Quantitative and Qualitative Differences in the Canonical and the Reverse Distance Effect and Their Selective Association With Arithmetic and Mathematical Competencies

Understanding the relationship between symbolic numerical abilities and individual differences in mathematical competencies has become a central research endeavor in the last years. Evidence on this foundational relationship is often based on two behavioral signatures of numerical magnitude and nume...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in education (Lausanne) Vol. 6
Main Authors Vogel, Stephan E., Faulkenberry, Thomas J., Grabner, Roland H.
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 27.07.2021
Subjects
Online AccessGet full text
ISSN2504-284X
2504-284X
DOI10.3389/feduc.2021.655747

Cover

Abstract Understanding the relationship between symbolic numerical abilities and individual differences in mathematical competencies has become a central research endeavor in the last years. Evidence on this foundational relationship is often based on two behavioral signatures of numerical magnitude and numerical order processing: the canonical and the reverse distance effect. The former indicates faster reaction times for the comparison of numerals that are far in distance (e.g., 2 8) compared to numerals that are close in distance (e.g., 2 3). The latter indicates faster reaction times for the ordinal judgment of numerals (i.e., are numerals in ascending/descending order) that are close in distance (e.g., 2 3 4) compared to numerals that are far in distance (e.g., 2 4 6). While a substantial body of literature has reported consistent associations between the canonical distance effect and arithmetic abilities, rather inconsistent findings have been found for the reverse distance effect . Here, we tested the hypothesis that estimates of the reverse distance effect show qualitative differences (i.e., not all participants show a reverse distance effect in the expected direction) rather than quantitative differences (i.e., all individuals show a reverse distance effect , but to a different degree), and that inconsistent findings might be a consequence of this variation. We analyzed data from 397 adults who performed a computerized numerical comparison task, a computerized numerical order verification task (i.e., are three numerals presented in order or not), a paper pencil test of arithmetic fluency, as well as a standardized test to assess more complex forms of mathematical competencies. We found discriminatory evidence for the two distance effects. While estimates of the canonical distance effect showed quantitative differences, estimates of the reverse distance effect showed qualitative differences . Comparisons between individuals who demonstrated an effect and individuals who demonstrated no reverse distance effect confirmed a significant moderation on the correlation with mathematical abilities. Significantly larger effects were found in the group who showed an effect. These findings confirm that estimates of the reverse distance effect are subject to qualitative differences and that we need to better characterize the underlying mechanisms/strategies that might lead to these qualitative differences.
AbstractList Understanding the relationship between symbolic numerical abilities and individual differences in mathematical competencies has become a central research endeavor in the last years. Evidence on this foundational relationship is often based on two behavioral signatures of numerical magnitude and numerical order processing: the canonical and the reverse distance effect. The former indicates faster reaction times for the comparison of numerals that are far in distance (e.g., 2 8) compared to numerals that are close in distance (e.g., 2 3). The latter indicates faster reaction times for the ordinal judgment of numerals (i.e., are numerals in ascending/descending order) that are close in distance (e.g., 2 3 4) compared to numerals that are far in distance (e.g., 2 4 6). While a substantial body of literature has reported consistent associations between the canonical distance effect and arithmetic abilities, rather inconsistent findings have been found for the reverse distance effect. Here, we tested the hypothesis that estimates of the reverse distance effect show qualitative differences (i.e., not all participants show a reverse distance effect in the expected direction) rather than quantitative differences (i.e., all individuals show a reverse distance effect, but to a different degree), and that inconsistent findings might be a consequence of this variation. We analyzed data from 397 adults who performed a computerized numerical comparison task, a computerized numerical order verification task (i.e., are three numerals presented in order or not), a paper pencil test of arithmetic fluency, as well as a standardized test to assess more complex forms of mathematical competencies. We found discriminatory evidence for the two distance effects. While estimates of the canonical distance effect showed quantitative differences, estimates of the reverse distance effect showed qualitative differences. Comparisons between individuals who demonstrated an effect and individuals who demonstrated no reverse distance effect confirmed a significant moderation on the correlation with mathematical abilities. Significantly larger effects were found in the group who showed an effect. These findings confirm that estimates of the reverse distance effect are subject to qualitative differences and that we need to better characterize the underlying mechanisms/strategies that might lead to these qualitative differences.
Understanding the relationship between symbolic numerical abilities and individual differences in mathematical competencies has become a central research endeavor in the last years. Evidence on this foundational relationship is often based on two behavioral signatures of numerical magnitude and numerical order processing: the canonical and the reverse distance effect. The former indicates faster reaction times for the comparison of numerals that are far in distance (e.g., 2 8) compared to numerals that are close in distance (e.g., 2 3). The latter indicates faster reaction times for the ordinal judgment of numerals (i.e., are numerals in ascending/descending order) that are close in distance (e.g., 2 3 4) compared to numerals that are far in distance (e.g., 2 4 6). While a substantial body of literature has reported consistent associations between the canonical distance effect and arithmetic abilities, rather inconsistent findings have been found for the reverse distance effect . Here, we tested the hypothesis that estimates of the reverse distance effect show qualitative differences (i.e., not all participants show a reverse distance effect in the expected direction) rather than quantitative differences (i.e., all individuals show a reverse distance effect , but to a different degree), and that inconsistent findings might be a consequence of this variation. We analyzed data from 397 adults who performed a computerized numerical comparison task, a computerized numerical order verification task (i.e., are three numerals presented in order or not), a paper pencil test of arithmetic fluency, as well as a standardized test to assess more complex forms of mathematical competencies. We found discriminatory evidence for the two distance effects. While estimates of the canonical distance effect showed quantitative differences, estimates of the reverse distance effect showed qualitative differences . Comparisons between individuals who demonstrated an effect and individuals who demonstrated no reverse distance effect confirmed a significant moderation on the correlation with mathematical abilities. Significantly larger effects were found in the group who showed an effect. These findings confirm that estimates of the reverse distance effect are subject to qualitative differences and that we need to better characterize the underlying mechanisms/strategies that might lead to these qualitative differences.
Author Vogel, Stephan E.
Grabner, Roland H.
Faulkenberry, Thomas J.
Author_xml – sequence: 1
  givenname: Stephan E.
  surname: Vogel
  fullname: Vogel, Stephan E.
– sequence: 2
  givenname: Thomas J.
  surname: Faulkenberry
  fullname: Faulkenberry, Thomas J.
– sequence: 3
  givenname: Roland H.
  surname: Grabner
  fullname: Grabner, Roland H.
BookMark eNp1UdFO3DAQtBCVSikf0Df_wF3t2Intx9MBLRIIQangzdo4G84oFyPbIPFF_U2cHEgIqS-2d3ZmduX5RvbHMCIhPzhbCqHNzx67J7esWMWXTV0rqfbIQVUzuai0vNv_8P5KjlJ6YIxVTDeqMQfk39UTjNlnyP4ZKYwdLcDwXh_7vseIo8NE_UjzBukaynDvYJjJE3KNzxjTRE4ZCpWeFJHLc_9mgz7SPzgUYDJcpRScL-ZhpLc-b-gqlnOL2buZfwHFcVv604B12D5iLtM9pu_kSw9DwqO3-5D8PT25Wf9enF_-OluvzhdO1DIveCU7qV3rnALTSMPRKNaggIYJw4XquWl53fedQCUUdMYxJ1FxpRV3LdTikJztfLsAD_Yx-i3EFxvA2xkI8d5CLOsNaDXXFRqpRIcgtdatqRlK1RrRtsi1Ll5q5-ViSClib938sWHMEfxgObNTfHaOz07x2V18Rck_Kd83-b_mFbCkpBk
CitedBy_id crossref_primary_10_5964_jnc_9935
crossref_primary_10_1111_cogs_13481
crossref_primary_10_1007_s00426_025_02090_8
crossref_primary_10_1016_j_jecp_2022_105478
crossref_primary_10_1177_17470218231220912
crossref_primary_10_1371_journal_pone_0301228
crossref_primary_10_5964_jnc_10201
crossref_primary_10_1016_j_cogdev_2022_101266
crossref_primary_10_1080_20445911_2022_2136186
crossref_primary_10_1016_j_cogdev_2022_101262
crossref_primary_10_1016_j_lindif_2024_102473
Cites_doi 10.4324/9780203774441
10.3758/PBR.15.2.419
10.1016/j.conb.2006.03.002
10.1037/0096-3445.130.2.299
10.1523/JNEUROSCI.1775-13.2013
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.neuropsychologia.2008.10.013
10.1016/j.biopsycho.2011.02.019
10.5964/jnc.v3i2.55
10.1016/j.cortex.2007.08.008
10.1111/desc.12372
10.1007/BF02289823
10.1111/j.2044-835X.2011.02048.x
10.1016/j.actpsy.2018.12.001
10.1016/j.cognition.2016.01.018
10.1016/j.lindif.2017.11.014
10.1111/mbe.12094
10.1037/met0000156
10.1038/2151519a0
10.1111/desc.12653
10.3389/neuro.11.010.2008
10.1037/0096-3445.125.3.284
10.1016/j.jecp.2009.01.010
10.4324/9780203998045-30
10.1016/j.cognition.2006.01.005
10.1016/0010-0277(92)90051-I
10.1016/j.neuron.2015.09.019
10.3758/s13423-020-01814-8
10.3758/MC.37.5.644
10.1080/01621459.1995.10476572
10.1016/j.jneuroling.2011.02.004
10.1016/j.actpsy.2020.103014
10.1080/20445911.2017.1282490
10.1016/j.cub.2007.10.013
10.1016/j.actpsy.2010.01.006
10.1016/S1099-4831(10)06803-310.1016/bs.pbr.2016.04.010
10.5964/jnc.v6i2.288
10.1016/j.neuropsychologia.2005.04.013
10.3758/s13423-018-1440-y
10.1016/S0010-0277(01)00142-1
10.1016/j.neuropsychologia.2020.107405
10.1016/j.jecp.2008.04.001
10.3758/s13423-018-1522-x
10.1016/j.cognition.2011.07.009
10.1016/j.tine.2013.06.001
10.1016/j.jecp.2014.07.010
10.1111/cogs.12711
10.31234/osf.io/4b9rs
10.1016/j.cognition.2004.12.002
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/feduc.2021.655747
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISSN 2504-284X
ExternalDocumentID oai_doaj_org_article_8182e9473dea4888b950e47b93bbe188
10_3389_feduc_2021_655747
GroupedDBID 9T4
AAFWJ
AAYXX
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c354t-124d48cbcc7a96491e9706e3a6039137f19b15ffd3e737ad9c0c4e717871cba53
IEDL.DBID DOA
ISSN 2504-284X
IngestDate Wed Aug 27 01:26:56 EDT 2025
Tue Jul 01 02:17:31 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-124d48cbcc7a96491e9706e3a6039137f19b15ffd3e737ad9c0c4e717871cba53
OpenAccessLink https://doaj.org/article/8182e9473dea4888b950e47b93bbe188
ParticipantIDs doaj_primary_oai_doaj_org_article_8182e9473dea4888b950e47b93bbe188
crossref_citationtrail_10_3389_feduc_2021_655747
crossref_primary_10_3389_feduc_2021_655747
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-27
PublicationDateYYYYMMDD 2021-07-27
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-27
  day: 27
PublicationDecade 2020
PublicationTitle Frontiers in education (Lausanne)
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References LeFevre (B29) 1996; 125
Sasanguie (B46) 2018; 21
Vos (B57) 2017; 29
Haaf (B24) 2019; 26
Woodcock (B58) 2001
Price (B41) 2007; 17
Benjamini (B4) 1995; 57
Schnuerch (B49) 2020; 28
Nuerk (B37) 2001; 82
Lyons (B34) 2016; 227
Lyons (B31) 2015; 9
Sasanguie (B45) 2012; 30
Brannon (B5) 2006; 16
Ashkenazi (B2) 2008; 44
Sella (B50) 2020; 204
Baroody (B3) 2018; 25
De Smedt (B10) 2009; 103
Sommerauer (B51) 2020; 141
Cohen (B8) 2013
Rousselle (B44) 2007; 102
Orrantia (B38) 2019; 43
Van Opstal (B53) 2008; 15
Haaf (B23) 2017; 22
B42
Vogel (B56) 2015; 129
Campbell (B7) 2001; 130
Gross (B22) 2009
B43
Lyons (B32) 2011; 121
Campbell (B6) 2005
Lyons (B33) 2013; 33
Peirce (B40) 2008; 2
Schillinger (B47) 2018; 61
French (B17) 1963
Dehaene (B11) 2015; 88
Franklin (B16) 2009; 37
Grabner (B20) 2011; 87
Greenhouse (B21) 1959; 24
Jeffreys (B27) 1968
Holloway (B25) 2009; 103
Faulkenberry (B13) 2020
Lonnemann (B30) 2011; 24
Ashcraft (B1) 1992; 44
Delazer (B12) 2006; 44
Jasper (B26) 2011
Faulkenberry (B14) 2020; 6
Moyer (B36) 1967; 215
Field (B15) 2012
Turconi (B52) 2006; 98
Goffin (B18) 2016; 150
Maloney (B35) 2010; 134
Vogel (B54) 2017; 3
Vogel (B55) 2019; 193
Zorzi (B59) 1999
Kass (B28) 1995; 90
Grabner (B19) 2009; 47
De Smedt (B9) 2013; 2
Parsons (B39) 2005
Schneider (B48) 2017; 20
References_xml – start-page: 536
  volume-title: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
  year: 2013
  ident: B8
  doi: 10.4324/9780203774441
– volume: 15
  start-page: 419
  year: 2008
  ident: B53
  article-title: Dissecting the Symbolic Distance Effect: Comparison and Priming Effects in Numerical and Nonnumerical Orders
  publication-title: Psychon. Bull. Rev.
  doi: 10.3758/PBR.15.2.419
– volume: 16
  start-page: 222
  year: 2006
  ident: B5
  article-title: The Representation of Numerical Magnitude
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2006.03.002
– volume: 130
  start-page: 299
  year: 2001
  ident: B7
  article-title: Cognitive Arithmetic across Cultures
  publication-title: J. Exp. Psychol. GeneralGeneral
  doi: 10.1037/0096-3445.130.2.299
– volume: 33
  start-page: 17052
  year: 2013
  ident: B33
  article-title: Ordinality and the Nature of Symbolic Numbers
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1775-13.2013
– volume: 57
  start-page: 289
  year: 1995
  ident: B4
  article-title: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 47
  start-page: 604
  year: 2009
  ident: B19
  article-title: To Retrieve or to Calculate? Left Angular Gyrus Mediates the Retrieval of Arithmetic Facts during Problem Solving
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2008.10.013
– volume: 87
  start-page: 128
  year: 2011
  ident: B20
  article-title: Neurophysiological Evidence for the Validity of Verbal Strategy Reports in Mental Arithmetic
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2011.02.019
– volume: 3
  start-page: 288
  year: 2017
  ident: B54
  article-title: Processing the Order of Symbolic Numbers: A Reliable and Unique Predictor of Arithmetic Fluency
  publication-title: J. Numer. Cogn.
  doi: 10.5964/jnc.v3i2.55
– volume-title: Woodcock-Johnson III Test of Achievement
  year: 2001
  ident: B58
– volume: 44
  start-page: 439
  year: 2008
  ident: B2
  article-title: Basic Numerical Processing in Left Intraparietal Sulcus (IPS) Acalculia
  publication-title: Cortex
  doi: 10.1016/j.cortex.2007.08.008
– volume: 20
  start-page: e12372
  year: 2017
  ident: B48
  article-title: Associations of Non-symbolic and Symbolic Numerical Magnitude Processing with Mathematical Competence: A Meta-Analysis
  publication-title: Dev. Sci.
  doi: 10.1111/desc.12372
– volume-title: Twenty First Annual Meeting of the
  year: 1999
  ident: B59
  article-title: A Computational Model of Number Comparison
– volume: 24
  start-page: 95
  year: 1959
  ident: B21
  article-title: On Methods in the Analysis of Profile Data
  publication-title: Psychometrika
  doi: 10.1007/BF02289823
– volume: 30
  start-page: 344
  year: 2012
  ident: B45
  article-title: Association between Basic Numerical Abilities and Mathematics Achievement
  publication-title: Br. J. Dev. Psychol.
  doi: 10.1111/j.2044-835X.2011.02048.x
– volume: 193
  start-page: 30
  year: 2019
  ident: B55
  article-title: Automatic and Intentional Processing of Numerical Order and its Relationship to Arithmetic Performance
  publication-title: Acta Psychologica
  doi: 10.1016/j.actpsy.2018.12.001
– volume-title: Kit for Reference Tests for Cognitive Factors
  year: 1963
  ident: B17
– volume: 150
  start-page: 68
  year: 2016
  ident: B18
  article-title: Beyond Magnitude: Judging Ordinality of Symbolic Number Is Unrelated to Magnitude Comparison and Independently Relates to Individual Differences in Arithmetic
  publication-title: Cognition
  doi: 10.1016/j.cognition.2016.01.018
– volume: 61
  start-page: 109
  year: 2018
  ident: B47
  article-title: Math Anxiety, Intelligence, and Performance in Mathematics: Insights from the German Adaptation of the Abbreviated Math Anxiety Scale (AMAS-G)
  publication-title: Learn. Individual Differences
  doi: 10.1016/j.lindif.2017.11.014
– volume: 9
  start-page: 207
  year: 2015
  ident: B31
  article-title: Numerical Order Processing in Children: From Reversing the Distance-Effect to Predicting Arithmetic
  publication-title: Mind, Brain Edu.
  doi: 10.1111/mbe.12094
– volume: 22
  start-page: 779
  year: 2017
  ident: B23
  article-title: Developing Constraint in Bayesian Mixed Models
  publication-title: Psychol. Methods
  doi: 10.1037/met0000156
– volume: 215
  start-page: 1519
  year: 1967
  ident: B36
  article-title: Time Required for Judgements of Numerical Inequality
  publication-title: Nature
  doi: 10.1038/2151519a0
– volume: 21
  start-page: e12653
  year: 2018
  ident: B46
  article-title: About Why There Is a Shift from Cardinal to Ordinal Processing in the Association with Arithmetic between First and Second Grade
  publication-title: Dev. Sci.
  doi: 10.1111/desc.12653
– volume: 2
  start-page: 10
  year: 2008
  ident: B40
  article-title: Generating Stimuli for Neuroscience Using PsychoPy
  publication-title: Front. Neuroinform.
  doi: 10.3389/neuro.11.010.2008
– volume: 125
  start-page: 284
  year: 1996
  ident: B29
  article-title: Multiple Routes to Solution of Single-Digit Multiplication Problems
  publication-title: J. Exp. Psychol. Gen.
  doi: 10.1037/0096-3445.125.3.284
– volume: 103
  start-page: 469
  year: 2009
  ident: B10
  article-title: The Predictive Value of Numerical Magnitude Comparison for Individual Differences in Mathematics Achievement
  publication-title: J. Exp. child Psychol.
  doi: 10.1016/j.jecp.2009.01.010
– start-page: 347
  volume-title: Handbook of Mathematical Cognition
  year: 2005
  ident: B6
  article-title: Architectures for Arithmetic
  doi: 10.4324/9780203998045-30
– volume: 102
  start-page: 361
  year: 2007
  ident: B44
  article-title: Basic Numerical Skills in Children with Mathematics Learning Disabilities: A Comparison of Symbolic vs Non-symbolic Number Magnitude Processing
  publication-title: Cognition
  doi: 10.1016/j.cognition.2006.01.005
– volume: 44
  start-page: 75
  year: 1992
  ident: B1
  article-title: Cognitive Arithmetic: A Review of Data and Theory
  publication-title: Cognition
  doi: 10.1016/0010-0277(92)90051-I
– volume: 88
  start-page: 2
  year: 2015
  ident: B11
  article-title: The Neural Representation of Sequences: From Transition Probabilities to Algebraic Patterns and Linguistic Trees
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.09.019
– volume: 28
  start-page: 750
  year: 2020
  ident: B49
  article-title: The Truth Revisited: Bayesian Analysis of Individual Differences in the Truth Effect
  publication-title: Psychon. Bull. Rev.
  doi: 10.3758/s13423-020-01814-8
– volume: 37
  start-page: 644
  year: 2009
  ident: B16
  article-title: Processing of Order Information for Numbers and Months
  publication-title: Mem. Cogn.
  doi: 10.3758/MC.37.5.644
– ident: B43
– volume-title: Mathematiktest für die Personalauswahl [Mathematics test for selection of personnel]
  year: 2011
  ident: B26
– volume: 90
  start-page: 773
  year: 1995
  ident: B28
  article-title: Bayes Factors
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476572
– volume: 24
  start-page: 583
  year: 2011
  ident: B30
  article-title: Symbolic and Non-symbolic Distance Effects in Children and Their Connection with Arithmetic Skills
  publication-title: J. Neurolinguist.
  doi: 10.1016/j.jneuroling.2011.02.004
– volume: 204
  start-page: 103014
  year: 2020
  ident: B50
  article-title: Judging the Order of Numbers Relies on Familiarity rather Than Activating the Mental Number Line
  publication-title: Acta Psychologica
  doi: 10.1016/j.actpsy.2020.103014
– volume: 29
  start-page: 469
  year: 2017
  ident: B57
  article-title: The Role of General and Number-specific Order Processing in Adults' Arithmetic Performance
  publication-title: J. Cogn. Psychol.
  doi: 10.1080/20445911.2017.1282490
– volume: 17
  start-page: R1042
  year: 2007
  ident: B41
  article-title: Impaired Parietal Magnitude Processing in Developmental Dyscalculia
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.10.013
– volume-title: The Longterm Costs of Numeracy Difficulties
  year: 2009
  ident: B22
– volume: 134
  start-page: 154
  year: 2010
  ident: B35
  article-title: Challenging the Reliability and Validity of Cognitive Measures: The Case of the Numerical Distance Effect
  publication-title: Acta Psychologica
  doi: 10.1016/j.actpsy.2010.01.006
– volume: 227
  start-page: 187
  year: 2016
  ident: B34
  article-title: On the Ordinality of Numbers
  publication-title: Prog. Brain Res.
  doi: 10.1016/S1099-4831(10)06803-310.1016/bs.pbr.2016.04.010
– volume: 6
  start-page: 231
  year: 2020
  ident: B14
  article-title: Bayesian Inference in Numerical Cognition: A Tutorial Using JASP
  publication-title: J. Numer. Cogn.
  doi: 10.5964/jnc.v6i2.288
– volume: 44
  start-page: 36
  year: 2006
  ident: B12
  article-title: Number Processing in Posterior Cortical Atrophy-A Neuropsycholgical Case Study
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2005.04.013
– volume-title: Discovering Statistics Using R
  year: 2012
  ident: B15
– volume: 25
  start-page: 2398
  year: 2018
  ident: B3
  article-title: A Commentary on Chen and Campbell (2017): Is There a clear Case for Addition Fact Recall?
  publication-title: Psychon. Bull. Rev.
  doi: 10.3758/s13423-018-1440-y
– volume: 82
  start-page: B25
  year: 2001
  ident: B37
  article-title: Decade Breaks in the Mental Number Line? Putting the Tens and Units Back in Different Bins
  publication-title: Cognition
  doi: 10.1016/S0010-0277(01)00142-1
– volume: 141
  start-page: 107405
  year: 2020
  ident: B51
  article-title: The Semantic Control Network Mediates the Relationship between Symbolic Numerical Order Processing and Arithmetic Performance in Children
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2020.107405
– volume: 103
  start-page: 17
  year: 2009
  ident: B25
  article-title: Mapping Numerical Magnitudes onto Symbols: The Numerical Distance Effect and Individual Differences in Children's Mathematics Achievement
  publication-title: J. Exp. Child Psychol.
  doi: 10.1016/j.jecp.2008.04.001
– ident: B42
– volume: 26
  start-page: 772
  year: 2019
  ident: B24
  article-title: Some Do and Some Don't? Accounting for Variability of Individual Difference Structures
  publication-title: Psychon. Bull. Rev.
  doi: 10.3758/s13423-018-1522-x
– volume: 121
  start-page: 256
  year: 2011
  ident: B32
  article-title: Numerical Ordering Ability Mediates the Relation between Number-Sense and Arithmetic Competence
  publication-title: Cognition
  doi: 10.1016/j.cognition.2011.07.009
– volume: 2
  start-page: 48
  year: 2013
  ident: B9
  article-title: How Do Symbolic and Non-symbolic Numerical Magnitude Processing Skills Relate to Individual Differences in Children's Mathematical Skills? A Review of Evidence from Brain and Behavior
  publication-title: Trends Neurosci. Edu.
  doi: 10.1016/j.tine.2013.06.001
– volume-title: The Theory of Probability
  year: 1968
  ident: B27
– volume: 129
  start-page: 26
  year: 2015
  ident: B56
  article-title: Differential Processing of Symbolic Numerical Magnitude and Order in First-Grade Children
  publication-title: J. Exp. Child Psychol.
  doi: 10.1016/j.jecp.2014.07.010
– volume: 43
  year: 2019
  ident: B38
  article-title: Disentangling the Mechanisms of Symbolic Number Processing in Adults' Mathematics and Arithmetic Achievement
  publication-title: Cogn. Sci.
  doi: 10.1111/cogs.12711
– volume-title: Modeling the Latent Structure of Individual Differences in the Numerical Size-Congruity Effect
  year: 2020
  ident: B13
  doi: 10.31234/osf.io/4b9rs
– volume: 98
  start-page: 273
  year: 2006
  ident: B52
  article-title: Numerical Order and Quantity Processing in Number Comparison
  publication-title: Cognition
  doi: 10.1016/j.cognition.2004.12.002
– volume-title: Does Numeracy Matter More
  year: 2005
  ident: B39
SSID ssj0002086769
Score 2.231827
Snippet Understanding the relationship between symbolic numerical abilities and individual differences in mathematical competencies has become a central research...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms arithmetic abilities
canonical distance effect
individual differences
mathematical competencies
reverse distance effect
Title Quantitative and Qualitative Differences in the Canonical and the Reverse Distance Effect and Their Selective Association With Arithmetic and Mathematical Competencies
URI https://doaj.org/article/8182e9473dea4888b950e47b93bbe188
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4QwEG6MJy_GZ3ynB08mKNCW0qOuGmOyJuoavZG2DFGjaAz7m_ybzrTshpNevJBQhlKYgc5HZ75h7NDLUhSOItVSBYksmyKxkJtENcJkdWZ9KSjBeXxTXD3I6yf1NCj1RTFhkR44PrgTnFByMFKLGiwaW-mMSkFqZ4RzkJUhzTc16QBMvYbltZJiN-MyJqIwc9IQEyriwTw7LpTSVE5lMBEN-PrDxHK5wpZ7j5CfxpGssgVo16iYch94sc6-b6e2Dblg-GXiiPx5JL6I--d9hRN83_lLy9Gf4yPbfoR0xyBMLXdA0RckTM6gBx5Ji8PxCS0V8PtQD4c6HCiMP750zzgy3L5TsmOQH8-JXvECo5nbjYB7gz1cXkxGV0lfXyHxQskuwam9lqV33mtrCmkyMDotQNiCaOOFbjLjMtU0tQAttK2NT70ExH8IsryzSmyyRbwf2GJcF1CDU9BYQMCphVUZAO5K6VMJSmyzdPawK9-Tj1MNjLcKQQjppwr6qUg_VdTPNjuan_IZmTd-Ez4jDc4FiTQ7NKApVb0pVX-Z0s5_dLLLlmhc9Ps313tssfuawj76LZ07CCb6Ay1J7bU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+and+Qualitative+Differences+in+the+Canonical+and+the+Reverse+Distance+Effect+and+Their+Selective+Association+With+Arithmetic+and+Mathematical+Competencies&rft.jtitle=Frontiers+in+education+%28Lausanne%29&rft.au=Stephan+E.+Vogel&rft.au=Thomas+J.+Faulkenberry&rft.au=Roland+H.+Grabner&rft.date=2021-07-27&rft.pub=Frontiers+Media+S.A&rft.eissn=2504-284X&rft.volume=6&rft_id=info:doi/10.3389%2Ffeduc.2021.655747&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8182e9473dea4888b950e47b93bbe188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-284X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-284X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-284X&client=summon