Effects of dietary arachidonic acid on growth, immunity and intestinal microbiota of Litopenaeus vannamei under microcystin-LR stress
The harmful effects of microcystin-LR (MC-LR) stress are unavoidable in shrimp culture. Arachidonic acid (AA) is a fatty acid that regulates immune responses in aquatic animals. In this study, we investigated the effects of dietary AA on growth, immunity and intestinal microbiota of Litopenaeus vann...
Saved in:
Published in | Aquaculture Vol. 549; p. 737780 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The harmful effects of microcystin-LR (MC-LR) stress are unavoidable in shrimp culture. Arachidonic acid (AA) is a fatty acid that regulates immune responses in aquatic animals. In this study, we investigated the effects of dietary AA on growth, immunity and intestinal microbiota of Litopenaeus vannamei under MC-LR stress. The shrimp were fed a control diet (non-supplemented with AA) or a AA diet (supplemented with 8.0 g/kg AA) for 56 days, followed by an acute MC-LR stress for 72 h. The results showed that dietary AA improved the growth and feed utilization of the shrimp. Microcystin-LR exposure increased the mRNA expressions of reactive oxygen species modulator 1 (ROMO1), glutathione peroxidase (GPx), caspase-3 (Casp-3), NADPH-cytochrome P450 reductase (NCPR) and sulfotransferase (SULT), but decreased that of catalase (CAT) and cytochrome C (Cytc). Dietary AA supplementation reversed the expressions of ROMO1, CAT, GPx and NCPR to the control level, but still maintained the higher levels of Cytc, Casp-3 and SULT than the control and MC-LR stress groups. Dietary AA could not effectively reverse the changes of intestinal microbial diversity, but it could improve intestinal microbial composition variation induced by MC-LR stress. Specially, dietary AA increased the relative abundances of beneficial bacteria Bacteroides and Lactobacillus, and reversed the changes of pathogenic bacteria Vibrio and Photobacterium induced by MC-LR stress to the control level. The changes of intestinal bacteria were correlated with immune gene expression. These results revealed that dietary AA had a positive effect on L. vannamei resistance to MC-LR stress by modulating immune response and intestinal microbial composition.
•Dietary AA modulated the immune responses of the shrimp resistance to MC-LR stress.•Dietary AA altered intestinal microbial composition variation induced by MC-LR stress.•Dietary AA increased the abundance of intestinal beneficial bacteria.•The changes of intestinal bacteria were correlated with immune gene expression. |
---|---|
AbstractList | The harmful effects of microcystin-LR (MC-LR) stress are unavoidable in shrimp culture. Arachidonic acid (AA) is a fatty acid that regulates immune responses in aquatic animals. In this study, we investigated the effects of dietary AA on growth, immunity and intestinal microbiota of Litopenaeus vannamei under MC-LR stress. The shrimp were fed a control diet (non-supplemented with AA) or a AA diet (supplemented with 8.0 g/kg AA) for 56 days, followed by an acute MC-LR stress for 72 h. The results showed that dietary AA improved the growth and feed utilization of the shrimp. Microcystin-LR exposure increased the mRNA expressions of reactive oxygen species modulator 1 (ROMO1), glutathione peroxidase (GPx), caspase-3 (Casp-3), NADPH-cytochrome P450 reductase (NCPR) and sulfotransferase (SULT), but decreased that of catalase (CAT) and cytochrome C (Cytc). Dietary AA supplementation reversed the expressions of ROMO1, CAT, GPx and NCPR to the control level, but still maintained the higher levels of Cytc, Casp-3 and SULT than the control and MC-LR stress groups. Dietary AA could not effectively reverse the changes of intestinal microbial diversity, but it could improve intestinal microbial composition variation induced by MC-LR stress. Specially, dietary AA increased the relative abundances of beneficial bacteria Bacteroides and Lactobacillus, and reversed the changes of pathogenic bacteria Vibrio and Photobacterium induced by MC-LR stress to the control level. The changes of intestinal bacteria were correlated with immune gene expression. These results revealed that dietary AA had a positive effect on L. vannamei resistance to MC-LR stress by modulating immune response and intestinal microbial composition.
•Dietary AA modulated the immune responses of the shrimp resistance to MC-LR stress.•Dietary AA altered intestinal microbial composition variation induced by MC-LR stress.•Dietary AA increased the abundance of intestinal beneficial bacteria.•The changes of intestinal bacteria were correlated with immune gene expression. The harmful effects of microcystin-LR (MC-LR) stress are unavoidable in shrimp culture. Arachidonic acid (AA) is a fatty acid that regulates immune responses in aquatic animals. In this study, we investigated the effects of dietary AA on growth, immunity and intestinal microbiota of Litopenaeus vannamei under MC-LR stress. The shrimp were fed a control diet (non-supplemented with AA) or a AA diet (supplemented with 8.0 g/kg AA) for 56 days, followed by an acute MC-LR stress for 72 h. The results showed that dietary AA improved the growth and feed utilization of the shrimp. Microcystin-LR exposure increased the mRNA expressions of reactive oxygen species modulator 1 (ROMO1), glutathione peroxidase (GPx), caspase-3 (Casp-3), NADPH-cytochrome P450 reductase (NCPR) and sulfotransferase (SULT), but decreased that of catalase (CAT) and cytochrome C (Cytc). Dietary AA supplementation reversed the expressions of ROMO1, CAT, GPx and NCPR to the control level, but still maintained the higher levels of Cytc, Casp-3 and SULT than the control and MC-LR stress groups. Dietary AA could not effectively reverse the changes of intestinal microbial diversity, but it could improve intestinal microbial composition variation induced by MC-LR stress. Specially, dietary AA increased the relative abundances of beneficial bacteria Bacteroides and Lactobacillus, and reversed the changes of pathogenic bacteria Vibrio and Photobacterium induced by MC-LR stress to the control level. The changes of intestinal bacteria were correlated with immune gene expression. These results revealed that dietary AA had a positive effect on L. vannamei resistance to MC-LR stress by modulating immune response and intestinal microbial composition. |
ArticleNumber | 737780 |
Author | Duan, Yafei Zeng, Shimin Li, Yanwei Lu, Zijun Zhang, Jiasong Dan, Xueming |
Author_xml | – sequence: 1 givenname: Yafei surname: Duan fullname: Duan, Yafei organization: College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China – sequence: 2 givenname: Zijun surname: Lu fullname: Lu, Zijun organization: College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China – sequence: 3 givenname: Shimin surname: Zeng fullname: Zeng, Shimin organization: College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China – sequence: 4 givenname: Xueming surname: Dan fullname: Dan, Xueming organization: College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China – sequence: 5 givenname: Jiasong surname: Zhang fullname: Zhang, Jiasong email: jiasongzhang@hotmail.com organization: Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China – sequence: 6 givenname: Yanwei surname: Li fullname: Li, Yanwei email: yanweili@scau.edu.cn organization: College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China |
BookMark | eNqNkU1r3DAQhkVJoZu0_0G99RBvJVkf9qmUJU0KC4XSnoVWHjWz2NJGkhPyA_q_68U9lJ5yGgbe92GY55JcxBSBkPecbTnj-uNx6x5m5-exzhm2ggm-Na0xHXtFNrwzbaO0EBdkw5iUTSc7_YZclnJkjGmt-Ib8vgkBfC00BTogVJefqcvO3-OQInrqPA40Rforp6d6f01xmuaIdQnFgWKsUCpGN9IJfU4HTNWdSXus6QTRwVzoo4vRTYB0jgPkNeifz7Vm_52WmqGUt-R1cGOBd3_nFfn55ebH7q7Zf7v9uvu8b3yrZG1479mhU5Ir8MZp3YeDG3jgiplldUIrz4LRnZDChyCV0f1wEF7qTmvfmdBekQ8r95TTw7zcbicsHsbRRUhzsUK32kih-m6Jflqjy7mlZAjWY3UVU6zZ4Wg5s2cB9mj_EWDPAuwqYCH0_xFOGaflwS_q7tYuLN94RMi2eIToYcC86LJDwhdQ_gDQDK3c |
CitedBy_id | crossref_primary_10_1186_s42523_024_00314_7 crossref_primary_10_1016_j_aquatox_2023_106809 crossref_primary_10_1016_j_jes_2024_11_027 crossref_primary_10_1016_j_ecoenv_2024_116549 crossref_primary_10_1128_msystems_00067_23 crossref_primary_10_1016_j_envpol_2022_120069 crossref_primary_10_1016_j_aquaculture_2022_738497 crossref_primary_10_1016_j_aqrep_2022_101436 crossref_primary_10_1016_j_aquaculture_2024_741437 crossref_primary_10_1016_j_aquaculture_2023_739776 crossref_primary_10_1016_j_fsi_2024_109962 crossref_primary_10_3389_fmicb_2022_1097931 crossref_primary_10_1016_j_aquatox_2023_106763 crossref_primary_10_1016_j_cbpc_2024_109904 crossref_primary_10_1016_j_aquaculture_2024_741693 crossref_primary_10_1016_j_ecoenv_2024_116891 crossref_primary_10_1016_j_marpolbul_2024_116077 |
Cites_doi | 10.1007/s10695-017-0433-5 10.1016/j.aquatox.2018.11.014 10.1016/j.aquaculture.2020.735207 10.1038/nmeth.2604 10.1016/j.aquaculture.2016.06.019 10.1099/ijs.0.041376-0 10.1099/00207713-43-2-293 10.1074/jbc.R100030200 10.1016/j.fsi.2019.04.039 10.1016/j.chemosphere.2017.08.157 10.1038/s41522-020-00176-2 10.1186/gb-2011-12-6-r60 10.1016/j.envpol.2020.114774 10.1007/s10646-017-1802-7 10.1016/j.scitotenv.2020.143311 10.1016/j.aquaculture.2010.07.001 10.1016/S0092-8674(04)00046-7 10.1016/j.aquaculture.2017.11.010 10.1016/j.chemosphere.2019.124668 10.3168/jds.2012-5511 10.1016/j.envint.2021.106661 10.1016/j.ecoenv.2014.02.016 10.1016/j.scitotenv.2019.134549 10.1016/j.aquaculture.2020.736332 10.1016/j.chemosphere.2019.01.146 10.1016/j.fsi.2021.05.003 10.1016/j.fsi.2018.04.008 10.1016/j.soilbio.2007.12.027 10.1111/j.1365-2095.2011.00892.x 10.1111/raq.12248 10.1111/anu.13204 10.1128/AEM.03610-14 10.1016/j.aquaculture.2018.10.006 10.1016/j.fsi.2016.12.015 10.1111/1462-2920.15330 10.1016/j.fsi.2018.09.076 10.1016/j.mib.2016.10.003 10.1016/j.fsi.2017.07.003 10.3390/ijerph110505155 10.1093/bioinformatics/btr381 10.1016/j.aquaculture.2020.735447 10.1006/meth.2001.1262 10.1007/s00248-010-9796-1 10.1016/j.aquatox.2010.10.006 10.1016/j.jhazmat.2015.11.016 10.1002/cbf.1249 10.1016/S0041-0101(03)00144-2 10.1016/j.jenvman.2018.01.077 10.1016/j.aquaculture.2006.08.037 10.1016/0044-8486(93)90359-7 10.3390/md12115372 10.1038/s41598-017-09923-6 10.1111/are.12759 10.1016/j.fsi.2017.09.024 10.1016/j.aquaculture.2017.06.037 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.aquaculture.2021.737780 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1873-5622 |
ExternalDocumentID | 10_1016_j_aquaculture_2021_737780 S0044848621014435 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BKOMP BLXMC BNPGV CBWCG CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LCYCR LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP ROL RPZ RSU SAB SCC SDF SDG SES SNL SPCBC SSA SSH SSZ T5K WH7 ~G- ~KM AAHBH AALCJ AATTM AAXKI AAYJJ AAYWO AAYXX ABXDB ACIEU ACMHX ACVFH ADCNI ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLV HVGLF HZ~ R2- RIG SEW WUQ Y6R 7S9 L.6 |
ID | FETCH-LOGICAL-c354t-19c0b85415ec7a669fbad1f15077a6a265c0f768242cff45769db2c46866c87f3 |
IEDL.DBID | .~1 |
ISSN | 0044-8486 |
IngestDate | Fri Jul 11 03:52:48 EDT 2025 Tue Jul 01 02:08:31 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Fri Feb 23 02:37:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Immune gene Intestinal microbial Arachidonic acid Shrimp Microcystin-LR |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-19c0b85415ec7a669fbad1f15077a6a265c0f768242cff45769db2c46866c87f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636742598 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636742598 crossref_citationtrail_10_1016_j_aquaculture_2021_737780 crossref_primary_10_1016_j_aquaculture_2021_737780 elsevier_sciencedirect_doi_10_1016_j_aquaculture_2021_737780 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-25 |
PublicationDateYYYYMMDD | 2022-02-25 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Aquaculture |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Zhang, Luo, Meng, Luan, Cao (bb0260) 2017; 479 Holt, Bass, Stentiford, van der Giezen (bb0105) 2020 Segata, Izard, Waldron, Gevers, Miropolsky (bb0205) 2011; 12 Torrecillas, Betancor, Caballero, Rivero, Robaina, Izquierdo, Montero (bb0225) 2018; 44 Peres, Otton, Curi (bb0185) 2005; 23 Duan, Xiong, Wang, Zhang, Li, Dong, Zhang (bb0080) 2021; 761 Ye, Shan, Gao, Zhang, Xiong, Wang, Xin (bb0265) 2014; 11 Liu, Liu, Li (bb0140) 2016; 464 Thakuria, Schmidt, Mac Siúrtáin, Egan, Doohan (bb0220) 2008; 40 Ding, Zhou, Kong, Zhang, Cao, Luo, Ye (bb0055) 2018; 484 Wei, Liu, Wang, Zhou, Mai, He (bb0240) 2021; 27 Zhang, Li, Kholodkevich, Sharov, Feng, Ren (bb0290) 2020; 711 Chen, Ng, Wu, Chen, Wang (bb0025) 2017; 7 Puddick, Prinsep, Wood, Kaufononga, Cary, Hamilton (bb0195) 2014; 12 Aguilar, Racotta, Goytortúa, Wille, Sorgeloos, Civera, Palacios (bb0005) 2012; 18 Soto-Rodriguez, Gomez-Gil, Lozano-Olvera, Betancourt-Lozano, Morales-Covarrubias (bb0210) 2015; 81 Downes, Dewhirst, Tanner, Wade (bb0060) 2013; 63 Wang, Wan, Xie, Dong, Wang, Huang (bb0230) 2020; 527 Karlsson, Ussery, Nielsen, Nookaew (bb0110) 2011; 61 Edgar, Haas, Clemente, Quince, Knight (bb0090) 2011; 27 Butt, Lin, Akhter, Siddiqui, Li, Wu (bb0020) 2021; 114 Cheng, Su, Ma, Deng, Feng, Chen (bb0035) 2020; 239 Zhang, Wang, Liu, Li, Liu, Wu (bb0275) 2017; 188 Magalhães, Marinho, Domingo, Oliveira, Costa, Azevedo, Azevedo (bb0165) 2003; 42 Mayo, BelénFlórez (bb0170) 2022 Ren, Luqing Pan, Wang (bb0200) 2014; 104 Levy, Blacher, Elinav (bb0120) 2017; 35 Xiao, Liao, Xu, He, Xiao, Wang (bb0245) 2021; 23 D'Abramo, Sheen (bb0045) 1993; 115 Duan, Xiong, Wang, Dong, Huang, Zhang (bb0070) 2020; 265 Wang, Huang, Xu, Zhang, Sun, Fan (bb0235) 2019; 84 Ma, Liu, Du, Shi, Liu, Wang (bb0160) 2021; 154 Danial, Korsmeyer (bb0050) 2004; 116 Chiquette, Allison, Rasmussen (bb0040) 2012; 95 Newton, Zhang, Leaver, Murray, Little (bb0180) 2019; 500 Zeldin (bb0270) 2001; 276 Sun, Zheng, Shi (bb0215) 2021; 534 WHO (bib298) 2011 Nayak, Koven, Meiri, Khozin-Goldberg, Isakov, Zibdeh, Zilberg (bb0175) 2017; 68 He, Chi, Yuan, Li, Weng, He, Chen (bb0100) 2017; 70 Edgar (bb0085) 2013; 10 Zhang, Shi, Wei, Xu, Nie, Yang (bb0280) 2019; 89 Zimba, Camus, Allen, Burkholder (bb0295) 2006; 261 Xu, Ai, Mai, Xu, Wang, Ma, Liufu (bb0255) 2010; 307 Krumholz, Bryant, Brulla, Vicini, Clark, Stahl (bb0115) 1993; 43 Araújo, Flores-Galvez, Honji, Barbosa, Viana, Tinajero (bb0010) 2020; 523 Livak, Schmittgen (bb0150) 2001; 25 Duan, Wang, Zhang, Sun, Wang (bb0065) 2018; 78 Liu, Su, Chen, Li, Zhan, Egna (bb0145) 2016; 47 Lushchak (bb0155) 2011; 101 Duan, Xiong, Wang, Li, Dong, Zhang (bb0075) 2020; 754 Li, Ringø, Hoseinifar, Lauzon, Birkbeck, Yang (bb0135) 2019; 11 Gao, Zuo, Yang, He, Niu, Weng (bb0095) 2017; 61 Li, Chen, Zhang, Liu, Wang, Chen (bb0125) 2019; 206 Chen, Huang, Wang, Li (bb0030) 2017; 26 Zhang, Zhuang, Yang, Xue, Wang, Wei (bb0285) 2019; 222 Li, Cheng, Shi, Tang, Xiao, Zhao (bb0130) 2016; 304 Association of Official Analytical Chemists (bb0015) 1995 Pham, Utsumi (bb0190) 2018; 213 Xiao, Zhu, Yu, He, Wu, Wang (bb0250) 2021; 7 D'Abramo (10.1016/j.aquaculture.2021.737780_bb0045) 1993; 115 Xu (10.1016/j.aquaculture.2021.737780_bb0255) 2010; 307 Nayak (10.1016/j.aquaculture.2021.737780_bb0175) 2017; 68 Li (10.1016/j.aquaculture.2021.737780_bb0125) 2019; 206 Butt (10.1016/j.aquaculture.2021.737780_bb0020) 2021; 114 Cheng (10.1016/j.aquaculture.2021.737780_bb0035) 2020; 239 Levy (10.1016/j.aquaculture.2021.737780_bb0120) 2017; 35 Zimba (10.1016/j.aquaculture.2021.737780_bb0295) 2006; 261 Li (10.1016/j.aquaculture.2021.737780_bb0130) 2016; 304 Xiao (10.1016/j.aquaculture.2021.737780_bb0250) 2021; 7 Association of Official Analytical Chemists (10.1016/j.aquaculture.2021.737780_bb0015) 1995 Magalhães (10.1016/j.aquaculture.2021.737780_bb0165) 2003; 42 Xu (10.1016/j.aquaculture.2021.737780_bb0260) 2017; 479 Danial (10.1016/j.aquaculture.2021.737780_bb0050) 2004; 116 Ye (10.1016/j.aquaculture.2021.737780_bb0265) 2014; 11 Liu (10.1016/j.aquaculture.2021.737780_bb0140) 2016; 464 Zhang (10.1016/j.aquaculture.2021.737780_bb0280) 2019; 89 Araújo (10.1016/j.aquaculture.2021.737780_bb0010) 2020; 523 Gao (10.1016/j.aquaculture.2021.737780_bb0095) 2017; 61 Peres (10.1016/j.aquaculture.2021.737780_bb0185) 2005; 23 Zeldin (10.1016/j.aquaculture.2021.737780_bb0270) 2001; 276 Newton (10.1016/j.aquaculture.2021.737780_bb0180) 2019; 500 Zhang (10.1016/j.aquaculture.2021.737780_bb0290) 2020; 711 Liu (10.1016/j.aquaculture.2021.737780_bb0145) 2016; 47 Chiquette (10.1016/j.aquaculture.2021.737780_bb0040) 2012; 95 Sun (10.1016/j.aquaculture.2021.737780_bb0215) 2021; 534 Wang (10.1016/j.aquaculture.2021.737780_bb0230) 2020; 527 Duan (10.1016/j.aquaculture.2021.737780_bb0080) 2021; 761 WHO (10.1016/j.aquaculture.2021.737780_bib298) 2011 Wang (10.1016/j.aquaculture.2021.737780_bb0235) 2019; 84 Zhang (10.1016/j.aquaculture.2021.737780_bb0285) 2019; 222 Li (10.1016/j.aquaculture.2021.737780_bb0135) 2019; 11 Segata (10.1016/j.aquaculture.2021.737780_bb0205) 2011; 12 Ma (10.1016/j.aquaculture.2021.737780_bb0160) 2021; 154 Soto-Rodriguez (10.1016/j.aquaculture.2021.737780_bb0210) 2015; 81 Krumholz (10.1016/j.aquaculture.2021.737780_bb0115) 1993; 43 Zhang (10.1016/j.aquaculture.2021.737780_bb0275) 2017; 188 Karlsson (10.1016/j.aquaculture.2021.737780_bb0110) 2011; 61 Pham (10.1016/j.aquaculture.2021.737780_bb0190) 2018; 213 Torrecillas (10.1016/j.aquaculture.2021.737780_bb0225) 2018; 44 Edgar (10.1016/j.aquaculture.2021.737780_bb0085) 2013; 10 Mayo (10.1016/j.aquaculture.2021.737780_bb0170) 2022 Duan (10.1016/j.aquaculture.2021.737780_bb0075) 2020; 754 Chen (10.1016/j.aquaculture.2021.737780_bb0030) 2017; 26 Ding (10.1016/j.aquaculture.2021.737780_bb0055) 2018; 484 Duan (10.1016/j.aquaculture.2021.737780_bb0070) 2020; 265 Xiao (10.1016/j.aquaculture.2021.737780_bb0245) 2021; 23 Thakuria (10.1016/j.aquaculture.2021.737780_bb0220) 2008; 40 Wei (10.1016/j.aquaculture.2021.737780_bb0240) 2021; 27 Downes (10.1016/j.aquaculture.2021.737780_bb0060) 2013; 63 Livak (10.1016/j.aquaculture.2021.737780_bb0150) 2001; 25 Aguilar (10.1016/j.aquaculture.2021.737780_bb0005) 2012; 18 Holt (10.1016/j.aquaculture.2021.737780_bb0105) 2020 He (10.1016/j.aquaculture.2021.737780_bb0100) 2017; 70 Edgar (10.1016/j.aquaculture.2021.737780_bb0090) 2011; 27 Chen (10.1016/j.aquaculture.2021.737780_bb0025) 2017; 7 Puddick (10.1016/j.aquaculture.2021.737780_bb0195) 2014; 12 Lushchak (10.1016/j.aquaculture.2021.737780_bb0155) 2011; 101 Duan (10.1016/j.aquaculture.2021.737780_bb0065) 2018; 78 Ren (10.1016/j.aquaculture.2021.737780_bb0200) 2014; 104 |
References_xml | – volume: 304 start-page: 474 year: 2016 end-page: 480 ident: bb0130 article-title: A simple highly sensitive and selective aptamerbased colorimetric sensor for environmental toxins microcystin-LR in water samples publication-title: J. Hazard. Mater. – volume: 68 start-page: 46 year: 2017 end-page: 53 ident: bb0175 article-title: Dietary arachidonic acid affects immune function and fatty acid composition in cultured rabbitfish publication-title: Fish. Shellfish Immunol. – volume: 11 start-page: 603 year: 2019 end-page: 618 ident: bb0135 article-title: The adherence and colonization of microorganisms in fish gastrointestinal tract publication-title: Rev. Aquac. – volume: 104 start-page: 79 year: 2014 end-page: 86 ident: bb0200 article-title: Metabolic enzyme activities, metabolism-related genes expression and bioaccumulation in juvenile white shrimp publication-title: Ecotox. Environ. Safe. – volume: 78 start-page: 10 year: 2018 end-page: 17 ident: bb0065 article-title: Dietary effects of succinic acid on the growth, digestive enzymes, immune response and resistance to ammonia stress of publication-title: Fish. Shellfish Immunol. – volume: 154 year: 2021 ident: bb0160 article-title: Advances in the toxicology research of microcystins based on Omics approaches publication-title: Environ. Int. – volume: 213 start-page: 520 year: 2018 end-page: 529 ident: bb0190 article-title: An overview of the accumulation of microcystins in aquatic ecosystems publication-title: J. Environ. Manag. – volume: 12 start-page: R60 year: 2011 ident: bb0205 article-title: Metagenomic biomarker discovery and explanation publication-title: Genome Biol. – volume: 307 start-page: 75 year: 2010 end-page: 82 ident: bb0255 article-title: Effects of dietary arachidonic acid on growth performance, survival, immune response and tissue fatty acid composition of juvenile Japanese seabass, publication-title: Aquaculture – volume: 116 start-page: 205 year: 2004 end-page: 219 ident: bb0050 article-title: Cell death: critical control points publication-title: Cell – volume: 115 start-page: 63 year: 1993 end-page: 86 ident: bb0045 article-title: Polyunsaturated fatty acid nutrition in juvenile freshwater prawn publication-title: Aquaculture – volume: 47 start-page: 3088 year: 2016 end-page: 3097 ident: bb0145 article-title: Evidence of rapid transfer and bioaccumulation of microcystin-LR poses potential risk to freshwater prawn publication-title: Aquac. Res. – volume: 761 year: 2021 ident: bb0080 article-title: Toxicological effects of microplastics in publication-title: Sci. Total Environ. – volume: 464 start-page: 129 year: 2016 end-page: 135 ident: bb0140 article-title: Characterization of two pathogenic publication-title: Aquaculture – volume: 40 start-page: 1390 year: 2008 end-page: 1403 ident: bb0220 article-title: Importance of DNA quality in comparative soil microbial community structure analyses publication-title: Soil Biol. Biochem. – volume: 11 start-page: 5155 year: 2014 end-page: 5169 ident: bb0265 article-title: Spatio-temporal distribution patterns in environmental factors, chlorophyll-a and microcystins in a large shallow lake, lake taihu, China publication-title: Int. J. Environ. Res. Public Health – volume: 276 start-page: 36059 year: 2001 end-page: 36062 ident: bb0270 article-title: Epoxygenase pathways of arachidonic acid metabolism publication-title: J. Biol. Chem. – volume: 114 start-page: 263 year: 2021 end-page: 281 ident: bb0020 article-title: Overview of the latest developments in the role of probiotics, prebiotics and synbiotics in shrimp aquaculture publication-title: Fish Shellfish Immunol. – volume: 63 start-page: 1214 year: 2013 end-page: 1218 ident: bb0060 article-title: Description of publication-title: Int. J. Syst. Evol. Microbiol. – volume: 10 start-page: 996 year: 2013 end-page: 998 ident: bb0085 article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads publication-title: Nat. Methods – volume: 7 start-page: 5 year: 2021 ident: bb0250 article-title: Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota publication-title: NPJ Biofilms Microbi. – volume: 81 start-page: 1689 year: 2015 end-page: 1699 ident: bb0210 article-title: Field and experimental evidence of publication-title: Appl. Environ. Microbiol. – volume: 484 start-page: 112 year: 2018 end-page: 119 ident: bb0055 article-title: Dietary arachidonic acid promotes growth, improves immunity, and regulates the expression of immune-related signaling molecules in publication-title: Aquaculture – volume: 89 start-page: 586 year: 2019 end-page: 594 ident: bb0280 article-title: Effects of microcystin-LR on the immune dysfunction and ultrastructure of hepatopancreas in giant freshwater prawn publication-title: Fish Shellfish Immunol. – volume: 754 year: 2020 ident: bb0075 article-title: Toxic effects of ammonia and thermal stress on the intestinal microbiota and transcriptomic and metabolomic responses of publication-title: Sci. Total Environ. – volume: 222 start-page: 584 year: 2019 end-page: 592 ident: bb0285 article-title: Microcystin-LR disturbs testicular development of giant freshwater prawn publication-title: Chemosphere – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: bb0150 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method publication-title: Methods – volume: 206 start-page: 186 year: 2019 end-page: 194 ident: bb0125 article-title: μEvaluation of microcystin-LR absorption using an in vivo intestine model and its effect on zebrafish intestine publication-title: Aquat. Toxicol. – volume: 500 start-page: 148 year: 2019 end-page: 159 ident: bb0180 article-title: Assessment and communication of the toxicological risk of consuming shrimp in the EU publication-title: Aquaculture – volume: 42 start-page: 289 year: 2003 end-page: 295 ident: bb0165 article-title: Microcystins (cyanobacteria hepatotoxins) bioaccumulation in fish and crustaceans from Sepetiba Bay (Brasil, RJ) publication-title: Toxicon – volume: 188 start-page: 517 year: 2017 end-page: 524 ident: bb0275 article-title: Knockdown of NADPH-cytochrome P450 reductase increases the susceptibility to carbaryl in the migratory locust, publication-title: Chemosphere – volume: 18 start-page: 258 year: 2012 end-page: 271 ident: bb0005 article-title: The influence of dietary arachidonic acid on the immune response and performance of Pacific whiteleg shrimp, publication-title: Aquac. Nutr. – volume: 527 year: 2020 ident: bb0230 article-title: Insights into the histopathology and microbiome of Pacific white shrimp, publication-title: Aquaculture – volume: 265 year: 2020 ident: bb0070 article-title: Effects of publication-title: Environ. Pollut. – volume: 523 year: 2020 ident: bb0010 article-title: Arachidonic acid effects on the overall performance, fatty acid profile, hepatopancreas morphology and lipid-relevant genes in publication-title: Aquaculture – volume: 261 start-page: 1048 year: 2006 end-page: 1055 ident: bb0295 article-title: Co-occurrence of white shrimp, publication-title: Aquaculture – volume: 26 start-page: 702 year: 2017 end-page: 710 ident: bb0030 article-title: Effect of pure microcystin-LR on activity and transcript level of immune-related enzymes in the white shrimp ( publication-title: Ecotoxicology – volume: 95 start-page: 5985 year: 2012 end-page: 5995 ident: bb0040 article-title: Use of publication-title: J. Dairy Sci. – volume: 61 start-page: 473 year: 2011 end-page: 485 ident: bb0110 article-title: A closer look at bacteroides: phylogenetic relationship and genomic implications of a life in the human gut publication-title: Microb. Ecol. – volume: 7 start-page: 9395 year: 2017 ident: bb0025 article-title: Microbiome dynamics in a shrimp grow-out pond with possible outbreak of acute hepatopancreatic necrosis disease publication-title: Sci. Rep. – volume: 27 start-page: 533 year: 2021 end-page: 543 ident: bb0240 article-title: Dietary arachidonic acid supplementation improves the growth performance and alleviates plant protein-based diet-induced inflammation in juvenile turbot ( publication-title: Aquac. Nutr. – volume: 479 start-page: 556 year: 2017 end-page: 563 ident: bb0260 article-title: Arachidonic acid in diets for early maturation stages enhances the final reproductive performances of Pacific white shrimp ( publication-title: Aquaculture – volume: 12 start-page: 5372 year: 2014 end-page: 5395 ident: bb0195 article-title: High levels of structural diversity observed in microcystins from publication-title: Mar. Drugs – volume: 711 year: 2020 ident: bb0290 article-title: Microcystin-LR-induced changes of hepatopancreatic transcriptome, intestinal microbiota, and histopathology of freshwater crayfish ( publication-title: Sci. Total Environ. – volume: 43 start-page: 293 year: 1993 end-page: 296 ident: bb0115 article-title: Proposal of publication-title: Int. J. Syst. Bacteriol. – volume: 44 start-page: 283 year: 2018 end-page: 300 ident: bb0225 article-title: Supplementation of arachidonic acid rich oil in European sea bass juveniles ( publication-title: Fish Physiol. Biochem. – volume: 35 start-page: 8 year: 2017 end-page: 15 ident: bb0120 article-title: Microbiome, metabolites and host immunity publication-title: Curr. Opin. Microbiol. – volume: 70 start-page: 270 year: 2017 end-page: 279 ident: bb0100 article-title: Functional characterization of a reactive oxygen species modulator 1 gene in publication-title: Fish Shellfish Immunol. – volume: 23 start-page: 373 year: 2005 end-page: 381 ident: bb0185 article-title: Modulation of lymphocyte proliferation by macrophages and macrophages loaded with arachidonic acid publication-title: Cell Biochem. Funct. – volume: 27 start-page: 2194 year: 2011 end-page: 2200 ident: bb0090 article-title: UCHIME improves sensitivity and speed of chimera detection publication-title: Bioinformatics – year: 1995 ident: bb0015 article-title: Official Methods of Analysis – start-page: 206 year: 2022 end-page: 217 ident: bb0170 article-title: Lactic acid bacteria: publication-title: Encyclopedia of Dairy Sciences – volume: 534 year: 2021 ident: bb0215 article-title: Effect of paternal exposure to microcystin-LR on testicular dysfunction, reproduction, and offspring immune response in the oriental river prawn ( publication-title: Aquaculture – volume: 23 start-page: 431 year: 2021 end-page: 447 ident: bb0245 article-title: Host-microbiota interactions and responses to grass carp reovirus infection in publication-title: Environ. Microbiol. – volume: 239 year: 2020 ident: bb0035 article-title: Effect of nitrite exposure on oxidative stress, DNA damage and apoptosis in mud crab ( publication-title: Chemosphere – year: 2020 ident: bb0105 article-title: Understanding the role of the shrimp gut microbiome in health and disease publication-title: J. Invertebr. Pathol. – volume: 101 start-page: 13 year: 2011 end-page: 30 ident: bb0155 article-title: Environmentally induced oxidative stress in aquatic animals publication-title: Aquat. Toxicol. – volume: 84 start-page: 130 year: 2019 end-page: 137 ident: bb0235 article-title: White spot syndrome virus (WSSV) infection impacts intestinal microbiota composition and function in publication-title: Fish Shellfish Immunol. – volume: 61 start-page: 79 year: 2017 end-page: 85 ident: bb0095 article-title: Long-term influence of cyanobacterial bloom on the immune system of publication-title: Fish Shellfish Immunol. – year: 2011 ident: bib298 publication-title: Guidelines for Drinking Water Quality – volume: 44 start-page: 283 issue: 1 year: 2018 ident: 10.1016/j.aquaculture.2021.737780_bb0225 article-title: Supplementation of arachidonic acid rich oil in European sea bass juveniles (Dicentrarchus labrax) diets: effects on growth performance, tissue fatty acid profile and lipid metabolism publication-title: Fish Physiol. Biochem. doi: 10.1007/s10695-017-0433-5 – volume: 206 start-page: 186 year: 2019 ident: 10.1016/j.aquaculture.2021.737780_bb0125 article-title: μEvaluation of microcystin-LR absorption using an in vivo intestine model and its effect on zebrafish intestine publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2018.11.014 – volume: 523 year: 2020 ident: 10.1016/j.aquaculture.2021.737780_bb0010 article-title: Arachidonic acid effects on the overall performance, fatty acid profile, hepatopancreas morphology and lipid-relevant genes in Litopenaeus vannamei juveniles publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.735207 – volume: 10 start-page: 996 year: 2013 ident: 10.1016/j.aquaculture.2021.737780_bb0085 article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads publication-title: Nat. Methods doi: 10.1038/nmeth.2604 – volume: 464 start-page: 129 year: 2016 ident: 10.1016/j.aquaculture.2021.737780_bb0140 article-title: Characterization of two pathogenic Photobacterium strains isolated from Exopalaemon carinicauda causing mortality of shrimp publication-title: Aquaculture doi: 10.1016/j.aquaculture.2016.06.019 – volume: 63 start-page: 1214 year: 2013 ident: 10.1016/j.aquaculture.2021.737780_bb0060 article-title: Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.041376-0 – volume: 43 start-page: 293 year: 1993 ident: 10.1016/j.aquaculture.2021.737780_bb0115 article-title: Proposal of Quinella ovalis gen. Nov., sp. nov., based on phylogenetic analysis publication-title: Int. J. Syst. Bacteriol. doi: 10.1099/00207713-43-2-293 – volume: 276 start-page: 36059 issue: 39 year: 2001 ident: 10.1016/j.aquaculture.2021.737780_bb0270 article-title: Epoxygenase pathways of arachidonic acid metabolism publication-title: J. Biol. Chem. doi: 10.1074/jbc.R100030200 – volume: 89 start-page: 586 year: 2019 ident: 10.1016/j.aquaculture.2021.737780_bb0280 article-title: Effects of microcystin-LR on the immune dysfunction and ultrastructure of hepatopancreas in giant freshwater prawn Macrobrachium rosenbergii publication-title: Fish Shellfish Immunol. doi: 10.1016/j.fsi.2019.04.039 – volume: 188 start-page: 517 year: 2017 ident: 10.1016/j.aquaculture.2021.737780_bb0275 article-title: Knockdown of NADPH-cytochrome P450 reductase increases the susceptibility to carbaryl in the migratory locust, Locusta migratoria publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.08.157 – volume: 7 start-page: 5 year: 2021 ident: 10.1016/j.aquaculture.2021.737780_bb0250 article-title: Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota publication-title: NPJ Biofilms Microbi. doi: 10.1038/s41522-020-00176-2 – volume: 12 start-page: R60 year: 2011 ident: 10.1016/j.aquaculture.2021.737780_bb0205 article-title: Metagenomic biomarker discovery and explanation publication-title: Genome Biol. doi: 10.1186/gb-2011-12-6-r60 – volume: 265 year: 2020 ident: 10.1016/j.aquaculture.2021.737780_bb0070 article-title: Effects of Microcystis aeruginosa and microcystin-LR on intestinal histology, immune response, and microbial community in Litopenaeus vannamei publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114774 – volume: 26 start-page: 702 year: 2017 ident: 10.1016/j.aquaculture.2021.737780_bb0030 article-title: Effect of pure microcystin-LR on activity and transcript level of immune-related enzymes in the white shrimp (Litopenaeus vannamei) publication-title: Ecotoxicology doi: 10.1007/s10646-017-1802-7 – volume: 761 year: 2021 ident: 10.1016/j.aquaculture.2021.737780_bb0080 article-title: Toxicological effects of microplastics in Litopenaeus vannamei as indicated by an integrated microbiome, proteomic and metabolomic approach publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143311 – volume: 307 start-page: 75 year: 2010 ident: 10.1016/j.aquaculture.2021.737780_bb0255 article-title: Effects of dietary arachidonic acid on growth performance, survival, immune response and tissue fatty acid composition of juvenile Japanese seabass, Lateolabrax japonicas publication-title: Aquaculture doi: 10.1016/j.aquaculture.2010.07.001 – volume: 116 start-page: 205 year: 2004 ident: 10.1016/j.aquaculture.2021.737780_bb0050 article-title: Cell death: critical control points publication-title: Cell doi: 10.1016/S0092-8674(04)00046-7 – volume: 484 start-page: 112 year: 2018 ident: 10.1016/j.aquaculture.2021.737780_bb0055 article-title: Dietary arachidonic acid promotes growth, improves immunity, and regulates the expression of immune-related signaling molecules in Macrobrachium nipponense (De Haan) publication-title: Aquaculture doi: 10.1016/j.aquaculture.2017.11.010 – volume: 239 year: 2020 ident: 10.1016/j.aquaculture.2021.737780_bb0035 article-title: Effect of nitrite exposure on oxidative stress, DNA damage and apoptosis in mud crab (Scylla paramamosain) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124668 – volume: 95 start-page: 5985 year: 2012 ident: 10.1016/j.aquaculture.2021.737780_bb0040 article-title: Use of Prevotella bryantii 25A and a commercial probiotic during subacute acidosis challenge in midlactation dairy cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2012-5511 – volume: 154 year: 2021 ident: 10.1016/j.aquaculture.2021.737780_bb0160 article-title: Advances in the toxicology research of microcystins based on Omics approaches publication-title: Environ. Int. doi: 10.1016/j.envint.2021.106661 – volume: 104 start-page: 79 year: 2014 ident: 10.1016/j.aquaculture.2021.737780_bb0200 article-title: Metabolic enzyme activities, metabolism-related genes expression and bioaccumulation in juvenile white shrimp Litopenaeus vannamei exposed to benzo[a]pyrene publication-title: Ecotox. Environ. Safe. doi: 10.1016/j.ecoenv.2014.02.016 – volume: 711 year: 2020 ident: 10.1016/j.aquaculture.2021.737780_bb0290 article-title: Microcystin-LR-induced changes of hepatopancreatic transcriptome, intestinal microbiota, and histopathology of freshwater crayfish (Procambarus clarkii) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134549 – volume: 534 year: 2021 ident: 10.1016/j.aquaculture.2021.737780_bb0215 article-title: Effect of paternal exposure to microcystin-LR on testicular dysfunction, reproduction, and offspring immune response in the oriental river prawn (Macrobrachium nipponense) publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.736332 – volume: 222 start-page: 584 year: 2019 ident: 10.1016/j.aquaculture.2021.737780_bb0285 article-title: Microcystin-LR disturbs testicular development of giant freshwater prawn Macrobrachium rosenbergii publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.146 – volume: 114 start-page: 263 year: 2021 ident: 10.1016/j.aquaculture.2021.737780_bb0020 article-title: Overview of the latest developments in the role of probiotics, prebiotics and synbiotics in shrimp aquaculture publication-title: Fish Shellfish Immunol. doi: 10.1016/j.fsi.2021.05.003 – volume: 78 start-page: 10 year: 2018 ident: 10.1016/j.aquaculture.2021.737780_bb0065 article-title: Dietary effects of succinic acid on the growth, digestive enzymes, immune response and resistance to ammonia stress of Litopenaeus vannamei publication-title: Fish. Shellfish Immunol. doi: 10.1016/j.fsi.2018.04.008 – volume: 40 start-page: 1390 year: 2008 ident: 10.1016/j.aquaculture.2021.737780_bb0220 article-title: Importance of DNA quality in comparative soil microbial community structure analyses publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.12.027 – year: 1995 ident: 10.1016/j.aquaculture.2021.737780_bb0015 – year: 2011 ident: 10.1016/j.aquaculture.2021.737780_bib298 – volume: 18 start-page: 258 year: 2012 ident: 10.1016/j.aquaculture.2021.737780_bb0005 article-title: The influence of dietary arachidonic acid on the immune response and performance of Pacific whiteleg shrimp, Litopenaeus vannamei, at high stocking density publication-title: Aquac. Nutr. doi: 10.1111/j.1365-2095.2011.00892.x – volume: 11 start-page: 603 year: 2019 ident: 10.1016/j.aquaculture.2021.737780_bb0135 article-title: The adherence and colonization of microorganisms in fish gastrointestinal tract publication-title: Rev. Aquac. doi: 10.1111/raq.12248 – volume: 27 start-page: 533 year: 2021 ident: 10.1016/j.aquaculture.2021.737780_bb0240 article-title: Dietary arachidonic acid supplementation improves the growth performance and alleviates plant protein-based diet-induced inflammation in juvenile turbot (Scophthalmus maximus L.) publication-title: Aquac. Nutr. doi: 10.1111/anu.13204 – volume: 81 start-page: 1689 year: 2015 ident: 10.1016/j.aquaculture.2021.737780_bb0210 article-title: Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in northwestern Mexico publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03610-14 – volume: 500 start-page: 148 year: 2019 ident: 10.1016/j.aquaculture.2021.737780_bb0180 article-title: Assessment and communication of the toxicological risk of consuming shrimp in the EU publication-title: Aquaculture doi: 10.1016/j.aquaculture.2018.10.006 – volume: 61 start-page: 79 year: 2017 ident: 10.1016/j.aquaculture.2021.737780_bb0095 article-title: Long-term influence of cyanobacterial bloom on the immune system of Litopenaeus vannamei publication-title: Fish Shellfish Immunol. doi: 10.1016/j.fsi.2016.12.015 – volume: 23 start-page: 431 year: 2021 ident: 10.1016/j.aquaculture.2021.737780_bb0245 article-title: Host-microbiota interactions and responses to grass carp reovirus infection in Ctenopharyngodon idellus publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.15330 – volume: 84 start-page: 130 year: 2019 ident: 10.1016/j.aquaculture.2021.737780_bb0235 article-title: White spot syndrome virus (WSSV) infection impacts intestinal microbiota composition and function in Litopenaeus vannamei publication-title: Fish Shellfish Immunol. doi: 10.1016/j.fsi.2018.09.076 – volume: 35 start-page: 8 year: 2017 ident: 10.1016/j.aquaculture.2021.737780_bb0120 article-title: Microbiome, metabolites and host immunity publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2016.10.003 – start-page: 206 year: 2022 ident: 10.1016/j.aquaculture.2021.737780_bb0170 article-title: Lactic acid bacteria: Lactobacillus spp.: Lactobacillus plantarum – volume: 68 start-page: 46 year: 2017 ident: 10.1016/j.aquaculture.2021.737780_bb0175 article-title: Dietary arachidonic acid affects immune function and fatty acid composition in cultured rabbitfish Siganus rivulatus publication-title: Fish. Shellfish Immunol. doi: 10.1016/j.fsi.2017.07.003 – volume: 11 start-page: 5155 year: 2014 ident: 10.1016/j.aquaculture.2021.737780_bb0265 article-title: Spatio-temporal distribution patterns in environmental factors, chlorophyll-a and microcystins in a large shallow lake, lake taihu, China publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph110505155 – volume: 754 year: 2020 ident: 10.1016/j.aquaculture.2021.737780_bb0075 article-title: Toxic effects of ammonia and thermal stress on the intestinal microbiota and transcriptomic and metabolomic responses of Litopenaeus vannamei publication-title: Sci. Total Environ. – volume: 27 start-page: 2194 year: 2011 ident: 10.1016/j.aquaculture.2021.737780_bb0090 article-title: UCHIME improves sensitivity and speed of chimera detection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr381 – volume: 527 year: 2020 ident: 10.1016/j.aquaculture.2021.737780_bb0230 article-title: Insights into the histopathology and microbiome of Pacific white shrimp, Penaeus vannamei, suffering from white feces syndrome publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.735447 – volume: 25 start-page: 402 issue: 4 year: 2001 ident: 10.1016/j.aquaculture.2021.737780_bb0150 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 61 start-page: 473 issue: 3 year: 2011 ident: 10.1016/j.aquaculture.2021.737780_bb0110 article-title: A closer look at bacteroides: phylogenetic relationship and genomic implications of a life in the human gut publication-title: Microb. Ecol. doi: 10.1007/s00248-010-9796-1 – volume: 101 start-page: 13 year: 2011 ident: 10.1016/j.aquaculture.2021.737780_bb0155 article-title: Environmentally induced oxidative stress in aquatic animals publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2010.10.006 – volume: 304 start-page: 474 year: 2016 ident: 10.1016/j.aquaculture.2021.737780_bb0130 article-title: A simple highly sensitive and selective aptamerbased colorimetric sensor for environmental toxins microcystin-LR in water samples publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.11.016 – volume: 23 start-page: 373 issue: 6 year: 2005 ident: 10.1016/j.aquaculture.2021.737780_bb0185 article-title: Modulation of lymphocyte proliferation by macrophages and macrophages loaded with arachidonic acid publication-title: Cell Biochem. Funct. doi: 10.1002/cbf.1249 – volume: 42 start-page: 289 year: 2003 ident: 10.1016/j.aquaculture.2021.737780_bb0165 article-title: Microcystins (cyanobacteria hepatotoxins) bioaccumulation in fish and crustaceans from Sepetiba Bay (Brasil, RJ) publication-title: Toxicon doi: 10.1016/S0041-0101(03)00144-2 – volume: 213 start-page: 520 year: 2018 ident: 10.1016/j.aquaculture.2021.737780_bb0190 article-title: An overview of the accumulation of microcystins in aquatic ecosystems publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.01.077 – volume: 261 start-page: 1048 year: 2006 ident: 10.1016/j.aquaculture.2021.737780_bb0295 article-title: Co-occurrence of white shrimp, Litopenaeus vannamei, mortalities and microcystin toxin in a southeastern USA shrimp facility publication-title: Aquaculture doi: 10.1016/j.aquaculture.2006.08.037 – volume: 115 start-page: 63 year: 1993 ident: 10.1016/j.aquaculture.2021.737780_bb0045 article-title: Polyunsaturated fatty acid nutrition in juvenile freshwater prawn Macrobrachium rosenbergii publication-title: Aquaculture doi: 10.1016/0044-8486(93)90359-7 – volume: 12 start-page: 5372 year: 2014 ident: 10.1016/j.aquaculture.2021.737780_bb0195 article-title: High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners publication-title: Mar. Drugs doi: 10.3390/md12115372 – year: 2020 ident: 10.1016/j.aquaculture.2021.737780_bb0105 article-title: Understanding the role of the shrimp gut microbiome in health and disease publication-title: J. Invertebr. Pathol. – volume: 7 start-page: 9395 year: 2017 ident: 10.1016/j.aquaculture.2021.737780_bb0025 article-title: Microbiome dynamics in a shrimp grow-out pond with possible outbreak of acute hepatopancreatic necrosis disease publication-title: Sci. Rep. doi: 10.1038/s41598-017-09923-6 – volume: 47 start-page: 3088 year: 2016 ident: 10.1016/j.aquaculture.2021.737780_bb0145 article-title: Evidence of rapid transfer and bioaccumulation of microcystin-LR poses potential risk to freshwater prawn Macrobrachium rosenbergii (de Man) publication-title: Aquac. Res. doi: 10.1111/are.12759 – volume: 70 start-page: 270 year: 2017 ident: 10.1016/j.aquaculture.2021.737780_bb0100 article-title: Functional characterization of a reactive oxygen species modulator 1 gene in Litopenaeus vannamei publication-title: Fish Shellfish Immunol. doi: 10.1016/j.fsi.2017.09.024 – volume: 479 start-page: 556 year: 2017 ident: 10.1016/j.aquaculture.2021.737780_bb0260 article-title: Arachidonic acid in diets for early maturation stages enhances the final reproductive performances of Pacific white shrimp (Litopenaeus vannamei) publication-title: Aquaculture doi: 10.1016/j.aquaculture.2017.06.037 |
SSID | ssj0006651 |
Score | 2.457938 |
Snippet | The harmful effects of microcystin-LR (MC-LR) stress are unavoidable in shrimp culture. Arachidonic acid (AA) is a fatty acid that regulates immune responses... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 737780 |
SubjectTerms | Arachidonic acid Bacteroides caspase-3 catalase cytochrome c diet feed conversion gene expression glutathione peroxidase Immune gene immune response Intestinal microbial intestinal microorganisms intestines Lactobacillus Litopenaeus vannamei Microcystin-LR Photobacterium reactive oxygen species Shrimp shrimp culture Vibrio |
Title | Effects of dietary arachidonic acid on growth, immunity and intestinal microbiota of Litopenaeus vannamei under microcystin-LR stress |
URI | https://dx.doi.org/10.1016/j.aquaculture.2021.737780 https://www.proquest.com/docview/2636742598 |
Volume | 549 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdIeSp900yYo0GOVrC1ZtiGXJXTZtGkOpYHchCyNEpfGu9n1HvbSW_93ZlZ2ty05BHq00VhGI83Dnu8bxt57sAptXiJ8VTihZK5EOXSZSKVyir7GK03g5C_nenKhPl1ml1vspMfCUFllZ_ujTV9b6-7OUbeaR7O6JowvphYKI3JqN4tenxDsKqddfvhzU-ahdRa75iklaPQjdrCp8bK3SxsZLogxM00Oc5nnxBB5v4_6x1qvXdD4GXvaxY58FF_vOduC5gV7Mrqad_wZ8JL9imzECz4N3NfQ2vmKEyPzde2JA5dbV3s-bfgVZt_t9Qder-EhLQ5qPCfqCDzxNMdNHQmaWktPOsNjP4PGwnLBMfJu7A3UnNBn8zjQrUhMnH3lEXryil2MP347mYiu04JwMlOtSEo3rIoMnTm43Gpdhsr6JFCwiJc21ZkbBkxM0J-7EBTmKKWvUqd0obUr8iBfs-1m2sAbxksAsFJ6ouFX2uvCQwI64Kp6ByGVA1b0a2tcR0NO3TB-mL7e7Lv5Qy2G1GKiWgYs_S06i1wcDxE67hVo_tpYBn3GQ8QPeqUbPHj0N8U2MF0uTKqlztHilcXu_03xlj1OCVNBOPnsHdtu50vYw0inrfbXW3mf7YxOP0_O7wBlSALP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrcTjUPGqKFBwJY6YbmLHSSQuq6rVlm73gFqpN8vxow2i2WU3e-gP4H8zs05aQBwqcUzkiaMZex6Jv28APjhvJPq8hLuqsFyKXPJyaDOeCmklfY2XisDJp1M1PpdfLrKLDTjosTB0rLLz_dGnr711d2e_0-b-vK4J44ulhcSMnNrNYtR_AJvETpUNYHN0fDKe3jpkpbLYOE9KTgIPYe_umJf5sTKR5IJIM9PkUy7ynEgi_x2m_nLY6yh09BS2uvSRjeIbPoMN3zyHJ6PLRUeh4V_Az0hIvGSzwFztW7O4YUTKfFU7osFlxtaOzRp2iQV4e_WR1WuESIuDGseIPQI3Pc1xXUeOptbQkya48-e-MX61ZJh8N-ba14wAaIs40N6QGJ98ZRF98hLOjw7PDsa8a7bArchky5PSDqsiw3jubW6UKkNlXBIoX8RLk6rMDgPWJhjSbQgSy5TSVamVqlDKFnkQ2zBoZo1_Baz03hshHDHxS-VU4XziVUCtOutDKnag6HWrbcdETg0xvuv-yNk3_ZtZNJlFR7PsQHorOo90HPcR-twbUP-xtjSGjfuI7_VG17j36IeKafxstdSpEipHp1cWr_9vivfwaHx2OtGT4-nJG3icEsSCYPPZWxi0i5XfxcSnrd51C_sXLrwFgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+dietary+arachidonic+acid+on+growth%2C+immunity+and+intestinal+microbiota+of+Litopenaeus+vannamei+under+microcystin-LR+stress&rft.jtitle=Aquaculture&rft.au=Duan%2C+Yafei&rft.au=Lu%2C+Zijun&rft.au=Zeng%2C+Shimin&rft.au=Dan%2C+Xueming&rft.date=2022-02-25&rft.issn=0044-8486&rft.volume=549+p.737780-&rft_id=info:doi/10.1016%2Fj.aquaculture.2021.737780&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8486&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8486&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8486&client=summon |