Numerical investigation on noise and flow characteristics of a circular cylinder with helical grooves

The paper presents a numerical investigation on the use of helical groove to reduce flow-induced noise from a circular cylinder. The study primarily explores the effects of groove pitch, groove depth ratio and groove profile on aerodynamic noise over a Reynolds number range of 2.8 × 10 4 to 8.6 × 10...

Full description

Saved in:
Bibliographic Details
Published inDiscover applied sciences Vol. 7; no. 7; pp. 1 - 30
Main Authors Li, Tao, Lu, Ningzhou
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2025
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper presents a numerical investigation on the use of helical groove to reduce flow-induced noise from a circular cylinder. The study primarily explores the effects of groove pitch, groove depth ratio and groove profile on aerodynamic noise over a Reynolds number range of 2.8 × 10 4 to 8.6 × 10 4 . Currently, there are limited studies focusing on the influence of helical grooves on the flow-induced noise around circular cylinders. Acoustic results reveal that at a Reynolds number of 4.1 × 10 4 , when the groove pitch is 400 mm, the groove depth ratio is 0.01, and the groove profile is circular, the maximum sound pressure level (SPL) at the far-field monitoring point is reduced by up to 18 dB compared to the baseline model. However, as the pitch decreases from 400 to 100 mm, the noise reduction effect diminishes. Increasing the groove depth ratio from 0.01 to 0.03 results in only a 4.7 dB reduction in peak SPL compared to the baseline. The groove profile also plays a critical role, with circular grooves showing superior noise reduction performance compared to triangular ones. The sound directivity of the cylinders exhibits symmetry. For the cylinder with circular grooves (400 mm pitch, size ratio of 0.01), the OASPL is higher than that of the baseline model in the angular range of 0–45°, and lower in the range of 45–90°. Flow simulation results indicate that the observed noise reduction in the far field is primarily attributed to weakened vortex shedding in the wake region. The study concludes that selecting appropriate groove pitch, depth ratio, and profile can effectively mitigate noise generated by bluff body flows. These findings offer valuable insights for noise control in various engineering applications.
AbstractList The paper presents a numerical investigation on the use of helical groove to reduce flow-induced noise from a circular cylinder. The study primarily explores the effects of groove pitch, groove depth ratio and groove profile on aerodynamic noise over a Reynolds number range of 2.8 × 10 4 to 8.6 × 10 4 . Currently, there are limited studies focusing on the influence of helical grooves on the flow-induced noise around circular cylinders. Acoustic results reveal that at a Reynolds number of 4.1 × 10 4 , when the groove pitch is 400 mm, the groove depth ratio is 0.01, and the groove profile is circular, the maximum sound pressure level (SPL) at the far-field monitoring point is reduced by up to 18 dB compared to the baseline model. However, as the pitch decreases from 400 to 100 mm, the noise reduction effect diminishes. Increasing the groove depth ratio from 0.01 to 0.03 results in only a 4.7 dB reduction in peak SPL compared to the baseline. The groove profile also plays a critical role, with circular grooves showing superior noise reduction performance compared to triangular ones. The sound directivity of the cylinders exhibits symmetry. For the cylinder with circular grooves (400 mm pitch, size ratio of 0.01), the OASPL is higher than that of the baseline model in the angular range of 0–45°, and lower in the range of 45–90°. Flow simulation results indicate that the observed noise reduction in the far field is primarily attributed to weakened vortex shedding in the wake region. The study concludes that selecting appropriate groove pitch, depth ratio, and profile can effectively mitigate noise generated by bluff body flows. These findings offer valuable insights for noise control in various engineering applications.
Abstract The paper presents a numerical investigation on the use of helical groove to reduce flow-induced noise from a circular cylinder. The study primarily explores the effects of groove pitch, groove depth ratio and groove profile on aerodynamic noise over a Reynolds number range of 2.8 × 104 to 8.6 × 104. Currently, there are limited studies focusing on the influence of helical grooves on the flow-induced noise around circular cylinders. Acoustic results reveal that at a Reynolds number of 4.1 × 104, when the groove pitch is 400 mm, the groove depth ratio is 0.01, and the groove profile is circular, the maximum sound pressure level (SPL) at the far-field monitoring point is reduced by up to 18 dB compared to the baseline model. However, as the pitch decreases from 400 to 100 mm, the noise reduction effect diminishes. Increasing the groove depth ratio from 0.01 to 0.03 results in only a 4.7 dB reduction in peak SPL compared to the baseline. The groove profile also plays a critical role, with circular grooves showing superior noise reduction performance compared to triangular ones. The sound directivity of the cylinders exhibits symmetry. For the cylinder with circular grooves (400 mm pitch, size ratio of 0.01), the OASPL is higher than that of the baseline model in the angular range of 0–45°, and lower in the range of 45–90°. Flow simulation results indicate that the observed noise reduction in the far field is primarily attributed to weakened vortex shedding in the wake region. The study concludes that selecting appropriate groove pitch, depth ratio, and profile can effectively mitigate noise generated by bluff body flows. These findings offer valuable insights for noise control in various engineering applications.
ArticleNumber 699
Author Lu, Ningzhou
Li, Tao
Author_xml – sequence: 1
  givenname: Tao
  surname: Li
  fullname: Li, Tao
  organization: Wenzhou Polytechnic
– sequence: 2
  givenname: Ningzhou
  surname: Lu
  fullname: Lu, Ningzhou
  email: 2018011017@wzpt.edu.cn, nz.lu@xbdevice.com
  organization: Ningbo Xingbang Biochem. Device Co., Ltd
BookMark eNp9kN1KwzAYhoMoOOduwKPcQDV_bdpDGf4Mhp7ocUjTL11Gl0jSOXb3xlXEIyEkIbzvQ77nCp374AGhG0puKSHyLgkmSlYQVhZE8ryzMzTjhIiiYRU9_3O_RIuUtoQQzomUZTND8LLfQXRGD9j5T0ij6_Xogsd5-eASYO07bIdwwGajozZjTueUSThYrLFx0ewHHbE5Ds53EPHBjRu8geHE7GMImXqNLqweEix-zjl6f3x4Wz4X69en1fJ-XRheirGglIKuWtoYxkjbCctrLiyrK2tIRWQrW2Zt19IOrG0MzRNpK0Gy1si6ySr4HK0mbhf0Vn1Et9PxqIJ26vQQYq90zJ8fQDVUVpJAC6LiggqrbUWNAMqbmtWN1JnFJpaJIaUI9pdHifr2ribvKntXJ--K5RKfSimHfQ9RbcM--jzzf60vfzGIkg
Cites_doi 10.1007/s10973-019-08619-5
10.1063/5.0138080
10.1016/j.jfluidstructs.2004.06.005
10.2514/1.27821
10.2514/3.10842
10.3390/aerospace10090773
10.1016/j.jweia.2020.104129
10.1016/j.jweia.2015.05.013
10.1142/S0217984922501305
10.1063/5.0070959
10.1007/s00348-020-02972-0
10.1007/s003480050098
10.1016/j.ijheatfluidflow.2017.11.005
10.1016/j.jfluidstructs.2011.07.005
10.1017/jfm.2020.427
10.2514/6.2007-3450
10.1016/S0021-9991(03)00168-2
10.1061/(ASCE)AS.1943-5525.0001301
10.1007/s40997-020-00373-6
10.1016/j.jsv.2009.07.034
10.1016/j.expthermflusci.2018.12.026
10.1017/S0022112071000569
10.1017/S0022112002002124
10.1007/s40430-023-04409-1
10.1016/j.ast.2020.106308
10.1017/S0022112080000341
10.1007/s00773-024-00987-4
10.1017/S0022112073000649
10.1007/978-3-319-15141-0_4
10.1016/j.compfluid.2019.104243
10.1007/s00348-018-2676-z
10.1260/1475472053729996
10.29252/ijmt.8.25
10.1016/j.euromechflu.2020.04.007
10.1016/j.apacoust.2017.03.001
10.1063/5.0232376
10.1017/S0022112010003174
10.1016/j.jweia.2020.104119
10.3390/fluids7060194
10.1063/5.0165632
10.3390/ma12182905
10.1007/s00348-009-0806-3
10.1063/1.870151
10.1016/j.flowmeasinst.2015.06.028
10.1016/j.jfluidstructs.2018.08.004
10.1007/s40997-022-00494-0
10.1016/S0022-460X(02)01136-7
ContentType Journal Article
Copyright The Author(s) 2025
Copyright_xml – notice: The Author(s) 2025
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s42452-025-07325-2
DatabaseName Springer Open Access Journals
CrossRef
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals (LUT & LAB)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 3004-9261
EndPage 30
ExternalDocumentID oai_doaj_org_article_917670ebe463414faf61c4e13982897a
10_1007_s42452_025_07325_2
GrantInformation_xml – fundername: General Scientific Research Project of Zhejiang Provincial Department of Education
  grantid: Y202148133, Y201840728; Y202148133, Y201840728
GroupedDBID AAJSJ
AASML
ADMLS
ALMA_UNASSIGNED_HOLDINGS
C6C
GROUPED_DOAJ
M~E
SOJ
AAYXX
CITATION
BGNMA
M4Y
NU0
ID FETCH-LOGICAL-c354t-111ea6b19c220bd4f3834f286fc0607b7b2ffdb1deff9c1926af7e72bc7891003
IEDL.DBID DOA
ISSN 3004-9261
IngestDate Wed Aug 27 01:23:12 EDT 2025
Thu Jul 03 08:36:36 EDT 2025
Wed Jul 02 02:44:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Vortex intensity
Aerodynamic noise
Circular cylinder
Peak sound pressure level
Helical grooves
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-111ea6b19c220bd4f3834f286fc0607b7b2ffdb1deff9c1926af7e72bc7891003
OpenAccessLink https://doaj.org/article/917670ebe463414faf61c4e13982897a
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_917670ebe463414faf61c4e13982897a
crossref_primary_10_1007_s42452_025_07325_2
springer_journals_10_1007_s42452_025_07325_2
PublicationCentury 2000
PublicationDate 20250701
2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250701
  day: 1
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Discover applied sciences
PublicationTitleAbbrev Discov Appl Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer
References D Casalino (7325_CR6) 2003; 262
L Al-Sadawi (7325_CR19) 2021; 34
P Zhang (7325_CR21) 2020; 107
JH Fransson (7325_CR9) 2004; 19
B Zhou (7325_CR31) 2015; 145
YZ Law (7325_CR34) 2018; 83
A Bak Khoshnevis (7325_CR4) 2020; 10
Y Yuan (7325_CR42) 2020; 141
X Yu (7325_CR28) 2017; 122
CH Wang (7325_CR32) 2023; 35
R Ewert (7325_CR48) 2003; 188
C Canpolat (7325_CR57) 2015; 45
TF Geyer (7325_CR22) 2020; 61
EA Anderson (7325_CR25) 1997; 23
Y Li (7325_CR16) 2010; 49
7325_CR2
MA Haque (7325_CR36) 2017; 8
RA Akkermans (7325_CR50) 2018; 70
7325_CR8
S Ozono (7325_CR26) 1999; 11
Z Hao (7325_CR41) 2022; 7
C Zheng (7325_CR44) 2021; 33
Y Li (7325_CR11) 2020; 83
H Shang (7325_CR33) 2011; 27
7325_CR51
WL Chen (7325_CR18) 2020; 199
Z Mansouri (7325_CR37) 2023; 45
Z Mansouri (7325_CR38) 2023; 32
FO Thomas (7325_CR15) 2008; 46
7325_CR55
7325_CR23
L Proskurov (7325_CR53) 2023; 10
WF King (7325_CR7) 2009; 328
X Luo (7325_CR17) 2022; 36
J Zhang (7325_CR35) 2022; 4
EJ Arondoulis (7325_CR20) 2019; 12
Li Ling (7325_CR27) 2019; 152
AH Dawi (7325_CR52) 2019; 191
Xu Mingyang (7325_CR46) 2024; 36
CS Greco (7325_CR14) 2020; 901
E Achenbach (7325_CR29) 1971; 46
CJ Apelt (7325_CR24) 1973; 61
O Guven (7325_CR30) 1980; 98
T Kimura (7325_CR56) 1991; 29
O Inoue (7325_CR5) 2002; 471
C Zheng (7325_CR45) 2023; 35
Xu Mingyang (7325_CR47) 2024; 36
D Gao (7325_CR12) 2019; 102
M Yadegari (7325_CR40) 2021; 45
LH Feng (7325_CR13) 2010; 662
R Ewert (7325_CR49) 2005; 4
M Sadeghi (7325_CR39) 2024; 29
H Bao (7325_CR54) 2024; 36
M Yadegari (7325_CR3) 2023; 47
D Gao (7325_CR10) 2019; 60
N Fujisawa (7325_CR43) 2020; 199
R Abbaspour (7325_CR1) 2025; 54
References_xml – volume: 141
  start-page: 1635
  year: 2020
  ident: 7325_CR42
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-08619-5
– volume: 35
  year: 2023
  ident: 7325_CR45
  publication-title: Phys Fluids
  doi: 10.1063/5.0138080
– volume: 4
  start-page: 1
  year: 2022
  ident: 7325_CR35
  publication-title: Adv Mech Eng
– volume: 152
  start-page: 79
  issue: 2
  year: 2019
  ident: 7325_CR27
  publication-title: Appl Acoust
– volume: 19
  start-page: 1031
  issue: 8
  year: 2004
  ident: 7325_CR9
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2004.06.005
– volume: 46
  start-page: 1921
  issue: 8
  year: 2008
  ident: 7325_CR15
  publication-title: AIAA J
  doi: 10.2514/1.27821
– volume: 29
  start-page: 2062
  issue: 12
  year: 1991
  ident: 7325_CR56
  publication-title: AIAA J
  doi: 10.2514/3.10842
– volume: 10
  start-page: 773
  issue: 9
  year: 2023
  ident: 7325_CR53
  publication-title: Aerospace
  doi: 10.3390/aerospace10090773
– volume: 54
  start-page: 125
  issue: 4
  year: 2025
  ident: 7325_CR1
  publication-title: J Mech Eng, University of Tabriz
– volume: 199
  start-page: 104129
  year: 2020
  ident: 7325_CR43
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2020.104129
– volume: 145
  start-page: 30
  year: 2015
  ident: 7325_CR31
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2015.05.013
– volume: 36
  start-page: 22501304
  issue: 25
  year: 2022
  ident: 7325_CR17
  publication-title: Mod Phys Lett B
  doi: 10.1142/S0217984922501305
– volume: 33
  start-page: 115110
  year: 2021
  ident: 7325_CR44
  publication-title: Phys Fluids
  doi: 10.1063/5.0070959
– volume: 61
  start-page: 153
  year: 2020
  ident: 7325_CR22
  publication-title: Exp Fluids
  doi: 10.1007/s00348-020-02972-0
– volume: 23
  start-page: 161
  year: 1997
  ident: 7325_CR25
  publication-title: Exp Fluids
  doi: 10.1007/s003480050098
– volume: 36
  year: 2024
  ident: 7325_CR46
  publication-title: Phys Fluids
– volume: 70
  start-page: 336
  year: 2018
  ident: 7325_CR50
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2017.11.005
– ident: 7325_CR2
– volume: 27
  start-page: 1124
  issue: 7
  year: 2011
  ident: 7325_CR33
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2011.07.005
– volume: 901
  start-page: A39
  issue: 25
  year: 2020
  ident: 7325_CR14
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2020.427
– ident: 7325_CR55
  doi: 10.2514/6.2007-3450
– volume: 188
  start-page: 365
  issue: 2
  year: 2003
  ident: 7325_CR48
  publication-title: J Comput Phys
  doi: 10.1016/S0021-9991(03)00168-2
– volume: 34
  start-page: 04021060
  issue: 5
  year: 2021
  ident: 7325_CR19
  publication-title: J Aerospace Eng
  doi: 10.1061/(ASCE)AS.1943-5525.0001301
– volume: 45
  start-page: 265
  year: 2021
  ident: 7325_CR40
  publication-title: Iran J Sci Technol, Trans Mech Eng
  doi: 10.1007/s40997-020-00373-6
– volume: 328
  start-page: 318
  issue: 3
  year: 2009
  ident: 7325_CR7
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2009.07.034
– volume: 102
  start-page: 575
  year: 2019
  ident: 7325_CR12
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2018.12.026
– volume: 46
  start-page: 321
  issue: 2
  year: 1971
  ident: 7325_CR29
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112071000569
– volume: 36
  year: 2024
  ident: 7325_CR47
  publication-title: Phys Fluids
– volume: 471
  start-page: 285
  issue: 25
  year: 2002
  ident: 7325_CR5
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112002002124
– ident: 7325_CR23
– volume: 45
  start-page: 459
  issue: 9
  year: 2023
  ident: 7325_CR37
  publication-title: J Braz Soc Mech Sci Eng
  doi: 10.1007/s40430-023-04409-1
– volume: 107
  year: 2020
  ident: 7325_CR21
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2020.106308
– volume: 98
  start-page: 673
  issue: 4
  year: 1980
  ident: 7325_CR30
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112080000341
– volume: 29
  start-page: 315
  year: 2024
  ident: 7325_CR39
  publication-title: J Mar Sci Technol
  doi: 10.1007/s00773-024-00987-4
– volume: 61
  start-page: 187
  issue: 1
  year: 1973
  ident: 7325_CR24
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112073000649
– ident: 7325_CR51
  doi: 10.1007/978-3-319-15141-0_4
– volume: 191
  start-page: 104243
  year: 2019
  ident: 7325_CR52
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2019.104243
– volume: 60
  start-page: 26
  year: 2019
  ident: 7325_CR10
  publication-title: Exp Fluids
  doi: 10.1007/s00348-018-2676-z
– volume: 4
  start-page: 69
  issue: 1–2
  year: 2005
  ident: 7325_CR49
  publication-title: Int J Aeroacoustics.
  doi: 10.1260/1475472053729996
– volume: 8
  start-page: 25
  issue: 1
  year: 2017
  ident: 7325_CR36
  publication-title: Int J Marit Technol
  doi: 10.29252/ijmt.8.25
– volume: 32
  start-page: 31
  year: 2023
  ident: 7325_CR38
  publication-title: J Mech Eng
– volume: 83
  start-page: 99
  year: 2020
  ident: 7325_CR11
  publication-title: Eur J Mech B: Fluids
  doi: 10.1016/j.euromechflu.2020.04.007
– volume: 122
  start-page: 152
  year: 2017
  ident: 7325_CR28
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2017.03.001
– volume: 36
  start-page: 105183
  issue: 10
  year: 2024
  ident: 7325_CR54
  publication-title: Phys Fluids
  doi: 10.1063/5.0232376
– volume: 662
  start-page: 232
  issue: 10
  year: 2010
  ident: 7325_CR13
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112010003174
– volume: 199
  start-page: 104119
  year: 2020
  ident: 7325_CR18
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2020.104119
– volume: 7
  start-page: 194
  issue: 6
  year: 2022
  ident: 7325_CR41
  publication-title: Fluids
  doi: 10.3390/fluids7060194
– ident: 7325_CR8
– volume: 35
  start-page: 105109
  year: 2023
  ident: 7325_CR32
  publication-title: Phys Fluids
  doi: 10.1063/5.0165632
– volume: 10
  start-page: 223
  issue: 1
  year: 2020
  ident: 7325_CR4
  publication-title: J Solid Fluid Mech
– volume: 12
  start-page: 2905
  issue: 18
  year: 2019
  ident: 7325_CR20
  publication-title: Materials
  doi: 10.3390/ma12182905
– volume: 49
  start-page: 367
  year: 2010
  ident: 7325_CR16
  publication-title: Exp Fluids
  doi: 10.1007/s00348-009-0806-3
– volume: 11
  start-page: 2928
  issue: 10
  year: 1999
  ident: 7325_CR26
  publication-title: Phys Fluids
  doi: 10.1063/1.870151
– volume: 45
  start-page: 233
  year: 2015
  ident: 7325_CR57
  publication-title: Flow Meas Instrum
  doi: 10.1016/j.flowmeasinst.2015.06.028
– volume: 83
  start-page: 1
  year: 2018
  ident: 7325_CR34
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2018.08.004
– volume: 47
  start-page: 67
  issue: 1
  year: 2023
  ident: 7325_CR3
  publication-title: Iran J Sci Technol, Trans Mech Eng
  doi: 10.1007/s40997-022-00494-0
– volume: 262
  start-page: 815
  issue: 4
  year: 2003
  ident: 7325_CR6
  publication-title: J Sound Vib
  doi: 10.1016/S0022-460X(02)01136-7
SSID ssj0003307759
Score 2.2959836
Snippet The paper presents a numerical investigation on the use of helical groove to reduce flow-induced noise from a circular cylinder. The study primarily explores...
Abstract The paper presents a numerical investigation on the use of helical groove to reduce flow-induced noise from a circular cylinder. The study primarily...
SourceID doaj
crossref
springer
SourceType Open Website
Index Database
Publisher
StartPage 1
SubjectTerms Aerodynamic noise
Applied and Technical Physics
Chemistry/Food Science
Circular cylinder
Earth Sciences
Engineering
Environment
Helical grooves
Materials Science
Peak sound pressure level
Vortex intensity
SummonAdditionalLinks – databaseName: Springer Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFz2IT1xf5OBNg22aJtujLi6Lhz25sLeQpy6UVvaB-O-dpN3VVRGEUkpIE5jMZL7JJF8Qukq9zQUECsRroQgT8KWUTYj2ubXKqsK4uEF2yAcj9jjOxy1NTjgL8y1_fzsLmTlKwqWroIzwhul2K08zEa5p6PHeaj0F4nIh8qI9F_P7r2u-J1L0_8h_RrfS30O7LR7Ed80A7qMNVx2gnS8sgYfIDRdNWqXEk09WjLrC8FT1ZOawqiz2Zf2GzTr9Mq49VthMpnGzKTbvZSBHnOKw-IpfXBnbfAbsDK0eoVH_4ak3IO3tCMRkOZsTmKSc4jotDKWJtsxDrMk87XJvEp4ILTT13urUOu8LA0COKy-coNqILmCEJDtGm1VduROEC3Bkmqcmdx7gE7XdzIFpGwEWaoo8YR10vZSbfG1IMOSK7jhKWYKUZZSypB10H0S7qhkIrGMBjKts7UFClMhFAhrEOPhR5pWH_pkDPBpCQKE66GY5MLK1qtkffZ7-r_oZ2qaNXpAkPUeb8-nCXQC4mOvLqFUfUpHHJg
  priority: 102
  providerName: Springer Nature
Title Numerical investigation on noise and flow characteristics of a circular cylinder with helical grooves
URI https://link.springer.com/article/10.1007/s42452-025-07325-2
https://doaj.org/article/917670ebe463414faf61c4e13982897a
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-6kxdRVJwfIwdvGkyzNFmPOjaG4E4Odiv51EFpZR-IF_92X9JuOgS9CCWUUpLye0ne7zUvvyB0lXibSggUiNdSES7hTilLifaptcqqzLiYIDsWowl_mKbTb0d9hZywWh64Bu4WwgkhKTTFBUy43CsvEsMdEJcQK8hIjcDnfQumwhwMUbqUadbskol75cISHyPh9Fbo1VCyLU8UBft_rIZGJzM8QPsNO8R39Vcdoh1XHiE3XtXLKgWefaliVCWGq6xmC4dVabEvqjdstuWXceWxwmY2j8mm2LwXQRxxjsPPV_ziiljnM3BnqPUYTYaDp_6INKcjENNN-ZLAJOWU0ElmGKPacg-xJvesJ7yhgkotNfPe6sQ67zMDRE4oL51k2sgecATaPUGtsirdKcIZODINsKbOA31ittd1MLSNhBFqspTyNrpeI5W_1iIY-UbuOOKaA655xDVnbXQfwNy8GQSs4wMwa96YNf_LrG10szZF3oyqxS9tnv1Hm-doj9X9g9DkArWW85W7BMqx1B202xf9TuxjUD5-DD4B69rTfA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swED-x8sB4QNsArcDAD-MJIiWOYycPPJQNVAr0BZB4M_7LKlUJaosQ34cPysVNOxDTJB6QoiiKLNs63_nufOffAfxMvM0EOgqR10JFTOCXUjaOtM-sVVYVxoUE2T7vXrHedXa9AE-zuzAh230Wkgw79fyyWx2jo1FdfhXZEt-0SaU8dY8P6KiND05-46ruUnp8dPmrGzW1BCKTZmwSoUg7xXVSGEpjbZlHz4x5mnNvYh4LLTT13urEOu8Lg2YPV144QbUROWrUOMV-P8FinvE8a8Fip9O76M3PctK0BpIrmjs5_57sK70XygO8ib0GlXb8BVYaW5R0pszzFRZc-Q2WXyAUroLr309DOkMy-IvIUZUEn7IajB1RpSV-WD0Q8xr6mVSeKGIGo5DoSszjsAZmHJH64Jf8ccPQ5y3a7djrGlx9CDXXoVVWpfsOpEAlqnliMufRdKM2Tx1uK0bg7mCKLGZt2JvRTd5NATjkHGo5UFkilWWgsqRtOKxJO29Zg2eHH9XoVjayKNFD5SJG7mUcdTjzyuP4zKEtXLufQrVhf7YwspHo8X_G3Hhf8x1Y6l6en8mzk_7pJnymUx6J4mQLWpPRvfuBRs5Ebzc8RuDmo9n6GfP-CiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qBdGHUr_wrNU86JMu3c1mk9sHH-zVo7Vy-GChbzFf0x4cu-XuSul_5Z_oJLt3tiiCD4VlWZaQhJlJZiYz8wvA2wJ9pchRyNAqkwlFX8b4PLNYeW-8qV1ICbITeXgivpxWpxvwc1ULk7LdVyHJrqYhojQ1y70Lj3vrwrcYr-NZvIqVRJTevE-rPA7XV-S0LT4eHRCH33E-_vx9dJj19wpkrqzEMqPlHYy0Re04z60XSF6aQD6U6HKZK6ssR_S28AGxdmQCSYMqKG6dGpJ2zUvq9x7cJ8-oiO7eSI7WpzplGSHl6r465-9TvaUB00UBf0Rhk3Ibb8NWb5WyT50YPYaN0DyBRzewCp9CmFx2wZ0Zm_7G5mgbRk_TTheBmcYznLVXzN0GgWYtMsPcdJ5SXpm7nkWIxjmLR8DsPMxSn2dkwVOvz-DkTmj5HDabtgkvgNWkTq0sXBWQjDjuh2WgDcYp2idcXeViAO9XdNMXHRSHXoMuJyprorJOVNZ8APuRtOuWEUY7_WjnZ7pflZoYKFVOciwkaXOBBml8Ecgqjo6oMgP4sGKM7tf24h9jvvy_5m_gwbeDsf56NDnegYe8E5EsL17B5nJ-GXbJ2lna10nAGPy4a4n-BftJDPo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+on+noise+and+flow+characteristics+of+a+circular+cylinder+with+helical+grooves&rft.jtitle=Discover+applied+sciences&rft.au=Tao+Li&rft.au=Ningzhou+Lu&rft.date=2025-07-01&rft.pub=Springer&rft.eissn=3004-9261&rft.volume=7&rft.issue=7&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1007%2Fs42452-025-07325-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_917670ebe463414faf61c4e13982897a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon