Effects of dietary arachidonic acid on growth, immunity and intestinal microbiota of Litopenaeus vannamei under microcystin-LR stress

The harmful effects of microcystin-LR (MC-LR) stress are unavoidable in shrimp culture. Arachidonic acid (AA) is a fatty acid that regulates immune responses in aquatic animals. In this study, we investigated the effects of dietary AA on growth, immunity and intestinal microbiota of Litopenaeus vann...

Full description

Saved in:
Bibliographic Details
Published inAquaculture Vol. 549; p. 737780
Main Authors Duan, Yafei, Lu, Zijun, Zeng, Shimin, Dan, Xueming, Zhang, Jiasong, Li, Yanwei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The harmful effects of microcystin-LR (MC-LR) stress are unavoidable in shrimp culture. Arachidonic acid (AA) is a fatty acid that regulates immune responses in aquatic animals. In this study, we investigated the effects of dietary AA on growth, immunity and intestinal microbiota of Litopenaeus vannamei under MC-LR stress. The shrimp were fed a control diet (non-supplemented with AA) or a AA diet (supplemented with 8.0 g/kg AA) for 56 days, followed by an acute MC-LR stress for 72 h. The results showed that dietary AA improved the growth and feed utilization of the shrimp. Microcystin-LR exposure increased the mRNA expressions of reactive oxygen species modulator 1 (ROMO1), glutathione peroxidase (GPx), caspase-3 (Casp-3), NADPH-cytochrome P450 reductase (NCPR) and sulfotransferase (SULT), but decreased that of catalase (CAT) and cytochrome C (Cytc). Dietary AA supplementation reversed the expressions of ROMO1, CAT, GPx and NCPR to the control level, but still maintained the higher levels of Cytc, Casp-3 and SULT than the control and MC-LR stress groups. Dietary AA could not effectively reverse the changes of intestinal microbial diversity, but it could improve intestinal microbial composition variation induced by MC-LR stress. Specially, dietary AA increased the relative abundances of beneficial bacteria Bacteroides and Lactobacillus, and reversed the changes of pathogenic bacteria Vibrio and Photobacterium induced by MC-LR stress to the control level. The changes of intestinal bacteria were correlated with immune gene expression. These results revealed that dietary AA had a positive effect on L. vannamei resistance to MC-LR stress by modulating immune response and intestinal microbial composition. •Dietary AA modulated the immune responses of the shrimp resistance to MC-LR stress.•Dietary AA altered intestinal microbial composition variation induced by MC-LR stress.•Dietary AA increased the abundance of intestinal beneficial bacteria.•The changes of intestinal bacteria were correlated with immune gene expression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0044-8486
1873-5622
DOI:10.1016/j.aquaculture.2021.737780