V5UtUuIHBN8GlFveU5Vrnz4BXAyNal0OWEupSQnNGdK2ZzYxCfG0EwRo1KTe0K9p0wYJtgeWi7Ghd9H2AQrIz3j1skA6KjJTG4s906kPKZWNpCq_aNdJSUOHS2edc0Ze9ILrtXgWk1YuJIGop9DX-Z6Gn8ZdF4vgv4WHDrk_b8Mb9ULp8PHAycipvDj2UQHeAPHwlyog_-94hCtwR3QCmJxhJanrzN_HNDK1DbLcGyilc7Vde_2A6CU7kw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6i4OMgPvFtFrzWTfNqKl5EXNbXXlxlbyFJU1hxu-KuBy_-djPdVlfxIAg9pRMaJslkSr75PoSOHE-pkZmMssQCqbZwkU24jERKLbHE-TiFauTbjmzf86ue6M2g87oWBmCVVeyfxPQyWlctzcqbzed-v3kXA_kckyoG1igJZVZzPGxfkDE4fo-nKMNLlTKwjsB8HjW-QF6A2wZwlB9ZgHnJkvAUNNF_P6R-hOvyDGqtoOUqecRnk_GtohlfrKGlKUrBdXT10B-5oQ85cbDBmRlAPRTuF9i9vIVEEBi4Pf4azwk-w4NaIRdnE3n6ES5JZzdQt3XRPW9HlV5C5Jjg44h6y3OqcuXDP4CTqUmlywlzKSU5oTlTyubEJj4xhmaKGJWa3BPqPWXCMME20WwxLPwWwiZYGekZt06GjI6azOTGcu9EymNq5TZStX-0q7jEQdLiSdegsUc95VoNrtWEhSfZRvSz6_OEUOMvnU7rSdDfVocOgf8v3Rv1xOmwe-BKxBR--DrSIb-Be2Eu1M7_PnGIFtrd2xt9c9m53kWL8AYwBrHYQ7Pjl1e_H1KXsT0ol-YHFuHv2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viscoelastic+damping+in+crystalline+composites%3A+A+molecular+dynamics+study&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Ranganathan%2C+Raghavan&rft.au=Ozisik%2C+Rahmi&rft.au=Keblinski%2C+Pawel&rft.date=2016-05-15&rft.issn=1359-8368&rft.volume=93&rft.spage=273&rft.epage=279&rft_id=info:doi/10.1016%2Fj.compositesb.2016.03.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesb_2016_03_037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon |