Bayesian inference on a squared quantity
•Bayesian estimator of noncentrality parameter of noncentral χ2 pdf is derived.•The analytical insightful derivation reveals how the Bayesian estimator works.•Bayesian estimator outperforms frequentist one based on method of moments.•Paradox presented in a previously published work is resolved. It i...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 48; pp. 13 - 20 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0263-2241 1873-412X |
DOI | 10.1016/j.measurement.2013.10.034 |
Cover
Loading…
Abstract | •Bayesian estimator of noncentrality parameter of noncentral χ2 pdf is derived.•The analytical insightful derivation reveals how the Bayesian estimator works.•Bayesian estimator outperforms frequentist one based on method of moments.•Paradox presented in a previously published work is resolved.
It is here derived the Bayesian estimator of the noncentrality parameter of the noncentral chi-square distribution. The corresponding frequentist estimator, based on the method of moments, is also derived and its performance is compared with the Bayesian one. The Bayesian estimator is obtained through an analytical derivation which provides insight into the way the estimator works. Reference is also made here to a previously published work on a similar subject by Attivissimo et al. (2012) [1] in order to resolve the paradox there presented. Some defects of the analysis performed in the referenced work are identified and carefully examined. The superiority of the Bayesian estimator is demonstrated although achieved at the price of a greater complexity. |
---|---|
AbstractList | It is here derived the Bayesian estimator of the noncentrality parameter of the noncentral chi-square distribution. The corresponding frequentist estimator, based on the method of moments, is also derived and its performance is compared with the Bayesian one. The Bayesian estimator is obtained through an analytical derivation which provides insight into the way the estimator works. Reference is also made here to a previously published work on a similar subject by Attivissimo et al. (2012) [1] in order to resolve the paradox there presented. Some defects of the analysis performed in the referenced work are identified and carefully examined. The superiority of the Bayesian estimator is demonstrated although achieved at the price of a greater complexity. •Bayesian estimator of noncentrality parameter of noncentral χ2 pdf is derived.•The analytical insightful derivation reveals how the Bayesian estimator works.•Bayesian estimator outperforms frequentist one based on method of moments.•Paradox presented in a previously published work is resolved. It is here derived the Bayesian estimator of the noncentrality parameter of the noncentral chi-square distribution. The corresponding frequentist estimator, based on the method of moments, is also derived and its performance is compared with the Bayesian one. The Bayesian estimator is obtained through an analytical derivation which provides insight into the way the estimator works. Reference is also made here to a previously published work on a similar subject by Attivissimo et al. (2012) [1] in order to resolve the paradox there presented. Some defects of the analysis performed in the referenced work are identified and carefully examined. The superiority of the Bayesian estimator is demonstrated although achieved at the price of a greater complexity. |
Author | Carobbi, Carlo |
Author_xml | – sequence: 1 givenname: Carlo surname: Carobbi fullname: Carobbi, Carlo email: carlo.carobbi@unifi.it organization: Università degli Studi di Firenze, Department of Information Engineering (DINFO), Via S. Marta 3, 50139 Firenze, Italy |
BookMark | eNqNkE1Lw0AQhhepYFv9D_HWS-J-ZJPNSbRYFQpeFLwt42YCW5JNu7sR-u9NqAfx1NPAzPs-A8-CzFzvkJBbRjNGWXG3yzqEMHjs0MWMUybGfUZFfkHmTJUizRn_nJE55YVIOc_ZFVmEsKOUFqIq5mT1CEcMFlxiXYMencGkdwkk4TCAxzoZh4s2Hq_JZQNtwJvfuSQfm6f39Uu6fXt-XT9sUyNkHlMmBajK1MoYqcBIJgSKumxAYoPKQFnTEiXjAnOjBANegClrJZHJL6OwFEuyOnH3vj8MGKLubDDYtuCwH4IeH9BKlVxVY7Q6RY3vQ_DY6L23HfijZlRPdvRO_7GjJzvTabQzdu__dY2NEG3vogfbnkVYnwg42vi26HUwdvJXW48m6rq3Z1B-APKEi7c |
CitedBy_id | crossref_primary_10_1088_1361_6501_ab57a9 crossref_primary_10_1016_j_measurement_2014_12_002 crossref_primary_10_1088_0026_1394_53_2_S65 crossref_primary_10_1140_epjb_s10051_024_00737_w |
Cites_doi | 10.1109/ISEMC.2003.1236712 10.1201/9781420034363 10.1142/9789812775511 10.1016/j.measurement.2012.01.022 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 7TB 7U5 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1016/j.measurement.2013.10.034 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-412X |
EndPage | 20 |
ExternalDocumentID | 10_1016_j_measurement_2013_10_034 S0263224113005344 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 7U5 8FD EFKBS FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c354t-153a89cd8cc58ac5133e3d7fa5efe8ca7d07e5123e4c831a26ac7d85e15bc8e73 |
IEDL.DBID | .~1 |
ISSN | 0263-2241 |
IngestDate | Fri Sep 05 00:14:55 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Sun Jul 06 05:08:06 EDT 2025 Fri Feb 23 02:27:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Noncentral chi-squared distribution Frequentist inference Bayesian inference Measurement uncertainty Method of moments estimators |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-153a89cd8cc58ac5133e3d7fa5efe8ca7d07e5123e4c831a26ac7d85e15bc8e73 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1530987289 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1530987289 crossref_primary_10_1016_j_measurement_2013_10_034 crossref_citationtrail_10_1016_j_measurement_2013_10_034 elsevier_sciencedirect_doi_10_1016_j_measurement_2013_10_034 |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Attivissimo, Giaquinto, Savino (b0005) 2012; 45 D’Agostini (b0015) 2003 Abramowitz, Stegun (b0035) 1972 Gelman, Carlin, Stern, Rubin (b0040) 2004 Carlo F.M. Carobbi, Marco Cati, Luigi M. Millanta, Using the log-normal distribution in the statistical treatment of experimental data affected by large dispersion, in: Proc. IEEE Intern. Symp. on EMC, Boston, Massachusetts, August 18–22, 2003, pp. 812–816. Joint Committee for Guides in Metrology (JCGM), Evaluation of measurement data – supplement 1 to the ‘Guide to the expression of uncertainty in measurement’ – propagation of distributions using a Monte Carlo method, JCGM 101:2008, First edition, 2008. Lira (b0010) 2002 Papoulis (b0030) 1990 Joint Committee for Guides in Metrology (JCGM), Evaluation of measurement data – guide to the expression of uncertainty in measurement, JCGM 100:2008, First edition, 2008. D’Agostini (10.1016/j.measurement.2013.10.034_b0015) 2003 Lira (10.1016/j.measurement.2013.10.034_b0010) 2002 10.1016/j.measurement.2013.10.034_b0020 Gelman (10.1016/j.measurement.2013.10.034_b0040) 2004 Papoulis (10.1016/j.measurement.2013.10.034_b0030) 1990 10.1016/j.measurement.2013.10.034_b0045 10.1016/j.measurement.2013.10.034_b0025 Attivissimo (10.1016/j.measurement.2013.10.034_b0005) 2012; 45 Abramowitz (10.1016/j.measurement.2013.10.034_b0035) 1972 |
References_xml | – reference: Joint Committee for Guides in Metrology (JCGM), Evaluation of measurement data – guide to the expression of uncertainty in measurement, JCGM 100:2008, First edition, 2008. – reference: Carlo F.M. Carobbi, Marco Cati, Luigi M. Millanta, Using the log-normal distribution in the statistical treatment of experimental data affected by large dispersion, in: Proc. IEEE Intern. Symp. on EMC, Boston, Massachusetts, August 18–22, 2003, pp. 812–816. – volume: 45 start-page: 2194 year: 2012 end-page: 2202 ident: b0005 article-title: A Bayesian paradox and its impact on the GUM approach to uncertainty publication-title: Measurement – year: 2002 ident: b0010 article-title: Evaluating the measurement uncertainty – fundamentals and practical guidance publication-title: Institute of Physics, Series in Measurement and Technology – reference: Joint Committee for Guides in Metrology (JCGM), Evaluation of measurement data – supplement 1 to the ‘Guide to the expression of uncertainty in measurement’ – propagation of distributions using a Monte Carlo method, JCGM 101:2008, First edition, 2008. – year: 2004 ident: b0040 article-title: Bayesian Data Analysis – year: 1990 ident: b0030 article-title: Probability & Statistics – year: 1972 ident: b0035 article-title: Handbook of Mathematical Functions – year: 2003 ident: b0015 article-title: Bayesian Reasoning in Data Analysis: A Critical Introduction – year: 1990 ident: 10.1016/j.measurement.2013.10.034_b0030 – ident: 10.1016/j.measurement.2013.10.034_b0045 doi: 10.1109/ISEMC.2003.1236712 – year: 2002 ident: 10.1016/j.measurement.2013.10.034_b0010 article-title: Evaluating the measurement uncertainty – fundamentals and practical guidance publication-title: Institute of Physics, Series in Measurement and Technology doi: 10.1201/9781420034363 – ident: 10.1016/j.measurement.2013.10.034_b0020 – year: 2004 ident: 10.1016/j.measurement.2013.10.034_b0040 – year: 2003 ident: 10.1016/j.measurement.2013.10.034_b0015 doi: 10.1142/9789812775511 – year: 1972 ident: 10.1016/j.measurement.2013.10.034_b0035 – ident: 10.1016/j.measurement.2013.10.034_b0025 – volume: 45 start-page: 2194 year: 2012 ident: 10.1016/j.measurement.2013.10.034_b0005 article-title: A Bayesian paradox and its impact on the GUM approach to uncertainty publication-title: Measurement doi: 10.1016/j.measurement.2012.01.022 |
SSID | ssj0006396 |
Score | 2.0319216 |
Snippet | •Bayesian estimator of noncentrality parameter of noncentral χ2 pdf is derived.•The analytical insightful derivation reveals how the Bayesian estimator... It is here derived the Bayesian estimator of the noncentrality parameter of the noncentral chi-square distribution. The corresponding frequentist estimator,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13 |
SubjectTerms | Bayesian analysis Bayesian inference Complexity Defects Derivation Estimators Frequentist inference Mathematical analysis Measurement uncertainty Method of moments Method of moments estimators Noncentral chi-squared distribution Paradoxes |
Title | Bayesian inference on a squared quantity |
URI | https://dx.doi.org/10.1016/j.measurement.2013.10.034 https://www.proquest.com/docview/1530987289 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6KouhBtCo-SwoevMQm2d08wEstSlXsRQu9hc12AhVN1baHXvztzjSJrYJQ8BTyGBK-7M7M7n7fLMAZKpFS4unbrnaULROBdqIRbfQwEsYjM4f1zg8dv92Vdz3Vq0Cr1MIwrbLw_blPn3nr4kqjQLPxNhg0Hh0uNU4BiBdklJBcE1TKgOvnX3zOaR4Ugf18nkXY_PQ61Occr9f5PByzvMQFE72E_CtG_fLWsxB0sw1bRe5oNfPP24EKZlXYXKgoWIW1GaPTjHbh_EpPkRWS1qDU9FnDzNLW6H3CpHOLDizRne5B9-b6qdW2i20RbCOUHNvko3QYsabfqFAb3qAFRT9ItcIUQ6ODvhMgxXGB0oTC1Z6vTdAPFboqMSEGYh9WsmGGB2A5lFvrRNPINOlLN5URdRkTaddEmJjUiw4hLIGITVEznLeueIlLcthzvIBhzBjyLcLwELxv07e8cMYyRpcl2vGPVhCTg1_GvF7-oZh6CS996AyHk1FMmDlRGNDo8uh_rziGDTqTOW_7BFbGHxM8pbRknNRm7a4Gq83b-3bnC2SY5Fg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB584OsgPrE-I3jwkjbJ7jYJeFGx1OdFBW_LZjuBiqZq20Mv_nZnmsRWQSh4CmQzJHyZnZnd_WYG4AiVSCnwrLu-8ZQrE4FuYhBdDDAWNiAxj_Odb-_qzUd59aSepuC8zIVhWmVh-3ObPrTWxZ1agWbtrd2u3XtcapwcEB_IKCHlNMxKJUJW7erniOdBLrieb7QIlx-fh8MRyet1tBHHNC9RZaaXkH85qV_meuiDGiuwXASPzmn-faswhdkaLI2VFFyDuSGl03bX4fjMDJBTJJ12mdTndDLHON33PrPOHbpwju5gAx4bFw_nTbfoi-BaoWTPJSNlopiT-q2KjOUOLShaYWoUphhZE7a8EMmRC5Q2Er4J6saGrUihrxIbYSg2YSbrZLgFjkfBtUkMLU2TlvRTGdOcsbHxbYyJTYO4AlEJhLZF0XDuXfGiS3bYsx7DUDOGPEQYViD4Fn3LK2dMInRSoq1_qIEmCz-J-GH5hzRNEz77MBl2-l1NmHlxFNLycvt_rziAhebD7Y2-uby73oFFGpE5iXsXZnoffdyjGKWX7A918AvD9eXu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+inference+on+a+squared+quantity&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Carobbi%2C+Carlo&rft.date=2014-02-01&rft.issn=0263-2241&rft.volume=48&rft.spage=13&rft.epage=20&rft_id=info:doi/10.1016%2Fj.measurement.2013.10.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2013_10_034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |