Homotopy perturbation method-based soliton solutions of the time-fractional (2+1)-dimensional Wu–Zhang system describing long dispersive gravity water waves in the ocean

Physical phenomena and natural disasters, such as tsunamis and floods, are caused due to dispersive water waves and shallow waves caused by earthquakes. In order to analyze and minimize damaging effects of such situations, mathematical models are presented by different researchers. The Wu–Zhang (WZ)...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physics Vol. 11
Main Authors Qayyum, Mubashir, Ahmad, Efaza, Tauseef Saeed, Syed, Ahmad, Hijaz, Askar, Sameh
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 02.06.2023
Subjects
Online AccessGet full text
ISSN2296-424X
2296-424X
DOI10.3389/fphy.2023.1178154

Cover

Loading…
Abstract Physical phenomena and natural disasters, such as tsunamis and floods, are caused due to dispersive water waves and shallow waves caused by earthquakes. In order to analyze and minimize damaging effects of such situations, mathematical models are presented by different researchers. The Wu–Zhang (WZ) system is one such model that describes long dispersive waves. In this regard, the current study focuses on a non-linear (2 + 1)-dimensional time-fractional Wu–Zhang (WZ) system due to its importance in capturing long dispersive gravity water waves in the ocean. A Caputo fractional derivative in the WZ system is considered in this study. For solution purposes, modification of the homotopy perturbation method (HPM) along with the Laplace transform is used to provide improved results in terms of accuracy. For validity and convergence, obtained results are compared with the fractional differential transform method (FDTM), modified variational iteration method (mVIM), and modified Adomian decomposition method (mADM). Analysis of results indicates the effectiveness of the proposed methodology. Furthermore, the effect of fractional parameters on the given model is analyzed numerically and graphically at both integral and fractional orders. Moreover, Caputo, Caputo–Fabrizio, and Atangana–Baleanu approaches of fractional derivatives are applied and compared graphically in the current study. Analysis affirms that the proposed algorithm is a reliable tool and can be used in higher dimensional fractional systems in science and engineering.
AbstractList Physical phenomena and natural disasters, such as tsunamis and floods, are caused due to dispersive water waves and shallow waves caused by earthquakes. In order to analyze and minimize damaging effects of such situations, mathematical models are presented by different researchers. The Wu–Zhang (WZ) system is one such model that describes long dispersive waves. In this regard, the current study focuses on a non-linear (2 + 1)-dimensional time-fractional Wu–Zhang (WZ) system due to its importance in capturing long dispersive gravity water waves in the ocean. A Caputo fractional derivative in the WZ system is considered in this study. For solution purposes, modification of the homotopy perturbation method (HPM) along with the Laplace transform is used to provide improved results in terms of accuracy. For validity and convergence, obtained results are compared with the fractional differential transform method (FDTM), modified variational iteration method (mVIM), and modified Adomian decomposition method (mADM). Analysis of results indicates the effectiveness of the proposed methodology. Furthermore, the effect of fractional parameters on the given model is analyzed numerically and graphically at both integral and fractional orders. Moreover, Caputo, Caputo–Fabrizio, and Atangana–Baleanu approaches of fractional derivatives are applied and compared graphically in the current study. Analysis affirms that the proposed algorithm is a reliable tool and can be used in higher dimensional fractional systems in science and engineering.
Author Tauseef Saeed, Syed
Ahmad, Hijaz
Askar, Sameh
Qayyum, Mubashir
Ahmad, Efaza
Author_xml – sequence: 1
  givenname: Mubashir
  surname: Qayyum
  fullname: Qayyum, Mubashir
– sequence: 2
  givenname: Efaza
  surname: Ahmad
  fullname: Ahmad, Efaza
– sequence: 3
  givenname: Syed
  surname: Tauseef Saeed
  fullname: Tauseef Saeed, Syed
– sequence: 4
  givenname: Hijaz
  surname: Ahmad
  fullname: Ahmad, Hijaz
– sequence: 5
  givenname: Sameh
  surname: Askar
  fullname: Askar, Sameh
BookMark eNp9kcFu1DAQhi1UJErpA3DzEYSy2E6cTY6oAlqpEhcQiIs1tse7rpJ4ZXsX5cY78Bi8VZ-kzm6FEAcuM9Zn_f8cvufkbAoTEvKSs1Vdd_1bt9vOK8FEveJ83XHZPCHnQvRt1Yjm29lf72fkMqU7xhgXsu9Ec05-X4cx5LCb6Q5j3kcN2YeJjpi3wVYaElqawuBzgWXvl99Eg6N5izT7ESsXwSwUBvpKvOGvK1volE7k6_7-56_vW5g2NM0p40gtJhO99oUMoQzrU7mc_AHpJsLB55n-gIyxzAMm6qfjpWAQphfkqYMh4eXjviBfPrz_fHVd3X76eHP17rYytWxyJZgRXFreGybaxhpmbWt5rete9EYjusZp22nONLOd1ByEA2itlEw4BhbqC3Jz6rUB7tQu-hHirAJ4dQQhbhTE7M2AqnZSO6vBWa6bHtcAvJet6FpspcW1K1381GViSCmi-9PHmVrkqUWeWuSpR3kls_4nY3w-eskR_PCf5ANTSqkM
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e34160
crossref_primary_10_1016_j_aej_2024_02_032
crossref_primary_10_1080_02286203_2024_2318805
crossref_primary_10_1002_oca_3093
crossref_primary_10_1016_j_rinp_2024_107444
crossref_primary_10_1177_14613484251322240
crossref_primary_10_1007_s11071_024_09653_1
crossref_primary_10_1063_5_0261145
crossref_primary_10_1016_j_cnsns_2025_108631
crossref_primary_10_1016_j_cmpb_2024_108306
crossref_primary_10_1142_S0217984924502178
crossref_primary_10_1088_1402_4896_ad3c7e
crossref_primary_10_1016_j_asej_2023_102503
crossref_primary_10_1007_s10440_024_00703_9
crossref_primary_10_1016_j_aej_2023_11_065
crossref_primary_10_1016_j_asej_2024_102743
crossref_primary_10_3390_sym16050561
crossref_primary_10_1007_s11082_023_05683_y
crossref_primary_10_1002_adts_202401477
crossref_primary_10_1088_1402_4896_ad952b
crossref_primary_10_1155_2023_3028824
crossref_primary_10_1038_s41598_024_79475_z
crossref_primary_10_3934_math_2024676
crossref_primary_10_1002_mma_9876
crossref_primary_10_3390_fractalfract8010044
crossref_primary_10_1016_j_aej_2023_08_064
crossref_primary_10_1038_s41598_025_88310_y
crossref_primary_10_1080_27690911_2024_2303437
crossref_primary_10_3934_math_20231383
crossref_primary_10_1007_s43994_024_00198_y
crossref_primary_10_1016_j_rinp_2023_106887
Cites_doi 10.1177/14613484211059264
10.1093/bib/bbac230
10.1142/s0218348x21501085
10.1186/s13662-020-2527-0
10.2298/tsci2203447h
10.2298/tsci190930450a
10.1016/j.csite.2021.101193
10.2298/TSCI160111018A
10.1002/leg3.116
10.1210/endocr/bqab190
10.1080/16583655.2021.2012373
10.1177/00202940221092134
10.1016/j.cnsns.2020.105597
10.15388/namc.2021.26.20560
10.1016/j.aej.2021.10.016
10.1016/j.rinp.2020.103696
10.1063/5.0075363
10.1142/s0217732321300147
10.3390/fractalfract5030081
10.1016/j.chaos.2022.111937
10.1016/j.asoc.2020.106891
10.2298/tsci200428017t
10.1016/j.chaos.2021.111602
10.1016/j.chaos.2021.111308
10.1016/j.cnsns.2016.09.006
10.1140/epjp/i2018-12021-3
10.1016/j.mtphys.2022.100795
10.1016/j.egyr.2021.01.082
10.1016/j.camwa.2019.08.014
10.1142/s0218348x21501176
10.1002/mma.8522
10.1142/s0218348x19501342
10.1038/s41598-022-07873-2
10.1142/s1793524521500108
10.1155/2020/2845841
10.1016/j.chaos.2020.110107
10.22190/fume210125033h
10.1007/s13137-021-00177-z
10.3390/fractalfract6030135
10.2298/tsci190408138a
10.3390/fractalfract5030074
10.1002/cta.3103
10.3390/fractalfract5040196
10.1515/ijnsns.2009.10.9.1093
10.1007/978-0-387-22757-3
10.1016/j.cam.2020.113299
10.1016/j.matcom.2021.08.019
10.1016/j.joes.2019.03.002
10.22190/fume210112025a
10.1016/s0045-7825(99)00018-3
10.1016/j.matcom.2021.05.018
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fphy.2023.1178154
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2296-424X
ExternalDocumentID oai_doaj_org_article_3f5bfdbafd1b49e7aa1956286e65de7f
10_3389_fphy_2023_1178154
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c354t-20c215d19c0264dc0dd6d13b3929cbeef4fbd8b10b0d85b1a2faa6d5502f0ada3
IEDL.DBID DOA
ISSN 2296-424X
IngestDate Wed Aug 27 01:08:22 EDT 2025
Tue Jul 01 01:03:09 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-20c215d19c0264dc0dd6d13b3929cbeef4fbd8b10b0d85b1a2faa6d5502f0ada3
OpenAccessLink https://doaj.org/article/3f5bfdbafd1b49e7aa1956286e65de7f
ParticipantIDs doaj_primary_oai_doaj_org_article_3f5bfdbafd1b49e7aa1956286e65de7f
crossref_primary_10_3389_fphy_2023_1178154
crossref_citationtrail_10_3389_fphy_2023_1178154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-02
PublicationDateYYYYMMDD 2023-06-02
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-02
  day: 02
PublicationDecade 2020
PublicationTitle Frontiers in physics
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Guzzi (B12) 2022; 23
Al-Nassir (B24) 2021; 152
Tian (B48) 2021; 25
Mandelbrot (B25) 1975
Wang (B32) 2019; 27
Khader (B8) 2021; 49
Patel (B39) 2022; 46
Sahoo (B13) 2021; 14
Liu (B4) 2021; 7
Jin (B22) 2021; 190
Ayub (B16) 2021; 26
Shchigolev (B18) 2021; 36
Baitiche (B45) 2021; 5
Ali Abro (B17) 2020
Ain (B58) 2019; 23
Wu (B31) 1996
Shokhanda (B20) 2021; 5
Zayed (B33) 2009; 10
Bidkhori (B6) 2021; 4
Tuan (B55) 2020; 140
Chen (B10) 2021
Ain (B54) 2022; 61
Atangana (B57) 2018; 133
Atangana (B41) 2016
Aljahdaly (B35) 2021; 15
Almeida (B40) 2017; 44
Schiff (B53) 1999
He (B51) 1999; 178
Anjum (B44) 2021; 19
Dzerjinsky (B1) 2021
Akbar (B5) 2021; 20
Asgari (B36) 2010; 6
Ahmad (B15) 2021; 153
Lin (B23) 2021; 5
Mondal (B14) 2022; 192
Vu (B29) 2022; 27
Do (B46) 2021; 95
He (B52) 2021; 41
Zheng (B3) 2021; 99
Habib (B21) 2021; 29
Khan (B30) 2022; 157
Caputo (B42) 2015; 1
Zheng (B37) 2020; 2020
He (B26) 2022; 26
He (B28) 2021; 29
Hirano (B2) 2022; 12
Alizadeh (B56) 2020; 2020
Ahmadova (B7) 2021; 388
Anjum (B43) 2020; 24
Zhou (B27) 2022; 6
Salazar-Viedma (B11) 2021; 162
Khater (B34) 2019; 4
Abed (B19) 2022; 55
He (B50) 2021; 19
Caro (B9) 2021
Hashemi (B47) 2021; 26
Anjum (B59) 2021; 12
Kaur (B38) 2020; 79
He (B49) 2023; 21
References_xml – volume: 41
  start-page: 572
  year: 2021
  ident: B52
  article-title: A heuristic review on the homotopy perturbation method for non-conservative oscillators
  publication-title: J Low Frequency Noise, Vibration Active Control
  doi: 10.1177/14613484211059264
– volume: 23
  year: 2022
  ident: B12
  article-title: Disease spreading modeling and analysis: A survey
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac230
– volume: 29
  start-page: 2150108
  year: 2021
  ident: B21
  article-title: Study of nonlinear Hirota-Satsuma coupled KdV and coupled mkdv system with time fractional derivative
  publication-title: Fractals
  doi: 10.1142/s0218348x21501085
– volume: 2020
  start-page: 55
  year: 2020
  ident: B56
  article-title: Analyzing transient response of the parallel RCL circuit by using the caputo-fabrizio fractional derivative
  publication-title: Adv Differ. Equations
  doi: 10.1186/s13662-020-2527-0
– volume: 26
  start-page: 2447
  year: 2022
  ident: B26
  article-title: A fractal approach to the diffusion process of red ink in a saline water
  publication-title: Therm Sci
  doi: 10.2298/tsci2203447h
– volume: 24
  start-page: 3023
  year: 2020
  ident: B43
  article-title: Application of He’s fractional derivative and fractional complex transform for time fractional Camassa-Holm equation
  publication-title: Therm Sci
  doi: 10.2298/tsci190930450a
– volume: 26
  start-page: 101193
  year: 2021
  ident: B16
  article-title: Nanoscale heat and mass transport of magnetized 3-d chemically radiative hybrid nanofluid with orthogonal/inclined magnetic field along rotating sheet
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2021.101193
– year: 2016
  ident: B41
  article-title: New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model
  doi: 10.2298/TSCI160111018A
– volume: 4
  year: 2021
  ident: B6
  article-title: Diffusion and kinetic modeling of water absorption process during soaking and cooking of chickpea
  publication-title: Legume Sci
  doi: 10.1002/leg3.116
– volume: 162
  start-page: bqab190
  year: 2021
  ident: B11
  article-title: Simulation model for hashimoto autoimmune thyroiditis disease
  publication-title: Endocrinology
  doi: 10.1210/endocr/bqab190
– volume: 15
  start-page: 971
  year: 2021
  ident: B35
  article-title: Adomian decomposition method for modelling the dissipative higher-order rogue waves in a superthermal collisional plasma
  publication-title: J Taibah Univ Sci
  doi: 10.1080/16583655.2021.2012373
– volume: 55
  start-page: 209
  year: 2022
  ident: B19
  article-title: Trajectory tracking of differential drive mobile robots using fractional-order proportional-integral-derivative controller design tuned by an enhanced fruit fly optimization
  publication-title: Meas Control
  doi: 10.1177/00202940221092134
– start-page: 233
  volume-title: Mathematics is for solving problems
  year: 1996
  ident: B31
  article-title: On modeling nonlinear long waves
– volume: 95
  start-page: 105597
  year: 2021
  ident: B46
  article-title: A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2020.105597
– volume: 26
  start-page: 57
  year: 2021
  ident: B47
  article-title: Generalized squared remainder minimization method for solving multi-term fractional differential equations
  publication-title: Nonlinear Anal Model Control
  doi: 10.15388/namc.2021.26.20560
– volume: 61
  start-page: 5123
  year: 2022
  ident: B54
  article-title: On the analysis of Caputo fractional order dynamics of Middle East lungs coronavirus (MERS-CoV) model
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2021.10.016
– volume: 20
  start-page: 103696
  year: 2021
  ident: B5
  article-title: Analysis of voltage and current flow of electrical transmission lines through mZK equation
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2020.103696
– year: 2021
  ident: B9
  article-title: Application of genetic algorithm with multi-parent crossover on an inverse problem in delay differential equations
  doi: 10.1063/5.0075363
– volume: 36
  start-page: 2130014
  year: 2021
  ident: B18
  article-title: Fractional-order derivatives in cosmological models of accelerated expansion
  publication-title: Mod Phys Lett A
  doi: 10.1142/s0217732321300147
– volume: 21
  start-page: 21
  year: 2023
  ident: B49
  article-title: A good initial guess for approximating nonlinear oscillators by the homotopy perturbation method
  publication-title: Facta Univ. Ser Mech Eng
– volume: 5
  start-page: 81
  year: 2021
  ident: B45
  article-title: Monotone iterative method for caputo fractional differential equation with nonlinear boundary conditions
  publication-title: Fractal and Fractional
  doi: 10.3390/fractalfract5030081
– volume: 157
  start-page: 111937
  year: 2022
  ident: B30
  article-title: On fractal-fractional Covid-19 mathematical model
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2022.111937
– volume: 99
  start-page: 106891
  year: 2021
  ident: B3
  article-title: A MFO-based conformable fractional nonhomogeneous grey Bernoulli model for natural gas production and consumption forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106891
– volume: 25
  start-page: 1237
  year: 2021
  ident: B48
  article-title: A modified exp-function method for fractional partial differential equations
  publication-title: Therm Sci
  doi: 10.2298/tsci200428017t
– volume: 153
  start-page: 111602
  year: 2021
  ident: B15
  article-title: Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with mittag-leffler kernel
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2021.111602
– volume: 152
  start-page: 111308
  year: 2021
  ident: B24
  article-title: Dynamic analysis of a harvested fractional-order biological system with its discretization
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2021.111308
– volume: 44
  start-page: 460
  year: 2017
  ident: B40
  article-title: A caputo fractional derivative of a function with respect to another function
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2016.09.006
– volume: 133
  start-page: 166
  year: 2018
  ident: B57
  article-title: Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena
  publication-title: The Eur Phys J Plus
  doi: 10.1140/epjp/i2018-12021-3
– volume: 27
  start-page: 100795
  year: 2022
  ident: B29
  article-title: Fractal structures in flexible electronic devices
  publication-title: Mater Today Phys
  doi: 10.1016/j.mtphys.2022.100795
– volume: 7
  start-page: 788
  year: 2021
  ident: B4
  article-title: Forecasting natural gas consumption of China by using a novel fractional grey model with time power term
  publication-title: Energ Rep
  doi: 10.1016/j.egyr.2021.01.082
– year: 2021
  ident: B10
  article-title: Any equation is a forest: Symbolic genetic algorithm for discovering open-form partial differential equations (sga-pde)
– volume: 6
  year: 2010
  ident: B36
  article-title: Extended tanh method and exp-function method and its application to(2+ 1)-dimensional dispersive long wave nonlinear equations
  publication-title: J Appl Math Stat Inform (Jamsi)
– volume: 79
  start-page: 1031
  year: 2020
  ident: B38
  article-title: Time fractional (2+1)-dimensional Wu-zhang system: Dispersion analysis, similarity reductions, conservation laws, and exact solutions
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2019.08.014
– volume: 29
  start-page: 2150117
  year: 2021
  ident: B28
  article-title: Low frequency property of a fractal vibration model for a concrete beam
  publication-title: Fractals
  doi: 10.1142/s0218348x21501176
– volume: 46
  start-page: 479
  year: 2022
  ident: B39
  article-title: An analytical approach to solve the fractional-order (2 + 1)-dimensional Wu-zhang equation
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.8522
– volume: 27
  start-page: 1950134
  year: 2019
  ident: B32
  article-title: A remark on wang’s fractal variational principle
  publication-title: Fractals
  doi: 10.1142/s0218348x19501342
– volume: 12
  start-page: 3936
  year: 2022
  ident: B2
  article-title: Source time functions of earthquakes based on a stochastic differential equation
  publication-title: Scientific Rep
  doi: 10.1038/s41598-022-07873-2
– volume: 14
  year: 2021
  ident: B13
  article-title: Comparison between two tritrophic food chain models with multiple delays and anti-predation effect
  publication-title: Int J Biomath
  doi: 10.1142/s1793524521500108
– volume: 2020
  start-page: 1
  year: 2020
  ident: B37
  article-title: Travelling wave solutions of Wu-zhang system via dynamic analysis
  publication-title: Discrete Dyn Nat Soc
  doi: 10.1155/2020/2845841
– volume: 140
  start-page: 110107
  year: 2020
  ident: B55
  article-title: A mathematical model for COVID-19 transmission by using the caputo fractional derivative
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2020.110107
– volume: 19
  start-page: 735
  year: 2021
  ident: B50
  article-title: The enhanced homotopy perturbation method for axial vibration of strings
  publication-title: Facta Univ. Ser Mech Eng
  doi: 10.22190/fume210125033h
– volume: 12
  start-page: 10
  year: 2021
  ident: B59
  article-title: Two-scale mathematical model for tsunami wave
  publication-title: GEM - Int J Geomathematics
  doi: 10.1007/s13137-021-00177-z
– volume: 6
  start-page: 135
  year: 2022
  ident: B27
  article-title: Fractal analysis on surface topography of thin films: A review
  publication-title: Fractal Fractional
  doi: 10.3390/fractalfract6030135
– volume-title: Les objets fractals: Forme, hasard et dimension
  year: 1975
  ident: B25
– volume: 23
  start-page: 1707
  year: 2019
  ident: B58
  article-title: On two-scale dimension and its applications
  publication-title: Therm Sci
  doi: 10.2298/tsci190408138a
– start-page: 96
  volume-title: Lecture notes in networks and systems
  year: 2021
  ident: B1
  article-title: The earthquake attributes disjunctive form analysis at the quickest form change directions
– volume: 5
  start-page: 74
  year: 2021
  ident: B23
  article-title: Modeling and application of fractional-order economic growth model with time delay
  publication-title: Fractal Fractional
  doi: 10.3390/fractalfract5030074
– volume: 49
  start-page: 3266
  year: 2021
  ident: B8
  article-title: Numerical study for the fractional RL, RC, and RLC electrical circuits using legendre pseudo-spectral method
  publication-title: Int J Circuit Theor Appl
  doi: 10.1002/cta.3103
– volume: 5
  start-page: 196
  year: 2021
  ident: B20
  article-title: An approximate solution of the time-fractional two-mode coupled Burgers equation
  publication-title: Fractal Fractional
  doi: 10.3390/fractalfract5040196
– volume: 10
  year: 2009
  ident: B33
  article-title: On solving the kay-burger’s equation and the Wu-zhang equations using the modified variational iteration method
  publication-title: Int J Nonlinear Sci Numer Simulation
  doi: 10.1515/ijnsns.2009.10.9.1093
– volume-title: The Laplace transform
  year: 1999
  ident: B53
  doi: 10.1007/978-0-387-22757-3
– volume: 388
  start-page: 113299
  year: 2021
  ident: B7
  article-title: Langevin differential equations with general fractional orders and their applications to electric circuit theory
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2020.113299
– volume: 192
  start-page: 111
  year: 2022
  ident: B14
  article-title: Studies of different types of bifurcations analyses of an imprecise two species food chain model with fear effect and non-linear harvesting
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2021.08.019
– volume: 4
  start-page: 144
  year: 2019
  ident: B34
  article-title: Numerical solutions of nonlinear fractional Wu-zhang system for water surface versus three approximate schemes
  publication-title: J Ocean Eng Sci
  doi: 10.1016/j.joes.2019.03.002
– volume: 19
  start-page: 601
  year: 2021
  ident: B44
  article-title: Li-He’s modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system
  publication-title: Facta Universitatis, Ser Mech Eng
  doi: 10.22190/fume210112025a
– volume: 1
  start-page: 73
  year: 2015
  ident: B42
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Prog Fractional Differ Appl
– volume: 178
  start-page: 257
  year: 1999
  ident: B51
  article-title: Homotopy perturbation technique
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/s0045-7825(99)00018-3
– volume-title: Numerical methods for partial differential equations
  year: 2020
  ident: B17
  article-title: Dual fractional modeling of rate type fluid through non-local differentiation
– volume: 190
  start-page: 203
  year: 2021
  ident: B22
  article-title: Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2021.05.018
SSID ssj0001259824
Score 2.3873827
Snippet Physical phenomena and natural disasters, such as tsunamis and floods, are caused due to dispersive water waves and shallow waves caused by earthquakes. In...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms Atangana–Baleanu
Caputo
fractional-order system
homotopy perturbation
Laplace transform
Wu–Zhang system
Title Homotopy perturbation method-based soliton solutions of the time-fractional (2+1)-dimensional Wu–Zhang system describing long dispersive gravity water waves in the ocean
URI https://doaj.org/article/3f5bfdbafd1b49e7aa1956286e65de7f
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQERIXxCrKUvnAgUWhWZwmOZalqhDlAhW9RV5RpSqtuoC48Q98Bn_FlzBjh6pc4MIlhyiJLc_Eb8Yev0fIUcrTUCe4_iUz7TEjQy-LkB4PwDWWiTCppV3s3DXaXXbTi3sLUl9YE-bogd3A1SMTC6MENyoQLNMJ53jCLUwbuhErnRicfQHzFpIpt7qCxHTMbWNCFpbVDfT6HLXCcZsyDWL2A4gW-PotsLTWyVoZEdKm68kGWdLFJlmxlZlyskU-2lgvNxy90pEeAz4IO5TUKT97CEKKTrCIDW7O_YgODYXIjqJyvGfG7vACNHIcngUnnkJGf8fGQR9nn2_vdtWYOlJnqjTOJJAwP9HBEC6qj2TiWOVOUasIonb6AgHqGK7PekL7hW0JYJAX26Tbun64bHulwoIno5hN4ReRAPkqyCSkYkxJH_Wlgkhg0CSF1oYZoVIR-MJXaSwCHhrOGwqymtD4XPFoh1SKYaF3CWUSQsXEV2EkGZjc57HyuQBjc8akipIq8b-HO5cl_TiqYAxySEPQQjlaKEcL5aWFquR0_srIcW_89vAF2nD-INJm2xvgTHnpTPlfzrT3Hx_ZJ6vYMVtPFh6QynQ804cQuUxFjSw3rzq39zXrrF9gzfTs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homotopy+perturbation+method-based+soliton+solutions+of+the+time-fractional+%282%2B1%29-dimensional+Wu%E2%80%93Zhang+system+describing+long+dispersive+gravity+water+waves+in+the+ocean&rft.jtitle=Frontiers+in+physics&rft.au=Mubashir+Qayyum&rft.au=Efaza+Ahmad&rft.au=Syed+Tauseef+Saeed&rft.au=Hijaz+Ahmad&rft.date=2023-06-02&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-424X&rft.volume=11&rft_id=info:doi/10.3389%2Ffphy.2023.1178154&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3f5bfdbafd1b49e7aa1956286e65de7f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon