Three-dimensional fracture propagation with numerical manifold method
By introducing the concept of mathematical cover and physical cover, the numerical manifold method (NMM) is able to solve continuous and discontinuous problems in a unified way. In this paper, the NMM is developed to analyze three dimensional (3D) fracture propagation. The maximum tensile stress cri...
Saved in:
Published in | Engineering analysis with boundary elements Vol. 72; pp. 65 - 77 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0955-7997 1873-197X |
DOI | 10.1016/j.enganabound.2016.08.008 |
Cover
Loading…
Abstract | By introducing the concept of mathematical cover and physical cover, the numerical manifold method (NMM) is able to solve continuous and discontinuous problems in a unified way. In this paper, the NMM is developed to analyze three dimensional (3D) fracture propagation. The maximum tensile stress criterion is implemented to determine whether the fracture will propagate and the direction of fracture propagation. Three benchmark problems are analyzed to validate the present algorithm and program. The numerical results replicate available experimental results and existing numerical results. The present algorithm and 3D NMM code are promising for 3D fracture propagation. They deserve to be further developed for the analysis of rock mechanic problems in which the initiation and propagation of multiple fractures, tensile and shear fractures, and fracture propagation under compressive loading are taken into account. |
---|---|
AbstractList | By introducing the concept of mathematical cover and physical cover, the numerical manifold method (NMM) is able to solve continuous and discontinuous problems in a unified way. In this paper, the NMM is developed to analyze three dimensional (3D) fracture propagation. The maximum tensile stress criterion is implemented to determine whether the fracture will propagate and the direction of fracture propagation. Three benchmark problems are analyzed to validate the present algorithm and program. The numerical results replicate available experimental results and existing numerical results. The present algorithm and 3D NMM code are promising for 3D fracture propagation. They deserve to be further developed for the analysis of rock mechanic problems in which the initiation and propagation of multiple fractures, tensile and shear fractures, and fracture propagation under compressive loading are taken into account. |
Author | Tang, Xuhai He, Lei Yang, Yongtao Liu, Quansheng Zheng, Hong |
Author_xml | – sequence: 1 givenname: Yongtao surname: Yang fullname: Yang, Yongtao organization: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China – sequence: 2 givenname: Xuhai surname: Tang fullname: Tang, Xuhai email: xuhaitac@163.com organization: School of Civil Engineering, Wuhan University, Wuhan, China – sequence: 3 givenname: Hong surname: Zheng fullname: Zheng, Hong organization: Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China – sequence: 4 givenname: Quansheng surname: Liu fullname: Liu, Quansheng organization: School of Civil Engineering, Wuhan University, Wuhan, China – sequence: 5 givenname: Lei surname: He fullname: He, Lei organization: School of Civil Engineering, Monash University, Australia |
BookMark | eNqNkEtLAzEUhYMoWKv_Ydy5mfFmXplZiZT6gIKbCu5CJrltU2aSmmQU_72pdSGuurpwuOdwzndBTo01SMg1hYwCrW-3GZq1MKKzo1FZHqUMmgygOSET2rAipS17OyUTaKsqZW3LzsmF91sAWgDUEzJfbhxiqvSAxmtrRJ-snJBhdJjsnN2JtQhRTj512CRmHNBpGX8GYfTK9ioZMGysuiRnK9F7vPq9U_L6MF_OntLFy-Pz7H6RyqIqQ0plo8oOaqUKWeUMFVYUWJnned0JgEIxVTSStXWeK1V3UCJlKMtYXRQSu6qYkptDbqz2PqIPfNBeYt8Lg3b0nDZlxdqyjuum5O7wKp313uGKSx1-tgQndM8p8D1AvuV_API9QA4NjwBjQvsvYef0INzXUd7ZwYuRxodGx73UaCQq7VAGrqw-IuUbMUCWPg |
CitedBy_id | crossref_primary_10_1007_s10064_021_02370_8 crossref_primary_10_1016_j_enggeo_2019_105373 crossref_primary_10_1016_j_enganabound_2020_01_015 crossref_primary_10_1016_j_enganabound_2023_03_028 crossref_primary_10_1016_j_tafmec_2017_05_022 crossref_primary_10_1016_j_enganabound_2025_106192 crossref_primary_10_1007_s10338_019_00133_3 crossref_primary_10_1016_j_enganabound_2018_03_005 crossref_primary_10_3390_ma14092288 crossref_primary_10_1016_j_enggeo_2022_106919 crossref_primary_10_1007_s10064_020_01903_x crossref_primary_10_1007_s00603_022_02993_7 crossref_primary_10_1016_j_tafmec_2024_104293 crossref_primary_10_1007_s11629_023_8362_5 crossref_primary_10_1007_s13369_019_04122_z crossref_primary_10_1061__ASCE_GM_1943_5622_0001184 crossref_primary_10_1016_j_compgeo_2020_103594 crossref_primary_10_1007_s13369_022_07097_6 crossref_primary_10_1016_j_ijrmms_2022_105112 crossref_primary_10_1016_j_enganabound_2020_01_006 crossref_primary_10_1108_EC_10_2018_0488 crossref_primary_10_1016_j_compgeo_2023_105927 crossref_primary_10_1007_s00603_023_03265_8 crossref_primary_10_1016_j_tust_2022_104895 crossref_primary_10_1016_j_enganabound_2021_03_012 crossref_primary_10_1155_2018_4252904 crossref_primary_10_1007_s11431_017_9136_9 crossref_primary_10_1155_2024_1448371 crossref_primary_10_1016_j_ijsolstr_2017_10_022 crossref_primary_10_1007_s13369_021_05784_4 crossref_primary_10_1016_j_apm_2020_08_019 crossref_primary_10_1016_j_apm_2021_02_025 crossref_primary_10_1002_nag_3368 crossref_primary_10_1016_j_tafmec_2023_103817 crossref_primary_10_1016_j_engfracmech_2017_12_025 crossref_primary_10_1016_j_engfracmech_2018_05_018 crossref_primary_10_1016_j_cma_2021_114514 crossref_primary_10_1016_j_apm_2018_10_006 crossref_primary_10_1016_j_ijmst_2021_01_009 crossref_primary_10_1007_s00603_018_1715_7 crossref_primary_10_1007_s00603_019_01759_y crossref_primary_10_1016_j_apm_2020_01_026 crossref_primary_10_1016_j_enganabound_2021_03_002 crossref_primary_10_1007_s10706_022_02121_w crossref_primary_10_1016_j_compstruc_2017_07_001 crossref_primary_10_1007_s00603_022_02818_7 crossref_primary_10_1016_j_enganabound_2022_05_011 crossref_primary_10_1016_j_cma_2020_113238 crossref_primary_10_1002_nag_3211 crossref_primary_10_1016_j_tust_2018_11_018 crossref_primary_10_1061__ASCE_GM_1943_5622_0001286 crossref_primary_10_1016_j_enganabound_2021_06_017 crossref_primary_10_1016_j_tafmec_2019_102436 crossref_primary_10_1016_j_enganabound_2017_08_004 crossref_primary_10_1016_j_tust_2018_11_010 crossref_primary_10_1142_S0219876219500658 crossref_primary_10_1007_s11431_022_2221_5 crossref_primary_10_1080_19648189_2022_2146205 crossref_primary_10_1016_j_apm_2019_09_034 crossref_primary_10_1016_j_ijmecsci_2018_08_029 crossref_primary_10_1016_j_enggeo_2021_106285 crossref_primary_10_1016_j_enganabound_2017_10_006 crossref_primary_10_1016_j_enggeo_2019_05_005 crossref_primary_10_1016_j_tafmec_2017_01_007 crossref_primary_10_1002_nag_2937 crossref_primary_10_1016_j_engfracmech_2022_108685 crossref_primary_10_1016_j_euromechflu_2019_07_003 crossref_primary_10_1016_j_enganabound_2018_12_014 crossref_primary_10_1088_1755_1315_861_3_032065 crossref_primary_10_1016_j_ijrmms_2021_104970 crossref_primary_10_1007_s11440_020_00997_7 crossref_primary_10_1016_j_engfracmech_2024_110645 crossref_primary_10_1016_j_enganabound_2019_08_023 crossref_primary_10_1016_j_enganabound_2023_06_039 crossref_primary_10_1002_nag_2868 crossref_primary_10_1016_j_jrmge_2019_02_007 crossref_primary_10_1016_S1876_3804_22_60012_0 crossref_primary_10_1016_j_cma_2024_116968 crossref_primary_10_1007_s11431_016_0733_4 crossref_primary_10_1016_j_conbuildmat_2021_124141 crossref_primary_10_1016_j_enganabound_2019_09_001 crossref_primary_10_1016_j_compgeo_2020_103967 crossref_primary_10_1155_2021_7101873 crossref_primary_10_1016_j_compgeo_2020_103726 crossref_primary_10_1016_j_enganabound_2019_09_006 crossref_primary_10_1016_j_ijrmms_2018_03_009 crossref_primary_10_1108_EC_12_2017_0485 crossref_primary_10_1007_s12303_021_0013_7 crossref_primary_10_1007_s12665_024_11992_6 crossref_primary_10_1016_j_enganabound_2022_10_025 crossref_primary_10_1016_j_enganabound_2020_12_011 crossref_primary_10_1061__ASCE_GM_1943_5622_0001496 crossref_primary_10_1016_j_enganabound_2020_12_017 crossref_primary_10_1016_j_compgeo_2020_103962 crossref_primary_10_1016_j_enganabound_2019_09_014 crossref_primary_10_1007_s00466_023_02297_9 crossref_primary_10_1016_j_advwatres_2017_08_013 crossref_primary_10_1016_j_enganabound_2020_05_013 crossref_primary_10_1016_j_enganabound_2020_11_008 crossref_primary_10_1007_s11431_022_2166_5 crossref_primary_10_1002_nme_6016 crossref_primary_10_1061__ASCE_GM_1943_5622_0002448 crossref_primary_10_1016_j_enganabound_2019_09_020 crossref_primary_10_1016_j_ijrmms_2019_104206 crossref_primary_10_1142_S0219876218500226 crossref_primary_10_1007_s00603_018_1648_1 crossref_primary_10_1016_j_enganabound_2024_106100 crossref_primary_10_1016_j_enganabound_2021_02_008 crossref_primary_10_3389_feart_2022_1083689 crossref_primary_10_1007_s00603_019_01994_3 crossref_primary_10_1016_j_enganabound_2019_04_018 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124704 crossref_primary_10_1061__ASCE_GM_1943_5622_0001234 crossref_primary_10_1016_j_enganabound_2022_03_029 crossref_primary_10_1002_nme_6547 crossref_primary_10_3389_feart_2021_761573 crossref_primary_10_1007_s11440_019_00821_x crossref_primary_10_1080_15502287_2021_1889715 crossref_primary_10_1061_IJGNAI_GMENG_9247 crossref_primary_10_1016_j_petrol_2018_10_104 crossref_primary_10_1002_nag_2786 crossref_primary_10_1002_nag_3639 crossref_primary_10_1016_j_compgeo_2020_103875 crossref_primary_10_1016_j_compstruc_2018_12_005 crossref_primary_10_1016_j_apm_2022_06_014 crossref_primary_10_1016_j_apm_2020_03_044 crossref_primary_10_1016_j_jrmge_2020_03_006 crossref_primary_10_1007_s11431_018_9305_5 crossref_primary_10_3389_feart_2021_825508 crossref_primary_10_1016_j_compstruc_2017_09_008 crossref_primary_10_1016_j_petrol_2021_108374 crossref_primary_10_1016_j_engfracmech_2020_107427 crossref_primary_10_1002_nme_5572 crossref_primary_10_1142_S0219876221500717 crossref_primary_10_1016_j_compgeo_2020_103619 crossref_primary_10_1016_j_enganabound_2023_05_018 crossref_primary_10_1007_s00466_018_1553_1 crossref_primary_10_1007_s11431_016_9070_8 crossref_primary_10_1016_j_cma_2021_114203 crossref_primary_10_3390_math12243881 crossref_primary_10_1061__ASCE_GM_1943_5622_0001686 crossref_primary_10_1016_j_cma_2019_05_008 crossref_primary_10_1061__ASCE_GM_1943_5622_0001798 crossref_primary_10_1016_j_cma_2023_116688 crossref_primary_10_1016_j_enganabound_2024_02_013 crossref_primary_10_1016_j_ijrmms_2023_105358 crossref_primary_10_1016_j_ijrmms_2020_104322 crossref_primary_10_1007_s00603_021_02594_w crossref_primary_10_1007_s11431_016_9020_3 crossref_primary_10_1016_j_enganabound_2022_12_030 crossref_primary_10_1016_j_enganabound_2022_12_037 crossref_primary_10_1007_s00603_020_02359_x crossref_primary_10_1002_nag_3500 crossref_primary_10_1016_j_compgeo_2023_106032 crossref_primary_10_1016_j_compgeo_2020_103864 crossref_primary_10_1016_j_compgeo_2023_105744 crossref_primary_10_1016_j_apm_2023_05_021 crossref_primary_10_1002_nme_6986 crossref_primary_10_1016_j_enganabound_2017_02_007 crossref_primary_10_1007_s00603_020_02225_w crossref_primary_10_1016_j_engfracmech_2022_108288 crossref_primary_10_1016_j_apm_2017_09_024 crossref_primary_10_1016_j_enganabound_2021_09_013 crossref_primary_10_1016_j_enganabound_2021_04_023 crossref_primary_10_1016_j_enganabound_2024_105867 crossref_primary_10_3390_app10249123 crossref_primary_10_1061__ASCE_EM_1943_7889_0002014 crossref_primary_10_1016_j_enganabound_2018_04_003 crossref_primary_10_1016_j_conbuildmat_2021_125199 crossref_primary_10_1016_j_enganabound_2024_106042 crossref_primary_10_1016_j_jrmge_2024_04_038 crossref_primary_10_1016_j_compgeo_2022_105191 crossref_primary_10_1016_j_enganabound_2021_09_023 crossref_primary_10_1016_j_enganabound_2017_08_011 crossref_primary_10_1016_j_enganabound_2021_09_028 crossref_primary_10_1016_j_enganabound_2022_02_004 crossref_primary_10_1016_j_enggeo_2019_105278 crossref_primary_10_1007_s10346_022_01902_x crossref_primary_10_1007_s11709_019_0535_5 crossref_primary_10_1016_j_enggeo_2020_105801 crossref_primary_10_1016_j_cma_2023_116479 crossref_primary_10_1007_s00603_022_03008_1 crossref_primary_10_1016_j_cma_2021_114254 crossref_primary_10_1016_j_cma_2020_112908 crossref_primary_10_3389_feart_2022_862850 crossref_primary_10_1016_j_enganabound_2024_01_032 crossref_primary_10_1007_s10704_021_00602_2 crossref_primary_10_1007_s10706_020_01278_6 crossref_primary_10_1016_j_engfracmech_2020_106963 crossref_primary_10_1016_j_tafmec_2024_104632 crossref_primary_10_1016_j_cma_2021_114127 crossref_primary_10_1016_j_enggeo_2022_106810 crossref_primary_10_1016_j_compgeo_2020_103654 crossref_primary_10_1016_j_compstruc_2018_10_014 crossref_primary_10_1016_j_enganabound_2020_03_012 crossref_primary_10_1016_j_enganabound_2020_03_013 crossref_primary_10_1016_j_tws_2017_12_027 crossref_primary_10_1002_nme_5786 crossref_primary_10_1007_s11629_021_6739_x crossref_primary_10_1016_j_compgeo_2019_103351 crossref_primary_10_1016_j_enganabound_2020_03_010 crossref_primary_10_1007_s11431_022_2321_9 crossref_primary_10_1016_j_cma_2017_03_011 crossref_primary_10_1007_s11431_023_2517_8 crossref_primary_10_1016_j_compgeo_2023_105820 |
Cites_doi | 10.1016/j.ijrmms.2013.08.015 10.1007/s10483-009-1003-3 10.1023/A:1015713428989 10.1016/j.ijrmms.2011.06.011 10.1016/j.fuel.2014.09.031 10.1002/nme.4537 10.1016/j.compstruc.2013.01.017 10.1142/S0219876210002088 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N 10.1016/j.engfracmech.2013.04.012 10.1016/S0045-7825(96)01078-X 10.1007/s00603-012-0349-4 10.1007/s00466-006-0122-1 10.1007/s00466-013-0864-5 10.1002/2014JB011027 10.1016/j.finel.2014.03.006 10.1007/s10704-012-9742-y 10.1002/fld.1650200824 10.1016/j.enganabound.2009.07.006 10.1115/1.4011454 10.1016/j.cma.2004.10.014 10.1016/j.ijrmms.2014.01.008 10.1016/j.ijsolstr.2015.03.037 10.1007/s00466-008-0356-1 10.1142/S0218202514400065 10.1016/0142-1123(88)90061-8 10.1002/nme.430 10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A 10.1016/j.cma.2014.05.004 10.1016/j.engfracmech.2010.11.012 10.1002/nme.1620370205 10.1016/j.cma.2003.12.005 10.1016/j.compgeo.2010.09.003 10.1016/S0045-7825(00)00233-4 10.1016/j.enganabound.2014.04.002 10.1016/S0045-7825(99)00072-9 10.1016/j.gete.2015.03.003 10.1016/j.cma.2015.07.001 10.1016/S0045-7825(99)00324-2 10.1007/s00466-005-0017-6 10.1016/j.enganabound.2014.04.021 10.1016/j.compstruc.2009.03.002 10.1016/j.compstruc.2014.05.001 10.1007/s10409-009-0265-3 10.1002/nme.4620 10.2118/167626-PA 10.1002/nme.1151 10.1002/nme.429 10.1002/nme.1620170308 10.1016/j.enganabound.2014.12.005 10.1016/j.engfracmech.2007.05.010 10.1007/s10704-009-9342-7 10.1016/S0013-7944(02)00032-2 10.1016/S0045-7825(96)01083-3 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.enganabound.2016.08.008 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-197X |
EndPage | 77 |
ExternalDocumentID | 10_1016_j_enganabound_2016_08_008 S0955799716302235 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c354t-1c8d4b06dd3c527ede510742226ba003d7d38c79622dd6b04e17ec4955a3ceb53 |
IEDL.DBID | .~1 |
ISSN | 0955-7997 |
IngestDate | Fri Jul 11 02:41:07 EDT 2025 Tue Jul 01 02:31:46 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Fri Feb 23 02:34:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Maximum tensile stress criterion Numerical manifold method (NMM) Three dimensional simulation Fracture propagation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-1c8d4b06dd3c527ede510742226ba003d7d38c79622dd6b04e17ec4955a3ceb53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1845794601 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1845794601 crossref_citationtrail_10_1016_j_enganabound_2016_08_008 crossref_primary_10_1016_j_enganabound_2016_08_008 elsevier_sciencedirect_doi_10_1016_j_enganabound_2016_08_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2016 2016-11-00 20161101 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
PublicationDecade | 2010 |
PublicationTitle | Engineering analysis with boundary elements |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | He, An, Ma, Zhao (bib41) 2013; 64 Manzini, Russo, Sukumar (bib6) 2014; 24 Bouchard P, Bay F, Chastel Y, Tovena I. Crack propagation modelling using an advanced remeshing technique. Comput Methods Appl Mech Eng. 189 (723–742). Babuska, Melenk (bib27) 1997; 12 Wu, Wong, Fan (bib38) 2013; 46 Chen, Pan, Wu, Liu (bib20) 1996; 139 Yang, Bi, Zheng (bib44) 2015; 53 Wu, Olson (bib18) 2015; 20 Gravouil, Moes, Belytschko (bib28) 2002; 53 Zheng, Liu, Du (bib35) 2015; 295 Zhang, Ma, Ren (bib39) 2014; 44 Pereira, Duarte, Jiao, Guoy (bib49) 2009; 44 Belytschko, Lu, Gu (bib22) 1994; 37 Zienkiewicz OC, Taylor RL. The Finite Element Method. Volume 1, The Basis, 5th ed., Butterworth-Heinemann; 2000. Strouboulis, Babuka, Copps (bib30) 2000; 181 Rabczuk, Belytschko (bib21) 2004; 61 Nguyen, Bui, Zhang, Truong (bib56) 2014; 44 Tang, Paluszny, Zimmerman (bib11) 2013; 95 Shi G, Manifold method of material analysis. In: Proceedings of the transcations of the Ninth Army Confernece on Applied Mathematics and Computing; 1991. Gerstle W, Ingraffea A, Perucchio R. Three-dimensional fatigue fracture propagation analysis using the boundary element method. Int J Fatigue. 10, p. 187–92. Yu, Bui, Liu, Hirose (bib29) 2015; 67–68 Jiang, Zhou, Li (bib42) 2009; 87 Chiou, Lee, Tsay (bib33) 2002; 114 Secchi, Schrefler (bib57) 2012; 178 Sukumar, Moes, Moran, Belytschko (bib48) 2000; 48 Lang, Paluszny, Zimmerman (bib16) 2014; 119 Sukumar, Chopp, Moran (bib47) 2003; 70 Blandford, Ingraffea, Liggett (bib17) 1981; 17 Yang, Tang, Zheng (bib43) 2014; 141 Schrefler, Secchi, Simoni (bib58) 2006; 195 Paluszny, Tang, Zimmerman (bib13) 2013; 52 Tang, Paluszny, Zimmerman (bib12) 2014; 278 Zhang, Li, An, Ma (bib31) 2010; 34 Ning, An, Ma (bib37) 2011; 48 Krausa, Rajagopal, Steinmann (bib8) 2013; 120 Shi G. Simplex integration for manifold method, fem, dda and analytical analysis. In: Proceedings of the first international forum on discontinuous deformation analysis (DDA) and simulations of discontinuous media, Albuquerque, p. 205–62. Natarajana, Ooib, Chionga, Songa (bib7) 2014; 85 Lei, PaulLatham, Xiang, Tsang (bib1) 2015; 1 Duarte, Hamzeh, Liszka, Tworzydlo (bib19) 2001; 190 Belytschko, Krongauz, Organ, Fleming, Krysl (bib4) 1996; 139 Ning, Yang, An, Ma (bib53) 2011; 38 Bordas, Rabczuk, Zi (bib25) 2006; 75 Iglauer, Paluszny, Blunt (bib15) 2015; 139 Zheng, Xu (bib40) 2014; 97 Zheng, Wu, Tang, Zhang (bib26) 2010; 26 Tang, Zheng, Wu, Zhang (bib9) 2009; 30 Leonel, Venturini (bib55) 2011; 78 Moes, Gravouil, Belytschko (bib5) 2014; 53 Rabczuk, Bordas, Zi (bib50) 2007; 40 Williams (bib45) 1957; 24 Paluszny, Zimmerman (bib10) 2013; 108 Iglauer, Paluszny, Blunt (bib14) 2015; 139 Ma, An, Zhang, Li (bib36) 2009; 156 Haeri, Shahriar, Marji, Moarefvand (bib54) 2014; 67 Terada, Ishii, Kyoya, Kishino (bib34) 2007; 39 Rabczuk, Belytschko, Xiao (bib24) 2004; 193 Liu, Jun, Zhang (bib23) 1995; 20 He, Ma (bib46) 2010; 7 Paluszny (10.1016/j.enganabound.2016.08.008_bib10) 2013; 108 Rabczuk (10.1016/j.enganabound.2016.08.008_bib50) 2007; 40 He (10.1016/j.enganabound.2016.08.008_bib41) 2013; 64 Babuska (10.1016/j.enganabound.2016.08.008_bib27) 1997; 12 10.1016/j.enganabound.2016.08.008_bib2 Yang (10.1016/j.enganabound.2016.08.008_bib44) 2015; 53 10.1016/j.enganabound.2016.08.008_bib51 Iglauer (10.1016/j.enganabound.2016.08.008_bib14) 2015; 139 10.1016/j.enganabound.2016.08.008_bib52 Terada (10.1016/j.enganabound.2016.08.008_bib34) 2007; 39 Jiang (10.1016/j.enganabound.2016.08.008_bib42) 2009; 87 Blandford (10.1016/j.enganabound.2016.08.008_bib17) 1981; 17 Williams (10.1016/j.enganabound.2016.08.008_bib45) 1957; 24 Ma (10.1016/j.enganabound.2016.08.008_bib36) 2009; 156 Lei (10.1016/j.enganabound.2016.08.008_bib1) 2015; 1 Zheng (10.1016/j.enganabound.2016.08.008_bib35) 2015; 295 Moes (10.1016/j.enganabound.2016.08.008_bib5) 2014; 53 Pereira (10.1016/j.enganabound.2016.08.008_bib49) 2009; 44 Sukumar (10.1016/j.enganabound.2016.08.008_bib48) 2000; 48 Haeri (10.1016/j.enganabound.2016.08.008_bib54) 2014; 67 Zhang (10.1016/j.enganabound.2016.08.008_bib31) 2010; 34 Chen (10.1016/j.enganabound.2016.08.008_bib20) 1996; 139 Tang (10.1016/j.enganabound.2016.08.008_bib9) 2009; 30 Yu (10.1016/j.enganabound.2016.08.008_bib29) 2015; 67–68 Wu (10.1016/j.enganabound.2016.08.008_bib18) 2015; 20 Secchi (10.1016/j.enganabound.2016.08.008_bib57) 2012; 178 10.1016/j.enganabound.2016.08.008_bib3 Leonel (10.1016/j.enganabound.2016.08.008_bib55) 2011; 78 Zheng (10.1016/j.enganabound.2016.08.008_bib26) 2010; 26 Paluszny (10.1016/j.enganabound.2016.08.008_bib13) 2013; 52 Iglauer (10.1016/j.enganabound.2016.08.008_bib15) 2015; 139 Krausa (10.1016/j.enganabound.2016.08.008_bib8) 2013; 120 Lang (10.1016/j.enganabound.2016.08.008_bib16) 2014; 119 Rabczuk (10.1016/j.enganabound.2016.08.008_bib21) 2004; 61 Duarte (10.1016/j.enganabound.2016.08.008_bib19) 2001; 190 Strouboulis (10.1016/j.enganabound.2016.08.008_bib30) 2000; 181 Chiou (10.1016/j.enganabound.2016.08.008_bib33) 2002; 114 Sukumar (10.1016/j.enganabound.2016.08.008_bib47) 2003; 70 10.1016/j.enganabound.2016.08.008_bib32 Zhang (10.1016/j.enganabound.2016.08.008_bib39) 2014; 44 Belytschko (10.1016/j.enganabound.2016.08.008_bib22) 1994; 37 Zheng (10.1016/j.enganabound.2016.08.008_bib40) 2014; 97 Liu (10.1016/j.enganabound.2016.08.008_bib23) 1995; 20 Tang (10.1016/j.enganabound.2016.08.008_bib11) 2013; 95 Tang (10.1016/j.enganabound.2016.08.008_bib12) 2014; 278 Rabczuk (10.1016/j.enganabound.2016.08.008_bib24) 2004; 193 He (10.1016/j.enganabound.2016.08.008_bib46) 2010; 7 Belytschko (10.1016/j.enganabound.2016.08.008_bib4) 1996; 139 Bordas (10.1016/j.enganabound.2016.08.008_bib25) 2006; 75 Natarajana (10.1016/j.enganabound.2016.08.008_bib7) 2014; 85 Schrefler (10.1016/j.enganabound.2016.08.008_bib58) 2006; 195 Ning (10.1016/j.enganabound.2016.08.008_bib53) 2011; 38 Manzini (10.1016/j.enganabound.2016.08.008_bib6) 2014; 24 Ning (10.1016/j.enganabound.2016.08.008_bib37) 2011; 48 Nguyen (10.1016/j.enganabound.2016.08.008_bib56) 2014; 44 Yang (10.1016/j.enganabound.2016.08.008_bib43) 2014; 141 Wu (10.1016/j.enganabound.2016.08.008_bib38) 2013; 46 Gravouil (10.1016/j.enganabound.2016.08.008_bib28) 2002; 53 |
References_xml | – volume: 44 start-page: 87 year: 2014 end-page: 97 ident: bib56 article-title: Crack growth modeling in elastic solids by the extended meshfree galerkin radial point interpolation method publication-title: Eng Anal Bound Elem – volume: 1 start-page: 34 year: 2015 end-page: 47 ident: bib1 article-title: Polyaxial stress-induced variable aperture model for persistent 3d fracture networks publication-title: Geomech Energy Environ – volume: 178 start-page: 245 year: 2012 end-page: 258 ident: bib57 article-title: A method for 3-d hydraulic fracturing simulation publication-title: Int J Fract – volume: 193 start-page: 1035 year: 2004 end-page: 1063 ident: bib24 article-title: Stable particle methods based on lagrangian kernels publication-title: Comput Methods Appl Mech Eng – volume: 97 start-page: 986 year: 2014 end-page: 1010 ident: bib40 article-title: New strategies for some issues of numerical manifold method in simulation of crack propagation publication-title: Int J Numer Methods Eng – volume: 190 start-page: 2227 year: 2001 end-page: 2262 ident: bib19 article-title: A generalized finite element method for the simulation of three dimensional dynamic crack propagation publication-title: Comput Methods Appl Mech Eng – volume: 156 start-page: 21 year: 2009 end-page: 35 ident: bib36 article-title: Modelling complex crack problems using the numerical manifold method publication-title: Int J Fract – volume: 139 start-page: 195 year: 1996 end-page: 227 ident: bib20 article-title: Reproducing kernel particle methods for large deformation analysis of non-linear structures publication-title: Comput Methods Appl Mech Eng – reference: Zienkiewicz OC, Taylor RL. The Finite Element Method. Volume 1, The Basis, 5th ed., Butterworth-Heinemann; 2000. – volume: 40 start-page: 473 year: 2007 end-page: 495 ident: bib50 article-title: A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics publication-title: Comput Mech – reference: Shi G. Simplex integration for manifold method, fem, dda and analytical analysis. In: Proceedings of the first international forum on discontinuous deformation analysis (DDA) and simulations of discontinuous media, Albuquerque, p. 205–62. – volume: 7 start-page: 107 year: 2010 end-page: 129 ident: bib46 article-title: Development of 3d numerical manifold method publication-title: Int J Comput Methods – volume: 70 start-page: 29 year: 2003 end-page: 48 ident: bib47 article-title: Extended finite element method and fast marching method for three-dimensional fatigue crack propagation publication-title: Eng Fract Mech – volume: 119 start-page: 6288 year: 2014 end-page: 6307 ident: bib16 article-title: Permeability tensor of three-dimensional fractured porous rock and a comparison to tracemap predictions publication-title: J Geophys Res-Solid Earth – volume: 139 year: 2015 ident: bib15 article-title: Simultaneous oil recovery and residual gas storage: a pore-level analysis using in situ x-ray micro-tomography publication-title: Fuel – volume: 44 start-page: 73 year: 2009 end-page: 92 ident: bib49 article-title: Generalized finite element method enrichment functions for curved singularities in 3d fracture mechanics problems publication-title: Comput Mech – volume: 53 start-page: 2549 year: 2014 end-page: 2568 ident: bib5 article-title: Non-planar 3d fracture growth by the extended finite element and level sets - part I: mechanical model publication-title: Int J Numer Methods Eng – volume: 20 start-page: 1081 year: 1995 end-page: 1106 ident: bib23 article-title: Reproducing kernel particle methods publication-title: Int J Numer Methods Fluids – volume: 295 start-page: 150 year: 2015 end-page: 171 ident: bib35 article-title: Complementarity problem arising from static growth of multiple cracks and mls-based numerical manifold method publication-title: Comput Methods Appl Mech Eng – volume: 75 start-page: 943 year: 2006 end-page: 960 ident: bib25 article-title: Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended mesh-free method without asymptotic enrichment publication-title: Eng Fract Mech – volume: 17 start-page: 387 year: 1981 end-page: 404 ident: bib17 article-title: Two-dimensional stress intensity factor computations using the boundary element method publication-title: Int J Numer Methods Eng – volume: 53 start-page: 73 year: 2015 end-page: 85 ident: bib44 article-title: A hybrid fe-meshless quad4 with continuous nodal stress using radial-polynomial basis functions publication-title: Eng Anal Bound Elem – volume: 195 start-page: 444 year: 2006 end-page: 461 ident: bib58 article-title: On adaptive refinement techniques in multi-field problems including cohesive fracture publication-title: Comput Methods Appl Mech Eng – volume: 64 start-page: 22 year: 2013 end-page: 35 ident: bib41 article-title: Development of three-dimensional numerical manifold method for jointed rock slope stability analysis publication-title: Int J Rock Mech Min Sci – volume: 139 start-page: 905 year: 2015 end-page: 914 ident: bib14 article-title: Erratum: simultaneous oil recovery and residual gas storage: a pore-level analysis using in situ X-ray micro-tomography publication-title: Fuel – reference: Bouchard P, Bay F, Chastel Y, Tovena I. Crack propagation modelling using an advanced remeshing technique. Comput Methods Appl Mech Eng. 189 (723–742). – volume: 67–68 start-page: 205 year: 2015 end-page: 216 ident: bib29 article-title: Interfacial dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method publication-title: Int J Solids Struct – volume: 48 start-page: 1549 year: 2000 end-page: 1570 ident: bib48 article-title: Extended finite element method for three-dimensional crack modelling publication-title: Int J Numer Methods Eng – volume: 30 start-page: 1233 year: 2009 end-page: 1246 ident: bib9 article-title: A novel virtual node method for polygonal elements publication-title: Appl Math Mech – volume: 67 start-page: 20 year: 2014 end-page: 28 ident: bib54 article-title: Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks publication-title: Int J Rock Mech Min Sci – volume: 141 start-page: 46 year: 2014 end-page: 58 ident: bib43 article-title: A three-node triangular element with continuous nodal stress publication-title: Comput Struct – volume: 61 start-page: 2316 year: 2004 end-page: 2343 ident: bib21 article-title: Cracking particles: a simpli ed mesh-free method for arbitrary evolving cracks publication-title: Int J Numer Methods Eng – reference: Gerstle W, Ingraffea A, Perucchio R. Three-dimensional fatigue fracture propagation analysis using the boundary element method. Int J Fatigue. 10, p. 187–92. – volume: 181 start-page: 43 year: 2000 end-page: 69 ident: bib30 article-title: The design and analysis of the generalized finite element method publication-title: Comput Methods Appl Mech Eng – volume: 44 start-page: 45 year: 2014 end-page: 54 ident: bib39 article-title: Implementation of the numerical manifold method for thermo-mechanical fracture of planar solids publication-title: Eng Anal Bound Elem – volume: 24 start-page: 109 year: 1957 end-page: 114 ident: bib45 article-title: On the stress distribution at the base of a stationary crack publication-title: J Appl Mech – volume: 114 start-page: 327 year: 2002 end-page: 347 ident: bib33 article-title: Mixed mode fracture propagation by manifold method publication-title: Int J Fract – volume: 85 start-page: 101 year: 2014 end-page: 122 ident: bib7 article-title: Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: laplace interpolants, strain smoothing and scaled boundary polygon formulation publication-title: Finite Elem Anal Des – volume: 38 start-page: 40 year: 2011 end-page: 49 ident: bib53 article-title: Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework publication-title: Comput Geotech – volume: 24 start-page: 1665 year: 2014 end-page: 1699 ident: bib6 article-title: New perspectives on polygonal and polyhedral finite element methods publication-title: Math Models Methods Appl Sci – volume: 278 start-page: 160 year: 2014 end-page: 185 ident: bib12 article-title: An impulse-based energy tracking method for collision resolution publication-title: Comput Methods Appl Mech Eng – volume: 34 start-page: 41 year: 2010 end-page: 50 ident: bib31 article-title: Numerical analysis of 2-D crack propagation problems using the numerical manifold method publication-title: Eng Anal Bound Elem – volume: 87 start-page: 880 year: 2009 end-page: 889 ident: bib42 article-title: A three-dimensional numerical manifold method based on tetrahedral meshes publication-title: Comput Struct – volume: 53 start-page: 2569 year: 2002 end-page: 2586 ident: bib28 article-title: Non-planar 3d crack growth by the extended finite element and level sets - part ii: Level set update publication-title: Int J Numer Methods Eng – reference: Shi G, Manifold method of material analysis. In: Proceedings of the transcations of the Ninth Army Confernece on Applied Mathematics and Computing; 1991. – volume: 52 start-page: 1071 year: 2013 end-page: 1084 ident: bib13 article-title: A fracture- and impulse-based FDEM approach for fragmentation publication-title: Comput Mech – volume: 139 start-page: 3 year: 1996 end-page: 47 ident: bib4 article-title: Meshless methods: an overview and recent developments publication-title: Comput Methods Appl Mech Eng – volume: 95 start-page: 529 year: 2013 end-page: 540 ident: bib11 article-title: Energy conservative property of impulse-based methods for collision resolution publication-title: Int J Numer Methods Eng – volume: 26 start-page: 265 year: 2010 end-page: 278 ident: bib26 article-title: A novel twice-interpolation finite element method for solid mechanics problems publication-title: Acta Mech Sin – volume: 12 start-page: 727 year: 1997 end-page: 758 ident: bib27 article-title: The partition of unity method publication-title: Int J Numer Methods Eng – volume: 39 start-page: 191 year: 2007 end-page: 210 ident: bib34 article-title: Finite cover method for progressive failure with cohesive zone fracture in heterogeneous solids and structures publication-title: Comput Mech – volume: 20 start-page: 337 year: 2015 end-page: 346 ident: bib18 article-title: Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horiontal wells publication-title: SPE J – volume: 37 start-page: 229 year: 1994 end-page: 256 ident: bib22 article-title: Element-free galerkin methods publication-title: Int J Numer Methods Eng – volume: 78 start-page: 1077 year: 2011 end-page: 1090 ident: bib55 article-title: Multiple random crack propagation using a boundary element formulation publication-title: Eng Fract Mech – volume: 48 start-page: 964 year: 2011 end-page: 975 ident: bib37 article-title: Footwall slope stability analysis with the numerical manifold method publication-title: Int J Rock Mech Min Sci – volume: 108 start-page: 19 year: 2013 end-page: 36 ident: bib10 article-title: Numerical fracture growth modeling using smooth surface geometric deformation publication-title: Eng Fract Mech – volume: 46 start-page: 1415 year: 2013 end-page: 1427 ident: bib38 article-title: Dynamic study on fracture problems in viscoelastic sedimentary rocks using the numerical manifold method publication-title: Rock Mech Rock Eng – volume: 120 start-page: 33 year: 2013 end-page: 46 ident: bib8 article-title: Investigations on the polygonal finite element method: constrained adaptive delaunay tessellation and conformal interpolants publication-title: Comput Struct – ident: 10.1016/j.enganabound.2016.08.008_bib2 – volume: 64 start-page: 22 year: 2013 ident: 10.1016/j.enganabound.2016.08.008_bib41 article-title: Development of three-dimensional numerical manifold method for jointed rock slope stability analysis publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2013.08.015 – volume: 30 start-page: 1233 issue: 10 year: 2009 ident: 10.1016/j.enganabound.2016.08.008_bib9 article-title: A novel virtual node method for polygonal elements publication-title: Appl Math Mech doi: 10.1007/s10483-009-1003-3 – volume: 114 start-page: 327 year: 2002 ident: 10.1016/j.enganabound.2016.08.008_bib33 article-title: Mixed mode fracture propagation by manifold method publication-title: Int J Fract doi: 10.1023/A:1015713428989 – volume: 48 start-page: 964 year: 2011 ident: 10.1016/j.enganabound.2016.08.008_bib37 article-title: Footwall slope stability analysis with the numerical manifold method publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2011.06.011 – volume: 139 start-page: 905 year: 2015 ident: 10.1016/j.enganabound.2016.08.008_bib14 article-title: Erratum: simultaneous oil recovery and residual gas storage: a pore-level analysis using in situ X-ray micro-tomography publication-title: Fuel doi: 10.1016/j.fuel.2014.09.031 – volume: 95 start-page: 529 issue: 6 year: 2013 ident: 10.1016/j.enganabound.2016.08.008_bib11 article-title: Energy conservative property of impulse-based methods for collision resolution publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4537 – volume: 120 start-page: 33 year: 2013 ident: 10.1016/j.enganabound.2016.08.008_bib8 article-title: Investigations on the polygonal finite element method: constrained adaptive delaunay tessellation and conformal interpolants publication-title: Comput Struct doi: 10.1016/j.compstruc.2013.01.017 – volume: 7 start-page: 107 year: 2010 ident: 10.1016/j.enganabound.2016.08.008_bib46 article-title: Development of 3d numerical manifold method publication-title: Int J Comput Methods doi: 10.1142/S0219876210002088 – volume: 12 start-page: 727 year: 1997 ident: 10.1016/j.enganabound.2016.08.008_bib27 article-title: The partition of unity method publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N – volume: 108 start-page: 19 year: 2013 ident: 10.1016/j.enganabound.2016.08.008_bib10 article-title: Numerical fracture growth modeling using smooth surface geometric deformation publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2013.04.012 – volume: 139 start-page: 3 issue: 1–4 year: 1996 ident: 10.1016/j.enganabound.2016.08.008_bib4 article-title: Meshless methods: an overview and recent developments publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(96)01078-X – volume: 46 start-page: 1415 year: 2013 ident: 10.1016/j.enganabound.2016.08.008_bib38 article-title: Dynamic study on fracture problems in viscoelastic sedimentary rocks using the numerical manifold method publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-012-0349-4 – volume: 40 start-page: 473 year: 2007 ident: 10.1016/j.enganabound.2016.08.008_bib50 article-title: A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics publication-title: Comput Mech doi: 10.1007/s00466-006-0122-1 – volume: 52 start-page: 1071 issue: 5 year: 2013 ident: 10.1016/j.enganabound.2016.08.008_bib13 article-title: A fracture- and impulse-based FDEM approach for fragmentation publication-title: Comput Mech doi: 10.1007/s00466-013-0864-5 – volume: 119 start-page: 6288 year: 2014 ident: 10.1016/j.enganabound.2016.08.008_bib16 article-title: Permeability tensor of three-dimensional fractured porous rock and a comparison to tracemap predictions publication-title: J Geophys Res-Solid Earth doi: 10.1002/2014JB011027 – ident: 10.1016/j.enganabound.2016.08.008_bib51 – volume: 85 start-page: 101 year: 2014 ident: 10.1016/j.enganabound.2016.08.008_bib7 article-title: Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: laplace interpolants, strain smoothing and scaled boundary polygon formulation publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2014.03.006 – volume: 178 start-page: 245 issue: 1–2 year: 2012 ident: 10.1016/j.enganabound.2016.08.008_bib57 article-title: A method for 3-d hydraulic fracturing simulation publication-title: Int J Fract doi: 10.1007/s10704-012-9742-y – volume: 20 start-page: 1081 issue: 8–9 year: 1995 ident: 10.1016/j.enganabound.2016.08.008_bib23 article-title: Reproducing kernel particle methods publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1650200824 – volume: 34 start-page: 41 year: 2010 ident: 10.1016/j.enganabound.2016.08.008_bib31 article-title: Numerical analysis of 2-D crack propagation problems using the numerical manifold method publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2009.07.006 – volume: 24 start-page: 109 year: 1957 ident: 10.1016/j.enganabound.2016.08.008_bib45 article-title: On the stress distribution at the base of a stationary crack publication-title: J Appl Mech doi: 10.1115/1.4011454 – volume: 195 start-page: 444 issue: 4–6 year: 2006 ident: 10.1016/j.enganabound.2016.08.008_bib58 article-title: On adaptive refinement techniques in multi-field problems including cohesive fracture publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2004.10.014 – volume: 139 year: 2015 ident: 10.1016/j.enganabound.2016.08.008_bib15 article-title: Simultaneous oil recovery and residual gas storage: a pore-level analysis using in situ x-ray micro-tomography publication-title: Fuel doi: 10.1016/j.fuel.2014.09.031 – volume: 67 start-page: 20 year: 2014 ident: 10.1016/j.enganabound.2016.08.008_bib54 article-title: Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.01.008 – volume: 67–68 start-page: 205 year: 2015 ident: 10.1016/j.enganabound.2016.08.008_bib29 article-title: Interfacial dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2015.03.037 – volume: 44 start-page: 73 year: 2009 ident: 10.1016/j.enganabound.2016.08.008_bib49 article-title: Generalized finite element method enrichment functions for curved singularities in 3d fracture mechanics problems publication-title: Comput Mech doi: 10.1007/s00466-008-0356-1 – volume: 24 start-page: 1665 issue: 8 year: 2014 ident: 10.1016/j.enganabound.2016.08.008_bib6 article-title: New perspectives on polygonal and polyhedral finite element methods publication-title: Math Models Methods Appl Sci doi: 10.1142/S0218202514400065 – ident: 10.1016/j.enganabound.2016.08.008_bib3 doi: 10.1016/0142-1123(88)90061-8 – volume: 53 start-page: 2569 issue: 11 year: 2002 ident: 10.1016/j.enganabound.2016.08.008_bib28 article-title: Non-planar 3d crack growth by the extended finite element and level sets - part ii: Level set update publication-title: Int J Numer Methods Eng doi: 10.1002/nme.430 – volume: 48 start-page: 1549 year: 2000 ident: 10.1016/j.enganabound.2016.08.008_bib48 article-title: Extended finite element method for three-dimensional crack modelling publication-title: Int J Numer Methods Eng doi: 10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A – volume: 278 start-page: 160 issue: 15 year: 2014 ident: 10.1016/j.enganabound.2016.08.008_bib12 article-title: An impulse-based energy tracking method for collision resolution publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2014.05.004 – volume: 78 start-page: 1077 year: 2011 ident: 10.1016/j.enganabound.2016.08.008_bib55 article-title: Multiple random crack propagation using a boundary element formulation publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2010.11.012 – volume: 37 start-page: 229 issue: 2 year: 1994 ident: 10.1016/j.enganabound.2016.08.008_bib22 article-title: Element-free galerkin methods publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1620370205 – volume: 193 start-page: 1035 issue: 26 year: 2004 ident: 10.1016/j.enganabound.2016.08.008_bib24 article-title: Stable particle methods based on lagrangian kernels publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2003.12.005 – volume: 38 start-page: 40 year: 2011 ident: 10.1016/j.enganabound.2016.08.008_bib53 article-title: Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework publication-title: Comput Geotech doi: 10.1016/j.compgeo.2010.09.003 – volume: 190 start-page: 2227 issue: 15–17 year: 2001 ident: 10.1016/j.enganabound.2016.08.008_bib19 article-title: A generalized finite element method for the simulation of three dimensional dynamic crack propagation publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(00)00233-4 – volume: 44 start-page: 45 year: 2014 ident: 10.1016/j.enganabound.2016.08.008_bib39 article-title: Implementation of the numerical manifold method for thermo-mechanical fracture of planar solids publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2014.04.002 – volume: 181 start-page: 43 issue: 1–3 year: 2000 ident: 10.1016/j.enganabound.2016.08.008_bib30 article-title: The design and analysis of the generalized finite element method publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(99)00072-9 – volume: 1 start-page: 34 year: 2015 ident: 10.1016/j.enganabound.2016.08.008_bib1 article-title: Polyaxial stress-induced variable aperture model for persistent 3d fracture networks publication-title: Geomech Energy Environ doi: 10.1016/j.gete.2015.03.003 – volume: 295 start-page: 150 year: 2015 ident: 10.1016/j.enganabound.2016.08.008_bib35 article-title: Complementarity problem arising from static growth of multiple cracks and mls-based numerical manifold method publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2015.07.001 – ident: 10.1016/j.enganabound.2016.08.008_bib52 doi: 10.1016/S0045-7825(99)00324-2 – volume: 39 start-page: 191 year: 2007 ident: 10.1016/j.enganabound.2016.08.008_bib34 article-title: Finite cover method for progressive failure with cohesive zone fracture in heterogeneous solids and structures publication-title: Comput Mech doi: 10.1007/s00466-005-0017-6 – volume: 44 start-page: 87 year: 2014 ident: 10.1016/j.enganabound.2016.08.008_bib56 article-title: Crack growth modeling in elastic solids by the extended meshfree galerkin radial point interpolation method publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2014.04.021 – ident: 10.1016/j.enganabound.2016.08.008_bib32 – volume: 87 start-page: 880 year: 2009 ident: 10.1016/j.enganabound.2016.08.008_bib42 article-title: A three-dimensional numerical manifold method based on tetrahedral meshes publication-title: Comput Struct doi: 10.1016/j.compstruc.2009.03.002 – volume: 141 start-page: 46 year: 2014 ident: 10.1016/j.enganabound.2016.08.008_bib43 article-title: A three-node triangular element with continuous nodal stress publication-title: Comput Struct doi: 10.1016/j.compstruc.2014.05.001 – volume: 26 start-page: 265 issue: 2 year: 2010 ident: 10.1016/j.enganabound.2016.08.008_bib26 article-title: A novel twice-interpolation finite element method for solid mechanics problems publication-title: Acta Mech Sin doi: 10.1007/s10409-009-0265-3 – volume: 97 start-page: 986 issue: 13 year: 2014 ident: 10.1016/j.enganabound.2016.08.008_bib40 article-title: New strategies for some issues of numerical manifold method in simulation of crack propagation publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4620 – volume: 20 start-page: 337 issue: 2 year: 2015 ident: 10.1016/j.enganabound.2016.08.008_bib18 article-title: Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horiontal wells publication-title: SPE J doi: 10.2118/167626-PA – volume: 61 start-page: 2316 issue: 13 year: 2004 ident: 10.1016/j.enganabound.2016.08.008_bib21 article-title: Cracking particles: a simpli ed mesh-free method for arbitrary evolving cracks publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1151 – volume: 53 start-page: 2549 issue: 11 year: 2014 ident: 10.1016/j.enganabound.2016.08.008_bib5 article-title: Non-planar 3d fracture growth by the extended finite element and level sets - part I: mechanical model publication-title: Int J Numer Methods Eng doi: 10.1002/nme.429 – volume: 17 start-page: 387 issue: 3 year: 1981 ident: 10.1016/j.enganabound.2016.08.008_bib17 article-title: Two-dimensional stress intensity factor computations using the boundary element method publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1620170308 – volume: 53 start-page: 73 year: 2015 ident: 10.1016/j.enganabound.2016.08.008_bib44 article-title: A hybrid fe-meshless quad4 with continuous nodal stress using radial-polynomial basis functions publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2014.12.005 – volume: 75 start-page: 943 issue: 5 year: 2006 ident: 10.1016/j.enganabound.2016.08.008_bib25 article-title: Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended mesh-free method without asymptotic enrichment publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2007.05.010 – volume: 156 start-page: 21 year: 2009 ident: 10.1016/j.enganabound.2016.08.008_bib36 article-title: Modelling complex crack problems using the numerical manifold method publication-title: Int J Fract doi: 10.1007/s10704-009-9342-7 – volume: 70 start-page: 29 issue: 1 year: 2003 ident: 10.1016/j.enganabound.2016.08.008_bib47 article-title: Extended finite element method and fast marching method for three-dimensional fatigue crack propagation publication-title: Eng Fract Mech doi: 10.1016/S0013-7944(02)00032-2 – volume: 139 start-page: 195 issue: 1–4 year: 1996 ident: 10.1016/j.enganabound.2016.08.008_bib20 article-title: Reproducing kernel particle methods for large deformation analysis of non-linear structures publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(96)01083-3 |
SSID | ssj0013006 |
Score | 2.5497372 |
Snippet | By introducing the concept of mathematical cover and physical cover, the numerical manifold method (NMM) is able to solve continuous and discontinuous problems... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 65 |
SubjectTerms | Algorithms Crack initiation Crack propagation Fracture mechanics Fracture propagation Manifolds (mathematics) Mathematical analysis Mathematical models Maximum tensile stress criterion Numerical manifold method (NMM) Tensile stress Three dimensional simulation |
Title | Three-dimensional fracture propagation with numerical manifold method |
URI | https://dx.doi.org/10.1016/j.enganabound.2016.08.008 https://www.proquest.com/docview/1845794601 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jguiD-InzY2Tga1zbNEkHvoyxMR3uQTfcW2iTVCYjG3N79W831w-d4sPAp9KStOXucnfJ3f0OoRsaBirUIiHOe1AkVIKSKDaK0IBR7qlWpDgUCj8OeX8cPkzYpII6ZS0MpFUWuj_X6Zm2Lp40C2o2F9Np8xnA00QLIJCoM0QUCs0Bvc7J9O2H_x1J8LL-mjCYwOhd1PjO8TL2NbaQAWwBNNTnGZondJr820b90taZCeodooPCd8Tt_PeOUMXYY7S_gSh4grojxxtDNGD253gbOIU6qPXSYPdapz0yTmA4fsV2nYdrZhhAMNL5TOO8ofQpGve6o06fFJ0SiKIsXBFfRTpMPK41VSwQRhsGiZbO9vMkdutWC00jJVo8CLTmiRcaXxjl9kYspsokjJ6hqp1bc46w8y-E87JoCEw0AY89k0RBqlicOlueihqKStpIVcCIQzeLmSzzxd7kBlklkFVCp0svqqHga-oix9LYZtJdyQD5QzCk0_nbTG-UTJNu4UA0JLZmvn6XbmvLAF3f8y_-94lLtAd3eYHiFaqulmtz7TyVVVLPRLGOdtr3g_4QroOnl8Enn0bsGA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gJD4OxmfEZ028bijdV0m8EAIBQS5Cwm3T7m6NhhSD8P_d6UPUeDDx2nbaZmb3m9ndmW8A7igLNDMyJi560IRpSUkYWU1owKnwdSvUAguFH8eiP2UPMz6rQKeshcG0ygL7c0zP0Lq40ii02Xh7eWk8IXmabCEFEnWOiPItqCE7FatCrT0Y9sebwwQ_a7GJzxMU2IbbTZqXTZ-jFJOAU-QNbYqM0BObTf7upn4AduaFegewX4SPXjv_w0Oo2PQI9r6QCh5Dd-LMY4lB2v6ccsNLsBRqvbSee60DkMwYHu7Aeuk6P7GZe8iDkSzmxst7Sp_AtNeddPqkaJZANOVsRZo6NCz2hTFU80BaYznmWjr3L-LITV0jDQ21bIkgMEbEPrNNabVbHvGIahtzegrVdJHaM_BciCFdoEUZ2tEGIvJtHAaJ5lHi3Hki6xCWulG6YBLHhhZzVaaMvaovalWoVoXNLv2wDsGn6FtOp_EXofvSAOrb2FAO9v8iflsaTbm5gwciUWoX63flVrccCfb95vn_PnEDO_3J40iNBuPhBezinbxe8RKqq-XaXrnAZRVfFwPzA03J7SY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+fracture+propagation+with+numerical+manifold+method&rft.jtitle=Engineering+analysis+with+boundary+elements&rft.au=Yang%2C+Yongtao&rft.au=Tang%2C+Xuhai&rft.au=Zheng%2C+Hong&rft.au=Liu%2C+Quansheng&rft.date=2016-11-01&rft.issn=0955-7997&rft.volume=72&rft.spage=65&rft.epage=77&rft_id=info:doi/10.1016%2Fj.enganabound.2016.08.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-7997&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-7997&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-7997&client=summon |