Dynamical distribution of continuous service time model involving non-Maxwellian collision kernel and value functions
The distribution of continuous service time in call centers is investigated. A non-Maxwellian collision kernel combining two different value functions in the interaction rule are used to describe the evolution of continuous service time, respectively. Using the statistical mechanical and asymptotic...
Saved in:
Published in | Chinese physics B Vol. 33; no. 9; pp. 90502 - 347 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/ad5d92 |
Cover
Abstract | The distribution of continuous service time in call centers is investigated. A non-Maxwellian collision kernel combining two different value functions in the interaction rule are used to describe the evolution of continuous service time, respectively. Using the statistical mechanical and asymptotic limit methods, Fokker–Planck equations are derived from the corresponding Boltzmann-type equations with non-Maxwellian collision kernels. The steady-state solutions of the Fokker–Planck equation are obtained in exact form. Numerical experiments are provided to support our results under different parameters. |
---|---|
AbstractList | The distribution of continuous service time in call centers is investigated. A non-Maxwellian collision kernel combining two different value functions in the interaction rule are used to describe the evolution of continuous service time, respectively. Using the statistical mechanical and asymptotic limit methods, Fokker–Planck equations are derived from the corresponding Boltzmann-type equations with non-Maxwellian collision kernels. The steady-state solutions of the Fokker–Planck equation are obtained in exact form. Numerical experiments are provided to support our results under different parameters. The distribution of continuous service time in call centers is investigated.A non-Maxwellian collision kernel com-bining two different value functions in the interaction rule are used to describe the evolution of continuous service time,respectively.Using the statistical mechanical and asymptotic limit methods,Fokker-Planck equations are derived from the corresponding Boltzmann-type equations with non-Maxwellian collision kernels.The steady-state solutions of the Fokker-Planck equation are obtained in exact form.Numerical experiments are provided to support our results under different parameters. |
Author | Zhao, Minfang Kong, Lingting Liu, Miao Lai, Shaoyong |
Author_xml | – sequence: 1 givenname: Minfang surname: Zhao fullname: Zhao, Minfang organization: Yili Normal University Institute of Applied Mathematics, Yining 835000, China – sequence: 2 givenname: Lingting surname: Kong fullname: Kong, Lingting organization: Southwestern University of Finance and Economics School of Mathematics, Chengdu 611130, China – sequence: 3 givenname: Miao surname: Liu fullname: Liu, Miao organization: Yili Normal University Institute of Applied Mathematics, Yining 835000, China – sequence: 4 givenname: Shaoyong surname: Lai fullname: Lai, Shaoyong organization: Southwestern University of Finance and Economics School of Mathematics, Chengdu 611130, China |
BookMark | eNp9kL1PwzAUxC1UJMrHzuiNhcCLnbjOiMqnBGJhtxznpXJx7cpOWuCvJ1ERSEgw3fDud-90h2Tig0dCTnO4yEHKy1zMiiyHUlzqpmwqtkemDEqZccmLCZl-nw_IYUpLAJED41PSX797vbJGO9rY1EVb950NnoaWmuA76_vQJ5owbqxB2tkV0lVo0FHrN8FtrF_QoUj2pN-26JzVfsAGTWPGK0Y_OLVv6Ea7HmnbezOmp2Oy32qX8ORLj8jL7c3L_D57fL57mF89ZoaXRZflNecIlWSARnNWFiiawkjUFRgh5czMhClMK6uZqSteIxZQm1ZzFCWwkvEjcraL3Wrfar9Qy9BHPzxUH4utU8iAFVABF4NT7JwmhpQitsrYTo9du6itUzmocWU1zqjGGdVu5QGEX-A62pWO7_8h5zvEhvVPoz_tn8S0krY |
CitedBy_id | crossref_primary_10_1088_1674_1056_ada54a |
Cites_doi | 10.3390/math9222877 10.1198/016214504000001808 10.1142/S0218202519400049 10.1142/9789814417358\_0006 10.1142/S0218202517400048 10.1287/msom.4.3.208.7753 10.1111/j.1937-5956.2007.tb00288.x 10.1142/S0218202520500426 10.1016/j.cie.2016.03.013 10.1140/epjb/e2020-10193-3 10.1134/S0005117914110046 10.1088/1674-1056/accb4a 10.1140/epjb/s10051-023-00543-w 10.1142/S0218202518500410 10.1007/s10955-005-5456-0 10.1016/j.plrev.2015.10.008 10.1088/1674-1056/19/1/010204 10.1103/PhysRevE.100.012308 |
ContentType | Journal Article |
Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ad5d92 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
EndPage | 347 |
ExternalDocumentID | zgwl_e202409036 10_1088_1674_1056_ad5d92 cpb_33_9_090502 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION Q-- 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c354t-1b33e09820eca3254e6d4c8ea90c6887c76c4cf897cb93bee40bcfa3e6502523 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:18 EDT 2025 Tue Jul 01 02:13:15 EDT 2025 Thu Apr 24 23:03:06 EDT 2025 Wed Sep 11 04:03:10 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | value function Fokker-Planck equation kinetic theory service time |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-1b33e09820eca3254e6d4c8ea90c6887c76c4cf897cb93bee40bcfa3e6502523 |
OpenAccessLink | https://doi.org/10.1088/1674-1056/ad5d92 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1088_1674_1056_ad5d92 wanfang_journals_zgwl_e202409036 crossref_primary_10_1088_1674_1056_ad5d92 iop_journals_10_1088_1674_1056_ad5d92 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2024 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Cordier (cpb_33_9_090502bib17) 2005; 120 Burini (cpb_33_9_090502bib13) 2016; 16 Garnett (cpb_33_9_090502bib4) 2002; 4 Kahneman (cpb_33_9_090502bib10) 2000 Hu (cpb_33_9_090502bib11) 2023; 32 Naldi (cpb_33_9_090502bib12) 2010 Du (cpb_33_9_090502bib14) 2010; 19 Pareschi (cpb_33_9_090502bib18) 2014 Brown (cpb_33_9_090502bib1) 2005; 100 Gualandi (cpb_33_9_090502bib7) 2019; 29 Dimarco (cpb_33_9_090502bib20) 2020; 30 Stepanov (cpb_33_9_090502bib5) 2014; 75 Nazarov (cpb_33_9_090502bib3) 2021; 9 Aksin (cpb_33_9_090502bib6) 2007; 16 Gualandi (cpb_33_9_090502bib8) 2018; 28 Quevedoa (cpb_33_9_090502bib15) 2021; 93 Furioli (cpb_33_9_090502bib21) 2017; 27 Zhou (cpb_33_9_090502bib16) 2023; 96 Toscani (cpb_33_9_090502bib19) 2019; 100 Excoffier (cpb_33_9_090502bib2) 2016; 96 Kahneman (cpb_33_9_090502bib9) 1979; 47 |
References_xml | – volume: 9 start-page: 2877 year: 2021 ident: cpb_33_9_090502bib3 publication-title: Mathematics doi: 10.3390/math9222877 – volume: 100 start-page: 36 year: 2005 ident: cpb_33_9_090502bib1 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214504000001808 – volume: 29 start-page: 717 year: 2019 ident: cpb_33_9_090502bib7 publication-title: Math. Mod. Methods Appl. Sci. doi: 10.1142/S0218202519400049 – year: 2010 ident: cpb_33_9_090502bib12 – volume: 47 start-page: 263 year: 1979 ident: cpb_33_9_090502bib9 publication-title: Econometrica doi: 10.1142/9789814417358\_0006 – volume: 27 start-page: 115 year: 2017 ident: cpb_33_9_090502bib21 publication-title: Methods Appl. Sci. doi: 10.1142/S0218202517400048 – volume: 4 start-page: 208 year: 2002 ident: cpb_33_9_090502bib4 publication-title: Manuf. Serv. Oper. Manag. doi: 10.1287/msom.4.3.208.7753 – volume: 16 start-page: 665 year: 2007 ident: cpb_33_9_090502bib6 publication-title: Prod. Oper. Manag. doi: 10.1111/j.1937-5956.2007.tb00288.x – volume: 30 start-page: 2229 year: 2020 ident: cpb_33_9_090502bib20 publication-title: Math. Mod. Methods Appl. Sci. doi: 10.1142/S0218202520500426 – volume: 96 start-page: 16 year: 2016 ident: cpb_33_9_090502bib2 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.03.013 – volume: 93 start-page: 1 year: 2021 ident: cpb_33_9_090502bib15 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2020-10193-3 – year: 2014 ident: cpb_33_9_090502bib18 – year: 2000 ident: cpb_33_9_090502bib10 – volume: 75 start-page: 1936 year: 2014 ident: cpb_33_9_090502bib5 publication-title: Autom. Remote. Control. doi: 10.1134/S0005117914110046 – volume: 32 year: 2023 ident: cpb_33_9_090502bib11 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/accb4a – volume: 96 start-page: 73 year: 2023 ident: cpb_33_9_090502bib16 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/s10051-023-00543-w – volume: 28 start-page: 1513 year: 2018 ident: cpb_33_9_090502bib8 publication-title: Math. Mod. Methods Appl. Sci. doi: 10.1142/S0218202518500410 – volume: 120 start-page: 253 year: 2005 ident: cpb_33_9_090502bib17 publication-title: J. Stat. Phys. doi: 10.1007/s10955-005-5456-0 – volume: 16 start-page: 123 year: 2016 ident: cpb_33_9_090502bib13 publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2015.10.008 – volume: 19 year: 2010 ident: cpb_33_9_090502bib14 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/19/1/010204 – volume: 100 year: 2019 ident: cpb_33_9_090502bib19 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.100.012308 |
SSID | ssj0061023 |
Score | 2.345773 |
Snippet | The distribution of continuous service time in call centers is investigated. A non-Maxwellian collision kernel combining two different value functions in the... The distribution of continuous service time in call centers is investigated.A non-Maxwellian collision kernel com-bining two different value functions in the... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 90502 |
SubjectTerms | Fokker-Planck equation kinetic theory service time value function |
Title | Dynamical distribution of continuous service time model involving non-Maxwellian collision kernel and value functions |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ad5d92 https://d.wanfangdata.com.cn/periodical/zgwl-e202409036 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAColLoQXEWz60Bw7eza4dJxEn1BbRSjwOIHFAiuyxgxDIi9iNivj1zMReWlCFUG85jB1nPJkZ2-PvY-yLlrIAM5DCWGWEqkolMMu3QmMs05kt7NDT1sDRsT48V78u8osZtvd8F2Z0l1x_Dx8jUHBUYSqIK_tUNy-IML5vXO4q9L8fiLiSzPvnyenUDWvCJKDV1lQ6nVH-q4cXMWkW39vd4AmNCVd_BZuDRXY5HWasMbnptRPbg8dXCI7_-R1L7GNKQvl-FP3EZnz4zOa7YlAYL7P2e6SpRxFHuLqJEouPGk6V7dehHbVjPo5ehhM7Pe8Idfh1QGdHOxQ8jII4Mg-0M4j2x8naukvs_MbfB5Q0wXHCGfecAmtn-yvs7ODH2bdDkegZBMhcTcTASumzClMID0biQtNrp6D0pspAo--CQoOCpqwKsJW03qvMQmOkx6RwiOvfVTaHg_FrjMNQFi5zA10S4lqubJaDA-cK0B5y26yz_nR-akjQ5cSgcVt3R-hlWZMua9JlHXW5znafW9xF2I43ZL_iFNXp3x2_IceTUfyRfbz6fVv7IQ27wlxg451dbbIFahMLCbfY3OS-9duY3EzsTmfET9eq8zQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELaAqlUvpS9UyqM-tIcevJuNHSc5VoUVtIVyoBK31B47CIG8K3ajVvx6ZmJvaSuEkLjlMHac8WRmbI-_j7H3WsoSzEgKY5URqq6UwCzfCo2xTGe2tLmnrYGDQ733Q305KU4Sz2l_F2YyTa5_gI8RKDiqMBXEVUOqmxdEGD80rnB1Ppy6dpk9KtAVU03X_vejhSvWhEtAK65Fi3ROeVsv_8SlZXx3f4sntCac_hVwxqvs52Kosc7kfNDN7QCu_kNxfMC3PGfPUjLKP0XxF2zJh5fscV8UCrNXrNuJdPUo4ghfN1Fj8UnLqcL9LHSTbsZn0dtwYqnnPbEOPwvo9GingodJEAfmN-0Qoh1ysrr-Mjs_95cBJU1wnPDGPacA2_8Dr9nxePf4855INA0CZKHmYmSl9FmNqYQHI3HB6bVTUHlTZ6DRh0GpQUFb1SXYWlrvVWahNdJjcpjjOniNreBg_BvGIZely9xIV4S8ViibFeDAuRK0h8K262y4mKMGEoQ5MWlcNP1RelU1pM-G9NlEfa6zj39aTCN8xx2yH3CamvQPz-6Q48kwbmSvTn9dND6nYdeYE7y9Z1fv2JOjnXHzbf_w6wZ7Ss1jbeEmW5lfdn4L85253e5t-ho6LviY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+distribution+of+continuous+service+time+model+involving+non-Maxwellian+collision+kernel+and+value+functions&rft.jtitle=Chinese+physics+B&rft.au=Zhao%2C+Minfang&rft.au=Kong%2C+Lingting&rft.au=Liu%2C+Miao&rft.au=Lai%2C+Shaoyong&rft.date=2024-08-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=33&rft.issue=9&rft_id=info:doi/10.1088%2F1674-1056%2Fad5d92&rft.externalDocID=cpb_33_9_090502 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |