Numerical investigation on noise and flow characteristics of a circular cylinder with helical grooves
The paper presents a numerical investigation on the use of helical groove to reduce flow-induced noise from a circular cylinder. The study primarily explores the effects of groove pitch, groove depth ratio and groove profile on aerodynamic noise over a Reynolds number range of 2.8 × 10 4 to 8.6 × 10...
Saved in:
Published in | Discover applied sciences Vol. 7; no. 7; pp. 1 - 30 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2025
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper presents a numerical investigation on the use of helical groove to reduce flow-induced noise from a circular cylinder. The study primarily explores the effects of groove pitch, groove depth ratio and groove profile on aerodynamic noise over a Reynolds number range of 2.8 × 10
4
to 8.6 × 10
4
. Currently, there are limited studies focusing on the influence of helical grooves on the flow-induced noise around circular cylinders. Acoustic results reveal that at a Reynolds number of 4.1 × 10
4
, when the groove pitch is 400 mm, the groove depth ratio is 0.01, and the groove profile is circular, the maximum sound pressure level (SPL) at the far-field monitoring point is reduced by up to 18 dB compared to the baseline model. However, as the pitch decreases from 400 to 100 mm, the noise reduction effect diminishes. Increasing the groove depth ratio from 0.01 to 0.03 results in only a 4.7 dB reduction in peak SPL compared to the baseline. The groove profile also plays a critical role, with circular grooves showing superior noise reduction performance compared to triangular ones. The sound directivity of the cylinders exhibits symmetry. For the cylinder with circular grooves (400 mm pitch, size ratio of 0.01), the OASPL is higher than that of the baseline model in the angular range of 0–45°, and lower in the range of 45–90°. Flow simulation results indicate that the observed noise reduction in the far field is primarily attributed to weakened vortex shedding in the wake region. The study concludes that selecting appropriate groove pitch, depth ratio, and profile can effectively mitigate noise generated by bluff body flows. These findings offer valuable insights for noise control in various engineering applications. |
---|---|
AbstractList | The paper presents a numerical investigation on the use of helical groove to reduce flow-induced noise from a circular cylinder. The study primarily explores the effects of groove pitch, groove depth ratio and groove profile on aerodynamic noise over a Reynolds number range of 2.8 × 10
4
to 8.6 × 10
4
. Currently, there are limited studies focusing on the influence of helical grooves on the flow-induced noise around circular cylinders. Acoustic results reveal that at a Reynolds number of 4.1 × 10
4
, when the groove pitch is 400 mm, the groove depth ratio is 0.01, and the groove profile is circular, the maximum sound pressure level (SPL) at the far-field monitoring point is reduced by up to 18 dB compared to the baseline model. However, as the pitch decreases from 400 to 100 mm, the noise reduction effect diminishes. Increasing the groove depth ratio from 0.01 to 0.03 results in only a 4.7 dB reduction in peak SPL compared to the baseline. The groove profile also plays a critical role, with circular grooves showing superior noise reduction performance compared to triangular ones. The sound directivity of the cylinders exhibits symmetry. For the cylinder with circular grooves (400 mm pitch, size ratio of 0.01), the OASPL is higher than that of the baseline model in the angular range of 0–45°, and lower in the range of 45–90°. Flow simulation results indicate that the observed noise reduction in the far field is primarily attributed to weakened vortex shedding in the wake region. The study concludes that selecting appropriate groove pitch, depth ratio, and profile can effectively mitigate noise generated by bluff body flows. These findings offer valuable insights for noise control in various engineering applications. Abstract The paper presents a numerical investigation on the use of helical groove to reduce flow-induced noise from a circular cylinder. The study primarily explores the effects of groove pitch, groove depth ratio and groove profile on aerodynamic noise over a Reynolds number range of 2.8 × 104 to 8.6 × 104. Currently, there are limited studies focusing on the influence of helical grooves on the flow-induced noise around circular cylinders. Acoustic results reveal that at a Reynolds number of 4.1 × 104, when the groove pitch is 400 mm, the groove depth ratio is 0.01, and the groove profile is circular, the maximum sound pressure level (SPL) at the far-field monitoring point is reduced by up to 18 dB compared to the baseline model. However, as the pitch decreases from 400 to 100 mm, the noise reduction effect diminishes. Increasing the groove depth ratio from 0.01 to 0.03 results in only a 4.7 dB reduction in peak SPL compared to the baseline. The groove profile also plays a critical role, with circular grooves showing superior noise reduction performance compared to triangular ones. The sound directivity of the cylinders exhibits symmetry. For the cylinder with circular grooves (400 mm pitch, size ratio of 0.01), the OASPL is higher than that of the baseline model in the angular range of 0–45°, and lower in the range of 45–90°. Flow simulation results indicate that the observed noise reduction in the far field is primarily attributed to weakened vortex shedding in the wake region. The study concludes that selecting appropriate groove pitch, depth ratio, and profile can effectively mitigate noise generated by bluff body flows. These findings offer valuable insights for noise control in various engineering applications. |
ArticleNumber | 699 |
Author | Lu, Ningzhou Li, Tao |
Author_xml | – sequence: 1 givenname: Tao surname: Li fullname: Li, Tao organization: Wenzhou Polytechnic – sequence: 2 givenname: Ningzhou surname: Lu fullname: Lu, Ningzhou email: 2018011017@wzpt.edu.cn, nz.lu@xbdevice.com organization: Ningbo Xingbang Biochem. Device Co., Ltd |
BookMark | eNp9kN1KwzAYhoMoOOduwKPcQDV_bdpDGf4Mhp7ocUjTL11Gl0jSOXb3xlXEIyEkIbzvQ77nCp374AGhG0puKSHyLgkmSlYQVhZE8ryzMzTjhIiiYRU9_3O_RIuUtoQQzomUZTND8LLfQXRGD9j5T0ij6_Xogsd5-eASYO07bIdwwGajozZjTueUSThYrLFx0ewHHbE5Ds53EPHBjRu8geHE7GMImXqNLqweEix-zjl6f3x4Wz4X69en1fJ-XRheirGglIKuWtoYxkjbCctrLiyrK2tIRWQrW2Zt19IOrG0MzRNpK0Gy1si6ySr4HK0mbhf0Vn1Et9PxqIJ26vQQYq90zJ8fQDVUVpJAC6LiggqrbUWNAMqbmtWN1JnFJpaJIaUI9pdHifr2ribvKntXJ--K5RKfSimHfQ9RbcM--jzzf60vfzGIkg |
Cites_doi | 10.1007/s10973-019-08619-5 10.1063/5.0138080 10.1016/j.jfluidstructs.2004.06.005 10.2514/1.27821 10.2514/3.10842 10.3390/aerospace10090773 10.1016/j.jweia.2020.104129 10.1016/j.jweia.2015.05.013 10.1142/S0217984922501305 10.1063/5.0070959 10.1007/s00348-020-02972-0 10.1007/s003480050098 10.1016/j.ijheatfluidflow.2017.11.005 10.1016/j.jfluidstructs.2011.07.005 10.1017/jfm.2020.427 10.2514/6.2007-3450 10.1016/S0021-9991(03)00168-2 10.1061/(ASCE)AS.1943-5525.0001301 10.1007/s40997-020-00373-6 10.1016/j.jsv.2009.07.034 10.1016/j.expthermflusci.2018.12.026 10.1017/S0022112071000569 10.1017/S0022112002002124 10.1007/s40430-023-04409-1 10.1016/j.ast.2020.106308 10.1017/S0022112080000341 10.1007/s00773-024-00987-4 10.1017/S0022112073000649 10.1007/978-3-319-15141-0_4 10.1016/j.compfluid.2019.104243 10.1007/s00348-018-2676-z 10.1260/1475472053729996 10.29252/ijmt.8.25 10.1016/j.euromechflu.2020.04.007 10.1016/j.apacoust.2017.03.001 10.1063/5.0232376 10.1017/S0022112010003174 10.1016/j.jweia.2020.104119 10.3390/fluids7060194 10.1063/5.0165632 10.3390/ma12182905 10.1007/s00348-009-0806-3 10.1063/1.870151 10.1016/j.flowmeasinst.2015.06.028 10.1016/j.jfluidstructs.2018.08.004 10.1007/s40997-022-00494-0 10.1016/S0022-460X(02)01136-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 |
Copyright_xml | – notice: The Author(s) 2025 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s42452-025-07325-2 |
DatabaseName | Springer Open Access Journals CrossRef DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals (LUT & LAB) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 3004-9261 |
EndPage | 30 |
ExternalDocumentID | oai_doaj_org_article_917670ebe463414faf61c4e13982897a 10_1007_s42452_025_07325_2 |
GrantInformation_xml | – fundername: General Scientific Research Project of Zhejiang Provincial Department of Education grantid: Y202148133, Y201840728; Y202148133, Y201840728 |
GroupedDBID | AAJSJ AASML ADMLS ALMA_UNASSIGNED_HOLDINGS C6C GROUPED_DOAJ M~E SOJ AAYXX CITATION BGNMA M4Y NU0 |
ID | FETCH-LOGICAL-c354t-111ea6b19c220bd4f3834f286fc0607b7b2ffdb1deff9c1926af7e72bc7891003 |
IEDL.DBID | DOA |
ISSN | 3004-9261 |
IngestDate | Wed Aug 27 01:23:12 EDT 2025 Thu Jul 03 08:36:36 EDT 2025 Wed Jul 02 02:44:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Vortex intensity Aerodynamic noise Circular cylinder Peak sound pressure level Helical grooves |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-111ea6b19c220bd4f3834f286fc0607b7b2ffdb1deff9c1926af7e72bc7891003 |
OpenAccessLink | https://doaj.org/article/917670ebe463414faf61c4e13982897a |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_917670ebe463414faf61c4e13982897a crossref_primary_10_1007_s42452_025_07325_2 springer_journals_10_1007_s42452_025_07325_2 |
PublicationCentury | 2000 |
PublicationDate | 20250701 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250701 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Discover applied sciences |
PublicationTitleAbbrev | Discov Appl Sci |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer |
References | D Casalino (7325_CR6) 2003; 262 L Al-Sadawi (7325_CR19) 2021; 34 P Zhang (7325_CR21) 2020; 107 JH Fransson (7325_CR9) 2004; 19 B Zhou (7325_CR31) 2015; 145 YZ Law (7325_CR34) 2018; 83 A Bak Khoshnevis (7325_CR4) 2020; 10 Y Yuan (7325_CR42) 2020; 141 X Yu (7325_CR28) 2017; 122 CH Wang (7325_CR32) 2023; 35 R Ewert (7325_CR48) 2003; 188 C Canpolat (7325_CR57) 2015; 45 TF Geyer (7325_CR22) 2020; 61 EA Anderson (7325_CR25) 1997; 23 Y Li (7325_CR16) 2010; 49 7325_CR2 MA Haque (7325_CR36) 2017; 8 RA Akkermans (7325_CR50) 2018; 70 7325_CR8 S Ozono (7325_CR26) 1999; 11 Z Hao (7325_CR41) 2022; 7 C Zheng (7325_CR44) 2021; 33 Y Li (7325_CR11) 2020; 83 H Shang (7325_CR33) 2011; 27 7325_CR51 WL Chen (7325_CR18) 2020; 199 Z Mansouri (7325_CR37) 2023; 45 Z Mansouri (7325_CR38) 2023; 32 FO Thomas (7325_CR15) 2008; 46 7325_CR55 7325_CR23 L Proskurov (7325_CR53) 2023; 10 WF King (7325_CR7) 2009; 328 X Luo (7325_CR17) 2022; 36 J Zhang (7325_CR35) 2022; 4 EJ Arondoulis (7325_CR20) 2019; 12 Li Ling (7325_CR27) 2019; 152 AH Dawi (7325_CR52) 2019; 191 Xu Mingyang (7325_CR46) 2024; 36 CS Greco (7325_CR14) 2020; 901 E Achenbach (7325_CR29) 1971; 46 CJ Apelt (7325_CR24) 1973; 61 O Guven (7325_CR30) 1980; 98 T Kimura (7325_CR56) 1991; 29 O Inoue (7325_CR5) 2002; 471 C Zheng (7325_CR45) 2023; 35 Xu Mingyang (7325_CR47) 2024; 36 D Gao (7325_CR12) 2019; 102 M Yadegari (7325_CR40) 2021; 45 LH Feng (7325_CR13) 2010; 662 R Ewert (7325_CR49) 2005; 4 M Sadeghi (7325_CR39) 2024; 29 H Bao (7325_CR54) 2024; 36 M Yadegari (7325_CR3) 2023; 47 D Gao (7325_CR10) 2019; 60 N Fujisawa (7325_CR43) 2020; 199 R Abbaspour (7325_CR1) 2025; 54 |
References_xml | – volume: 141 start-page: 1635 year: 2020 ident: 7325_CR42 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08619-5 – volume: 35 year: 2023 ident: 7325_CR45 publication-title: Phys Fluids doi: 10.1063/5.0138080 – volume: 4 start-page: 1 year: 2022 ident: 7325_CR35 publication-title: Adv Mech Eng – volume: 152 start-page: 79 issue: 2 year: 2019 ident: 7325_CR27 publication-title: Appl Acoust – volume: 19 start-page: 1031 issue: 8 year: 2004 ident: 7325_CR9 publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2004.06.005 – volume: 46 start-page: 1921 issue: 8 year: 2008 ident: 7325_CR15 publication-title: AIAA J doi: 10.2514/1.27821 – volume: 29 start-page: 2062 issue: 12 year: 1991 ident: 7325_CR56 publication-title: AIAA J doi: 10.2514/3.10842 – volume: 10 start-page: 773 issue: 9 year: 2023 ident: 7325_CR53 publication-title: Aerospace doi: 10.3390/aerospace10090773 – volume: 54 start-page: 125 issue: 4 year: 2025 ident: 7325_CR1 publication-title: J Mech Eng, University of Tabriz – volume: 199 start-page: 104129 year: 2020 ident: 7325_CR43 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2020.104129 – volume: 145 start-page: 30 year: 2015 ident: 7325_CR31 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2015.05.013 – volume: 36 start-page: 22501304 issue: 25 year: 2022 ident: 7325_CR17 publication-title: Mod Phys Lett B doi: 10.1142/S0217984922501305 – volume: 33 start-page: 115110 year: 2021 ident: 7325_CR44 publication-title: Phys Fluids doi: 10.1063/5.0070959 – volume: 61 start-page: 153 year: 2020 ident: 7325_CR22 publication-title: Exp Fluids doi: 10.1007/s00348-020-02972-0 – volume: 23 start-page: 161 year: 1997 ident: 7325_CR25 publication-title: Exp Fluids doi: 10.1007/s003480050098 – volume: 36 year: 2024 ident: 7325_CR46 publication-title: Phys Fluids – volume: 70 start-page: 336 year: 2018 ident: 7325_CR50 publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2017.11.005 – ident: 7325_CR2 – volume: 27 start-page: 1124 issue: 7 year: 2011 ident: 7325_CR33 publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2011.07.005 – volume: 901 start-page: A39 issue: 25 year: 2020 ident: 7325_CR14 publication-title: J Fluid Mech doi: 10.1017/jfm.2020.427 – ident: 7325_CR55 doi: 10.2514/6.2007-3450 – volume: 188 start-page: 365 issue: 2 year: 2003 ident: 7325_CR48 publication-title: J Comput Phys doi: 10.1016/S0021-9991(03)00168-2 – volume: 34 start-page: 04021060 issue: 5 year: 2021 ident: 7325_CR19 publication-title: J Aerospace Eng doi: 10.1061/(ASCE)AS.1943-5525.0001301 – volume: 45 start-page: 265 year: 2021 ident: 7325_CR40 publication-title: Iran J Sci Technol, Trans Mech Eng doi: 10.1007/s40997-020-00373-6 – volume: 328 start-page: 318 issue: 3 year: 2009 ident: 7325_CR7 publication-title: J Sound Vib doi: 10.1016/j.jsv.2009.07.034 – volume: 102 start-page: 575 year: 2019 ident: 7325_CR12 publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2018.12.026 – volume: 46 start-page: 321 issue: 2 year: 1971 ident: 7325_CR29 publication-title: J Fluid Mech doi: 10.1017/S0022112071000569 – volume: 36 year: 2024 ident: 7325_CR47 publication-title: Phys Fluids – volume: 471 start-page: 285 issue: 25 year: 2002 ident: 7325_CR5 publication-title: J Fluid Mech doi: 10.1017/S0022112002002124 – ident: 7325_CR23 – volume: 45 start-page: 459 issue: 9 year: 2023 ident: 7325_CR37 publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-023-04409-1 – volume: 107 year: 2020 ident: 7325_CR21 publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2020.106308 – volume: 98 start-page: 673 issue: 4 year: 1980 ident: 7325_CR30 publication-title: J Fluid Mech doi: 10.1017/S0022112080000341 – volume: 29 start-page: 315 year: 2024 ident: 7325_CR39 publication-title: J Mar Sci Technol doi: 10.1007/s00773-024-00987-4 – volume: 61 start-page: 187 issue: 1 year: 1973 ident: 7325_CR24 publication-title: J Fluid Mech doi: 10.1017/S0022112073000649 – ident: 7325_CR51 doi: 10.1007/978-3-319-15141-0_4 – volume: 191 start-page: 104243 year: 2019 ident: 7325_CR52 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2019.104243 – volume: 60 start-page: 26 year: 2019 ident: 7325_CR10 publication-title: Exp Fluids doi: 10.1007/s00348-018-2676-z – volume: 4 start-page: 69 issue: 1–2 year: 2005 ident: 7325_CR49 publication-title: Int J Aeroacoustics. doi: 10.1260/1475472053729996 – volume: 8 start-page: 25 issue: 1 year: 2017 ident: 7325_CR36 publication-title: Int J Marit Technol doi: 10.29252/ijmt.8.25 – volume: 32 start-page: 31 year: 2023 ident: 7325_CR38 publication-title: J Mech Eng – volume: 83 start-page: 99 year: 2020 ident: 7325_CR11 publication-title: Eur J Mech B: Fluids doi: 10.1016/j.euromechflu.2020.04.007 – volume: 122 start-page: 152 year: 2017 ident: 7325_CR28 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2017.03.001 – volume: 36 start-page: 105183 issue: 10 year: 2024 ident: 7325_CR54 publication-title: Phys Fluids doi: 10.1063/5.0232376 – volume: 662 start-page: 232 issue: 10 year: 2010 ident: 7325_CR13 publication-title: J Fluid Mech doi: 10.1017/S0022112010003174 – volume: 199 start-page: 104119 year: 2020 ident: 7325_CR18 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2020.104119 – volume: 7 start-page: 194 issue: 6 year: 2022 ident: 7325_CR41 publication-title: Fluids doi: 10.3390/fluids7060194 – ident: 7325_CR8 – volume: 35 start-page: 105109 year: 2023 ident: 7325_CR32 publication-title: Phys Fluids doi: 10.1063/5.0165632 – volume: 10 start-page: 223 issue: 1 year: 2020 ident: 7325_CR4 publication-title: J Solid Fluid Mech – volume: 12 start-page: 2905 issue: 18 year: 2019 ident: 7325_CR20 publication-title: Materials doi: 10.3390/ma12182905 – volume: 49 start-page: 367 year: 2010 ident: 7325_CR16 publication-title: Exp Fluids doi: 10.1007/s00348-009-0806-3 – volume: 11 start-page: 2928 issue: 10 year: 1999 ident: 7325_CR26 publication-title: Phys Fluids doi: 10.1063/1.870151 – volume: 45 start-page: 233 year: 2015 ident: 7325_CR57 publication-title: Flow Meas Instrum doi: 10.1016/j.flowmeasinst.2015.06.028 – volume: 83 start-page: 1 year: 2018 ident: 7325_CR34 publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2018.08.004 – volume: 47 start-page: 67 issue: 1 year: 2023 ident: 7325_CR3 publication-title: Iran J Sci Technol, Trans Mech Eng doi: 10.1007/s40997-022-00494-0 – volume: 262 start-page: 815 issue: 4 year: 2003 ident: 7325_CR6 publication-title: J Sound Vib doi: 10.1016/S0022-460X(02)01136-7 |
SSID | ssj0003307759 |
Score | 2.2959836 |
Snippet | The paper presents a numerical investigation on the use of helical groove to reduce flow-induced noise from a circular cylinder. The study primarily explores... Abstract The paper presents a numerical investigation on the use of helical groove to reduce flow-induced noise from a circular cylinder. The study primarily... |
SourceID | doaj crossref springer |
SourceType | Open Website Index Database Publisher |
StartPage | 1 |
SubjectTerms | Aerodynamic noise Applied and Technical Physics Chemistry/Food Science Circular cylinder Earth Sciences Engineering Environment Helical grooves Materials Science Peak sound pressure level Vortex intensity |
SummonAdditionalLinks | – databaseName: Springer Open Access Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFz2IT1xf5OBNg22aJtujLi6Lhz25sLeQpy6UVvaB-O-dpN3VVRGEUkpIE5jMZL7JJF8Qukq9zQUECsRroQgT8KWUTYj2ubXKqsK4uEF2yAcj9jjOxy1NTjgL8y1_fzsLmTlKwqWroIzwhul2K08zEa5p6PHeaj0F4nIh8qI9F_P7r2u-J1L0_8h_RrfS30O7LR7Ed80A7qMNVx2gnS8sgYfIDRdNWqXEk09WjLrC8FT1ZOawqiz2Zf2GzTr9Mq49VthMpnGzKTbvZSBHnOKw-IpfXBnbfAbsDK0eoVH_4ak3IO3tCMRkOZsTmKSc4jotDKWJtsxDrMk87XJvEp4ILTT13urUOu8LA0COKy-coNqILmCEJDtGm1VduROEC3Bkmqcmdx7gE7XdzIFpGwEWaoo8YR10vZSbfG1IMOSK7jhKWYKUZZSypB10H0S7qhkIrGMBjKts7UFClMhFAhrEOPhR5pWH_pkDPBpCQKE66GY5MLK1qtkffZ7-r_oZ2qaNXpAkPUeb8-nCXQC4mOvLqFUfUpHHJg priority: 102 providerName: Springer Nature |
Title | Numerical investigation on noise and flow characteristics of a circular cylinder with helical grooves |
URI | https://link.springer.com/article/10.1007/s42452-025-07325-2 https://doaj.org/article/917670ebe463414faf61c4e13982897a |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-6kxdRVJwfIwdvGkyzNFmPOjaG4E4Odiv51EFpZR-IF_92X9JuOgS9CCWUUpLye0ne7zUvvyB0lXibSggUiNdSES7hTilLifaptcqqzLiYIDsWowl_mKbTb0d9hZywWh64Bu4WwgkhKTTFBUy43CsvEsMdEJcQK8hIjcDnfQumwhwMUbqUadbskol75cISHyPh9Fbo1VCyLU8UBft_rIZGJzM8QPsNO8R39Vcdoh1XHiE3XtXLKgWefaliVCWGq6xmC4dVabEvqjdstuWXceWxwmY2j8mm2LwXQRxxjsPPV_ziiljnM3BnqPUYTYaDp_6INKcjENNN-ZLAJOWU0ElmGKPacg-xJvesJ7yhgkotNfPe6sQ67zMDRE4oL51k2sgecATaPUGtsirdKcIZODINsKbOA31ittd1MLSNhBFqspTyNrpeI5W_1iIY-UbuOOKaA655xDVnbXQfwNy8GQSs4wMwa96YNf_LrG10szZF3oyqxS9tnv1Hm-doj9X9g9DkArWW85W7BMqx1B202xf9TuxjUD5-DD4B69rTfA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swED-x8sB4QNsArcDAD-MJIiWOYycPPJQNVAr0BZB4M_7LKlUJaosQ34cPysVNOxDTJB6QoiiKLNs63_nufOffAfxMvM0EOgqR10JFTOCXUjaOtM-sVVYVxoUE2T7vXrHedXa9AE-zuzAh230Wkgw79fyyWx2jo1FdfhXZEt-0SaU8dY8P6KiND05-46ruUnp8dPmrGzW1BCKTZmwSoUg7xXVSGEpjbZlHz4x5mnNvYh4LLTT13urEOu8Lg2YPV144QbUROWrUOMV-P8FinvE8a8Fip9O76M3PctK0BpIrmjs5_57sK70XygO8ib0GlXb8BVYaW5R0pszzFRZc-Q2WXyAUroLr309DOkMy-IvIUZUEn7IajB1RpSV-WD0Q8xr6mVSeKGIGo5DoSszjsAZmHJH64Jf8ccPQ5y3a7djrGlx9CDXXoVVWpfsOpEAlqnliMufRdKM2Tx1uK0bg7mCKLGZt2JvRTd5NATjkHGo5UFkilWWgsqRtOKxJO29Zg2eHH9XoVjayKNFD5SJG7mUcdTjzyuP4zKEtXLufQrVhf7YwspHo8X_G3Hhf8x1Y6l6en8mzk_7pJnymUx6J4mQLWpPRvfuBRs5Ebzc8RuDmo9n6GfP-CiA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qBdGHUr_wrNU86JMu3c1mk9sHH-zVo7Vy-GChbzFf0x4cu-XuSul_5Z_oJLt3tiiCD4VlWZaQhJlJZiYz8wvA2wJ9pchRyNAqkwlFX8b4PLNYeW-8qV1ICbITeXgivpxWpxvwc1ULk7LdVyHJrqYhojQ1y70Lj3vrwrcYr-NZvIqVRJTevE-rPA7XV-S0LT4eHRCH33E-_vx9dJj19wpkrqzEMqPlHYy0Re04z60XSF6aQD6U6HKZK6ssR_S28AGxdmQCSYMqKG6dGpJ2zUvq9x7cJ8-oiO7eSI7WpzplGSHl6r465-9TvaUB00UBf0Rhk3Ibb8NWb5WyT50YPYaN0DyBRzewCp9CmFx2wZ0Zm_7G5mgbRk_TTheBmcYznLVXzN0GgWYtMsPcdJ5SXpm7nkWIxjmLR8DsPMxSn2dkwVOvz-DkTmj5HDabtgkvgNWkTq0sXBWQjDjuh2WgDcYp2idcXeViAO9XdNMXHRSHXoMuJyprorJOVNZ8APuRtOuWEUY7_WjnZ7pflZoYKFVOciwkaXOBBml8Ecgqjo6oMgP4sGKM7tf24h9jvvy_5m_gwbeDsf56NDnegYe8E5EsL17B5nJ-GXbJ2lna10nAGPy4a4n-BftJDPo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+on+noise+and+flow+characteristics+of+a+circular+cylinder+with+helical+grooves&rft.jtitle=Discover+applied+sciences&rft.au=Tao+Li&rft.au=Ningzhou+Lu&rft.date=2025-07-01&rft.pub=Springer&rft.eissn=3004-9261&rft.volume=7&rft.issue=7&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1007%2Fs42452-025-07325-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_917670ebe463414faf61c4e13982897a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon |