Dynamical distribution of continuous service time model involving non-Maxwellian collision kernel and value functions

The distribution of continuous service time in call centers is investigated. A non-Maxwellian collision kernel combining two different value functions in the interaction rule are used to describe the evolution of continuous service time, respectively. Using the statistical mechanical and asymptotic...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 33; no. 9; pp. 90502 - 347
Main Authors Zhao, Minfang, Kong, Lingting, Liu, Miao, Lai, Shaoyong
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.08.2024
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/ad5d92

Cover

Abstract The distribution of continuous service time in call centers is investigated. A non-Maxwellian collision kernel combining two different value functions in the interaction rule are used to describe the evolution of continuous service time, respectively. Using the statistical mechanical and asymptotic limit methods, Fokker–Planck equations are derived from the corresponding Boltzmann-type equations with non-Maxwellian collision kernels. The steady-state solutions of the Fokker–Planck equation are obtained in exact form. Numerical experiments are provided to support our results under different parameters.
AbstractList The distribution of continuous service time in call centers is investigated. A non-Maxwellian collision kernel combining two different value functions in the interaction rule are used to describe the evolution of continuous service time, respectively. Using the statistical mechanical and asymptotic limit methods, Fokker–Planck equations are derived from the corresponding Boltzmann-type equations with non-Maxwellian collision kernels. The steady-state solutions of the Fokker–Planck equation are obtained in exact form. Numerical experiments are provided to support our results under different parameters.
The distribution of continuous service time in call centers is investigated.A non-Maxwellian collision kernel com-bining two different value functions in the interaction rule are used to describe the evolution of continuous service time,respectively.Using the statistical mechanical and asymptotic limit methods,Fokker-Planck equations are derived from the corresponding Boltzmann-type equations with non-Maxwellian collision kernels.The steady-state solutions of the Fokker-Planck equation are obtained in exact form.Numerical experiments are provided to support our results under different parameters.
Author Zhao, Minfang
Kong, Lingting
Liu, Miao
Lai, Shaoyong
Author_xml – sequence: 1
  givenname: Minfang
  surname: Zhao
  fullname: Zhao, Minfang
  organization: Yili Normal University Institute of Applied Mathematics, Yining 835000, China
– sequence: 2
  givenname: Lingting
  surname: Kong
  fullname: Kong, Lingting
  organization: Southwestern University of Finance and Economics School of Mathematics, Chengdu 611130, China
– sequence: 3
  givenname: Miao
  surname: Liu
  fullname: Liu, Miao
  organization: Yili Normal University Institute of Applied Mathematics, Yining 835000, China
– sequence: 4
  givenname: Shaoyong
  surname: Lai
  fullname: Lai, Shaoyong
  organization: Southwestern University of Finance and Economics School of Mathematics, Chengdu 611130, China
BookMark eNp9kL1PwzAUxC1UJMrHzuiNhcCLnbjOiMqnBGJhtxznpXJx7cpOWuCvJ1ERSEgw3fDud-90h2Tig0dCTnO4yEHKy1zMiiyHUlzqpmwqtkemDEqZccmLCZl-nw_IYUpLAJED41PSX797vbJGO9rY1EVb950NnoaWmuA76_vQJ5owbqxB2tkV0lVo0FHrN8FtrF_QoUj2pN-26JzVfsAGTWPGK0Y_OLVv6Ea7HmnbezOmp2Oy32qX8ORLj8jL7c3L_D57fL57mF89ZoaXRZflNecIlWSARnNWFiiawkjUFRgh5czMhClMK6uZqSteIxZQm1ZzFCWwkvEjcraL3Wrfar9Qy9BHPzxUH4utU8iAFVABF4NT7JwmhpQitsrYTo9du6itUzmocWU1zqjGGdVu5QGEX-A62pWO7_8h5zvEhvVPoz_tn8S0krY
CitedBy_id crossref_primary_10_1088_1674_1056_ada54a
Cites_doi 10.3390/math9222877
10.1198/016214504000001808
10.1142/S0218202519400049
10.1142/9789814417358\_0006
10.1142/S0218202517400048
10.1287/msom.4.3.208.7753
10.1111/j.1937-5956.2007.tb00288.x
10.1142/S0218202520500426
10.1016/j.cie.2016.03.013
10.1140/epjb/e2020-10193-3
10.1134/S0005117914110046
10.1088/1674-1056/accb4a
10.1140/epjb/s10051-023-00543-w
10.1142/S0218202518500410
10.1007/s10955-005-5456-0
10.1016/j.plrev.2015.10.008
10.1088/1674-1056/19/1/010204
10.1103/PhysRevE.100.012308
ContentType Journal Article
Copyright 2024 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ad5d92
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 347
ExternalDocumentID zgwl_e202409036
10_1088_1674_1056_ad5d92
cpb_33_9_090502
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
Q--
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c354t-1b33e09820eca3254e6d4c8ea90c6887c76c4cf897cb93bee40bcfa3e6502523
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:18 EDT 2025
Tue Jul 01 02:13:15 EDT 2025
Thu Apr 24 23:03:06 EDT 2025
Wed Sep 11 04:03:10 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords value function
Fokker-Planck equation
kinetic theory
service time
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-1b33e09820eca3254e6d4c8ea90c6887c76c4cf897cb93bee40bcfa3e6502523
OpenAccessLink https://doi.org/10.1088/1674-1056/ad5d92
PageCount 9
ParticipantIDs crossref_citationtrail_10_1088_1674_1056_ad5d92
wanfang_journals_zgwl_e202409036
crossref_primary_10_1088_1674_1056_ad5d92
iop_journals_10_1088_1674_1056_ad5d92
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2024
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Cordier (cpb_33_9_090502bib17) 2005; 120
Burini (cpb_33_9_090502bib13) 2016; 16
Garnett (cpb_33_9_090502bib4) 2002; 4
Kahneman (cpb_33_9_090502bib10) 2000
Hu (cpb_33_9_090502bib11) 2023; 32
Naldi (cpb_33_9_090502bib12) 2010
Du (cpb_33_9_090502bib14) 2010; 19
Pareschi (cpb_33_9_090502bib18) 2014
Brown (cpb_33_9_090502bib1) 2005; 100
Gualandi (cpb_33_9_090502bib7) 2019; 29
Dimarco (cpb_33_9_090502bib20) 2020; 30
Stepanov (cpb_33_9_090502bib5) 2014; 75
Nazarov (cpb_33_9_090502bib3) 2021; 9
Aksin (cpb_33_9_090502bib6) 2007; 16
Gualandi (cpb_33_9_090502bib8) 2018; 28
Quevedoa (cpb_33_9_090502bib15) 2021; 93
Furioli (cpb_33_9_090502bib21) 2017; 27
Zhou (cpb_33_9_090502bib16) 2023; 96
Toscani (cpb_33_9_090502bib19) 2019; 100
Excoffier (cpb_33_9_090502bib2) 2016; 96
Kahneman (cpb_33_9_090502bib9) 1979; 47
References_xml – volume: 9
  start-page: 2877
  year: 2021
  ident: cpb_33_9_090502bib3
  publication-title: Mathematics
  doi: 10.3390/math9222877
– volume: 100
  start-page: 36
  year: 2005
  ident: cpb_33_9_090502bib1
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214504000001808
– volume: 29
  start-page: 717
  year: 2019
  ident: cpb_33_9_090502bib7
  publication-title: Math. Mod. Methods Appl. Sci.
  doi: 10.1142/S0218202519400049
– year: 2010
  ident: cpb_33_9_090502bib12
– volume: 47
  start-page: 263
  year: 1979
  ident: cpb_33_9_090502bib9
  publication-title: Econometrica
  doi: 10.1142/9789814417358\_0006
– volume: 27
  start-page: 115
  year: 2017
  ident: cpb_33_9_090502bib21
  publication-title: Methods Appl. Sci.
  doi: 10.1142/S0218202517400048
– volume: 4
  start-page: 208
  year: 2002
  ident: cpb_33_9_090502bib4
  publication-title: Manuf. Serv. Oper. Manag.
  doi: 10.1287/msom.4.3.208.7753
– volume: 16
  start-page: 665
  year: 2007
  ident: cpb_33_9_090502bib6
  publication-title: Prod. Oper. Manag.
  doi: 10.1111/j.1937-5956.2007.tb00288.x
– volume: 30
  start-page: 2229
  year: 2020
  ident: cpb_33_9_090502bib20
  publication-title: Math. Mod. Methods Appl. Sci.
  doi: 10.1142/S0218202520500426
– volume: 96
  start-page: 16
  year: 2016
  ident: cpb_33_9_090502bib2
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.03.013
– volume: 93
  start-page: 1
  year: 2021
  ident: cpb_33_9_090502bib15
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2020-10193-3
– year: 2014
  ident: cpb_33_9_090502bib18
– year: 2000
  ident: cpb_33_9_090502bib10
– volume: 75
  start-page: 1936
  year: 2014
  ident: cpb_33_9_090502bib5
  publication-title: Autom. Remote. Control.
  doi: 10.1134/S0005117914110046
– volume: 32
  year: 2023
  ident: cpb_33_9_090502bib11
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/accb4a
– volume: 96
  start-page: 73
  year: 2023
  ident: cpb_33_9_090502bib16
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/s10051-023-00543-w
– volume: 28
  start-page: 1513
  year: 2018
  ident: cpb_33_9_090502bib8
  publication-title: Math. Mod. Methods Appl. Sci.
  doi: 10.1142/S0218202518500410
– volume: 120
  start-page: 253
  year: 2005
  ident: cpb_33_9_090502bib17
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-005-5456-0
– volume: 16
  start-page: 123
  year: 2016
  ident: cpb_33_9_090502bib13
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2015.10.008
– volume: 19
  year: 2010
  ident: cpb_33_9_090502bib14
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/19/1/010204
– volume: 100
  year: 2019
  ident: cpb_33_9_090502bib19
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.100.012308
SSID ssj0061023
Score 2.345773
Snippet The distribution of continuous service time in call centers is investigated. A non-Maxwellian collision kernel combining two different value functions in the...
The distribution of continuous service time in call centers is investigated.A non-Maxwellian collision kernel com-bining two different value functions in the...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 90502
SubjectTerms Fokker-Planck equation
kinetic theory
service time
value function
Title Dynamical distribution of continuous service time model involving non-Maxwellian collision kernel and value functions
URI https://iopscience.iop.org/article/10.1088/1674-1056/ad5d92
https://d.wanfangdata.com.cn/periodical/zgwl-e202409036
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAColLoQXEWz60Bw7eza4dJxEn1BbRSjwOIHFAiuyxgxDIi9iNivj1zMReWlCFUG85jB1nPJkZ2-PvY-yLlrIAM5DCWGWEqkolMMu3QmMs05kt7NDT1sDRsT48V78u8osZtvd8F2Z0l1x_Dx8jUHBUYSqIK_tUNy-IML5vXO4q9L8fiLiSzPvnyenUDWvCJKDV1lQ6nVH-q4cXMWkW39vd4AmNCVd_BZuDRXY5HWasMbnptRPbg8dXCI7_-R1L7GNKQvl-FP3EZnz4zOa7YlAYL7P2e6SpRxFHuLqJEouPGk6V7dehHbVjPo5ehhM7Pe8Idfh1QGdHOxQ8jII4Mg-0M4j2x8naukvs_MbfB5Q0wXHCGfecAmtn-yvs7ODH2bdDkegZBMhcTcTASumzClMID0biQtNrp6D0pspAo--CQoOCpqwKsJW03qvMQmOkx6RwiOvfVTaHg_FrjMNQFi5zA10S4lqubJaDA-cK0B5y26yz_nR-akjQ5cSgcVt3R-hlWZMua9JlHXW5znafW9xF2I43ZL_iFNXp3x2_IceTUfyRfbz6fVv7IQ27wlxg451dbbIFahMLCbfY3OS-9duY3EzsTmfET9eq8zQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELaAqlUvpS9UyqM-tIcevJuNHSc5VoUVtIVyoBK31B47CIG8K3ajVvx6ZmJvaSuEkLjlMHac8WRmbI-_j7H3WsoSzEgKY5URqq6UwCzfCo2xTGe2tLmnrYGDQ733Q305KU4Sz2l_F2YyTa5_gI8RKDiqMBXEVUOqmxdEGD80rnB1Ppy6dpk9KtAVU03X_vejhSvWhEtAK65Fi3ROeVsv_8SlZXx3f4sntCac_hVwxqvs52Kosc7kfNDN7QCu_kNxfMC3PGfPUjLKP0XxF2zJh5fscV8UCrNXrNuJdPUo4ghfN1Fj8UnLqcL9LHSTbsZn0dtwYqnnPbEOPwvo9GingodJEAfmN-0Qoh1ysrr-Mjs_95cBJU1wnPDGPacA2_8Dr9nxePf4855INA0CZKHmYmSl9FmNqYQHI3HB6bVTUHlTZ6DRh0GpQUFb1SXYWlrvVWahNdJjcpjjOniNreBg_BvGIZely9xIV4S8ViibFeDAuRK0h8K262y4mKMGEoQ5MWlcNP1RelU1pM-G9NlEfa6zj39aTCN8xx2yH3CamvQPz-6Q48kwbmSvTn9dND6nYdeYE7y9Z1fv2JOjnXHzbf_w6wZ7Ss1jbeEmW5lfdn4L85253e5t-ho6LviY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+distribution+of+continuous+service+time+model+involving+non-Maxwellian+collision+kernel+and+value+functions&rft.jtitle=Chinese+physics+B&rft.au=Zhao%2C+Minfang&rft.au=Kong%2C+Lingting&rft.au=Liu%2C+Miao&rft.au=Lai%2C+Shaoyong&rft.date=2024-08-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=33&rft.issue=9&rft_id=info:doi/10.1088%2F1674-1056%2Fad5d92&rft.externalDocID=cpb_33_9_090502
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg