Bi‐Based Metal‐Organic Framework Derived Leafy Bismuth Nanosheets for Carbon Dioxide Electroreduction
Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hyb...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 36 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hybrid Bi/BiO interface (Bi NSs) is developed, which enables CO2 reduction to formic acid (HCOOH) with high activity, selectivity, and stability. Specially, the flow cell configuration is employed to eliminate the diffusion effect of CO2 molecules and simultaneously achieve considerable current density (200 mA cm−2) for industrial application. The faradaic efficiency for transforming CO2 to HCOOH can achieve over 85 or 90% in 1 m KHCO3 or KOH for at least 10 h despite a current density that exceeds 200 mA cm−2, outperforming most of the reported CO2 electroreduction catalysts. The hybrid Bi/BiO surface of leafy bismuth nanosheets boosts the adsorption of CO2 and protects the surface structure of the as‐prepared leafy bismuth nanosheets, which benefits its activity and stability for CO2 electroreduction. This work shows that modifying electrocatalysts by surface oxygen groups is a promising pathway to regulate the activity and stability for selective CO2 reduction to HCOOH.
Herein, leafy bismuth nanosheets are shown to achieve CO2 electroreduction to HCOOH with high activity (>200 mA cm−2), selectivity (>90%) and stability (>10 h) by employing in gas diffusion cell configuration. According to the in‐depth characterizations, the large electrochemically accessible surface area and the superficial BiO species for Bi nanosheets are the key factors that enable the high catalytic activity. |
---|---|
AbstractList | Electroreduction of carbon dioxide (CO
2
) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hybrid Bi/BiO interface (Bi NSs) is developed, which enables CO
2
reduction to formic acid (HCOOH) with high activity, selectivity, and stability. Specially, the flow cell configuration is employed to eliminate the diffusion effect of CO
2
molecules and simultaneously achieve considerable current density (200 mA cm
−2
) for industrial application. The faradaic efficiency for transforming CO
2
to HCOOH can achieve over 85 or 90% in 1
m
KHCO
3
or KOH for at least 10 h despite a current density that exceeds 200 mA cm
−2
, outperforming most of the reported CO
2
electroreduction catalysts. The hybrid Bi/BiO surface of leafy bismuth nanosheets boosts the adsorption of CO
2
and protects the surface structure of the as‐prepared leafy bismuth nanosheets, which benefits its activity and stability for CO
2
electroreduction. This work shows that modifying electrocatalysts by surface oxygen groups is a promising pathway to regulate the activity and stability for selective CO
2
reduction to HCOOH. Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hybrid Bi/BiO interface (Bi NSs) is developed, which enables CO2 reduction to formic acid (HCOOH) with high activity, selectivity, and stability. Specially, the flow cell configuration is employed to eliminate the diffusion effect of CO2 molecules and simultaneously achieve considerable current density (200 mA cm−2) for industrial application. The faradaic efficiency for transforming CO2 to HCOOH can achieve over 85 or 90% in 1 m KHCO3 or KOH for at least 10 h despite a current density that exceeds 200 mA cm−2, outperforming most of the reported CO2 electroreduction catalysts. The hybrid Bi/BiO surface of leafy bismuth nanosheets boosts the adsorption of CO2 and protects the surface structure of the as‐prepared leafy bismuth nanosheets, which benefits its activity and stability for CO2 electroreduction. This work shows that modifying electrocatalysts by surface oxygen groups is a promising pathway to regulate the activity and stability for selective CO2 reduction to HCOOH. Herein, leafy bismuth nanosheets are shown to achieve CO2 electroreduction to HCOOH with high activity (>200 mA cm−2), selectivity (>90%) and stability (>10 h) by employing in gas diffusion cell configuration. According to the in‐depth characterizations, the large electrochemically accessible surface area and the superficial BiO species for Bi nanosheets are the key factors that enable the high catalytic activity. Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hybrid Bi/BiO interface (Bi NSs) is developed, which enables CO2 reduction to formic acid (HCOOH) with high activity, selectivity, and stability. Specially, the flow cell configuration is employed to eliminate the diffusion effect of CO2 molecules and simultaneously achieve considerable current density (200 mA cm−2) for industrial application. The faradaic efficiency for transforming CO2 to HCOOH can achieve over 85 or 90% in 1 m KHCO3 or KOH for at least 10 h despite a current density that exceeds 200 mA cm−2, outperforming most of the reported CO2 electroreduction catalysts. The hybrid Bi/BiO surface of leafy bismuth nanosheets boosts the adsorption of CO2 and protects the surface structure of the as‐prepared leafy bismuth nanosheets, which benefits its activity and stability for CO2 electroreduction. This work shows that modifying electrocatalysts by surface oxygen groups is a promising pathway to regulate the activity and stability for selective CO2 reduction to HCOOH. |
Author | Yang, Li‐Ming Yang, Jian Wang, Xiaolin Wang, Xin Wu, Yuen Fan, Qikui Wang, Jin Huo, Hang Qu, Yunteng |
Author_xml | – sequence: 1 givenname: Jian surname: Yang fullname: Yang, Jian email: yang520@mail.ustc.edu.cn organization: Shenzhen University – sequence: 2 givenname: Xiaolin surname: Wang fullname: Wang, Xiaolin organization: Huazhong University of Science and Technology – sequence: 3 givenname: Yunteng surname: Qu fullname: Qu, Yunteng organization: University of Science and Technology of China – sequence: 4 givenname: Xin surname: Wang fullname: Wang, Xin organization: University of Science and Technology of China – sequence: 5 givenname: Hang surname: Huo fullname: Huo, Hang organization: Shenzhen University – sequence: 6 givenname: Qikui surname: Fan fullname: Fan, Qikui organization: Shenzhen University – sequence: 7 givenname: Jin surname: Wang fullname: Wang, Jin organization: Shenzhen University – sequence: 8 givenname: Li‐Ming surname: Yang fullname: Yang, Li‐Ming email: Lmyang@hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 9 givenname: Yuen orcidid: 0000-0001-9524-2843 surname: Wu fullname: Wu, Yuen email: yuenwu@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNqFkE1LAzEQhoMoWLVXzwHPrfna3e6xrfUDanvR8zJNJpq63WiyVXvzJ_gb_SXuUlEQxFwmA88zM7wHZLfyFRJyzFmfMyZOAatVXzDBGM9YvkM6POWqlw4U2_3-S7FPujEuWfNUzpmUHeJG7uPtfQQRDb3GGsqmm4c7qJym5wFW-OLDAz3D4J4bYopgN3Tk4mpd39MZVD7eI9aRWh_oGMLCV_TM-VdnkE5K1HXwAc1a185XR2TPQhmx-1UPye355GZ82ZvOL67Gw2lPy0TlPZtZhjI3C24y4FKYNNcaDbPM5ilkdpBimhkLIkOTpADWSg2WgckSEFoqeUhOtnMfg39aY6yLpV-HqllZCKVUIhKVtpTaUjr4GAPaQrsa2jvrAK4sOCvaXIs21-I710br_9Ieg1tB2Pwt5FvhxZW4-YcuhpPZ9Y_7CRoQkPg |
CitedBy_id | crossref_primary_10_1039_D1TA04360A crossref_primary_10_1016_j_jcou_2021_101822 crossref_primary_10_1002_smll_202100602 crossref_primary_10_1002_cphc_202200657 crossref_primary_10_1002_ange_202311911 crossref_primary_10_1002_advs_202204472 crossref_primary_10_1016_j_desal_2023_116680 crossref_primary_10_1016_j_cej_2024_158066 crossref_primary_10_1021_acsaem_4c01845 crossref_primary_10_1021_acs_jpcc_4c01686 crossref_primary_10_1002_cssc_202002596 crossref_primary_10_1016_j_jscs_2024_101926 crossref_primary_10_1016_j_mtphys_2023_101250 crossref_primary_10_1016_j_nantod_2020_101028 crossref_primary_10_1016_j_seppur_2024_126520 crossref_primary_10_1021_acsami_1c01477 crossref_primary_10_1021_acsnano_2c09888 crossref_primary_10_1039_D2NJ01497A crossref_primary_10_1021_acsnano_1c05737 crossref_primary_10_1021_acsami_3c10011 crossref_primary_10_1002_adma_202415639 crossref_primary_10_26599_NRE_2024_9120112 crossref_primary_10_1016_j_mcat_2023_113116 crossref_primary_10_1016_j_apsusc_2022_156025 crossref_primary_10_1016_j_jcat_2023_115128 crossref_primary_10_1039_D1TA06564E crossref_primary_10_1021_acs_jpclett_2c02180 crossref_primary_10_1002_aenm_202201461 crossref_primary_10_1021_acssuschemeng_4c09914 crossref_primary_10_1002_cey2_362 crossref_primary_10_1016_j_electacta_2021_139526 crossref_primary_10_1016_j_diamond_2024_110849 crossref_primary_10_1021_acs_inorgchem_1c03938 crossref_primary_10_1021_acscatal_2c02715 crossref_primary_10_1021_acsenergylett_3c00489 crossref_primary_10_1002_anie_202104747 crossref_primary_10_1002_smll_202304084 crossref_primary_10_1016_j_jssc_2024_124804 crossref_primary_10_1002_smll_202207305 crossref_primary_10_1016_j_jcou_2021_101802 crossref_primary_10_1021_acscatal_2c03369 crossref_primary_10_1021_acsmaterialslett_2c00751 crossref_primary_10_1021_acsnano_1c07820 crossref_primary_10_3390_catal13071109 crossref_primary_10_1039_D1RA00590A crossref_primary_10_1039_D2CY00859A crossref_primary_10_1038_s41467_021_26124_y crossref_primary_10_1039_D0CS00071J crossref_primary_10_1002_adma_202110699 crossref_primary_10_1016_j_scriptamat_2023_115509 crossref_primary_10_1002_ange_202014341 crossref_primary_10_1039_D1RA00752A crossref_primary_10_1002_adma_202400237 crossref_primary_10_1016_j_ensm_2023_03_023 crossref_primary_10_1016_j_jcis_2021_12_174 crossref_primary_10_1021_acssuschemeng_1c06295 crossref_primary_10_1021_acs_jpcc_2c03551 crossref_primary_10_1021_acs_chemrev_2c00469 crossref_primary_10_1039_D2TA01727J crossref_primary_10_1016_j_jcis_2025_02_017 crossref_primary_10_1039_D1TA01516H crossref_primary_10_1002_anie_202014341 crossref_primary_10_1021_acscatal_1c04978 crossref_primary_10_1039_D3PY00777D crossref_primary_10_1002_ente_202200561 crossref_primary_10_1039_D3QM00835E crossref_primary_10_1002_smll_202206440 crossref_primary_10_1016_j_cej_2024_152855 crossref_primary_10_1002_adma_202105163 crossref_primary_10_1007_s40843_022_2222_6 crossref_primary_10_1039_D3CC04916G crossref_primary_10_1016_j_apcatb_2020_119723 crossref_primary_10_1039_D1QI00065A crossref_primary_10_1039_D1EE01495A crossref_primary_10_1002_ange_202111136 crossref_primary_10_1002_inf2_12375 crossref_primary_10_1021_acs_nanolett_2c03573 crossref_primary_10_1002_aenm_202102447 crossref_primary_10_1088_1361_6528_ad0594 crossref_primary_10_1039_D3TA05498E crossref_primary_10_1039_D4TA02863E crossref_primary_10_1007_s41918_023_00183_9 crossref_primary_10_1007_s43979_024_00106_7 crossref_primary_10_1039_D4CC02635G crossref_primary_10_1016_j_apsusc_2022_155499 crossref_primary_10_1016_j_jpowsour_2024_234298 crossref_primary_10_1039_D4TA01556H crossref_primary_10_1021_acscatal_4c01519 crossref_primary_10_1002_eom2_12346 crossref_primary_10_1039_D3NR00286A crossref_primary_10_1016_j_jcis_2021_10_096 crossref_primary_10_1016_j_apcatb_2023_123566 crossref_primary_10_1039_D3EY00034F crossref_primary_10_1039_D4MH01153H crossref_primary_10_1039_D1QM00344E crossref_primary_10_1002_adma_202305587 crossref_primary_10_1039_D0RA10017J crossref_primary_10_1016_j_seppur_2024_127926 crossref_primary_10_1016_j_apcatb_2021_120693 crossref_primary_10_1002_cssc_202101122 crossref_primary_10_1016_j_mcat_2021_112073 crossref_primary_10_1039_D1QM01557E crossref_primary_10_1002_anie_202111136 crossref_primary_10_1016_j_cej_2025_159732 crossref_primary_10_1016_j_jechem_2023_01_017 crossref_primary_10_1007_s40843_021_1950_0 crossref_primary_10_1002_ange_202104747 crossref_primary_10_1016_j_mtphys_2021_100479 crossref_primary_10_1016_j_seppur_2023_123806 crossref_primary_10_1016_j_chphma_2024_06_002 crossref_primary_10_1039_D4TA05552G crossref_primary_10_1016_j_checat_2022_01_021 crossref_primary_10_1016_j_jece_2023_110069 crossref_primary_10_1016_j_scp_2025_101973 crossref_primary_10_1021_acs_nanolett_1c04683 crossref_primary_10_1016_j_jcou_2022_102031 crossref_primary_10_1016_j_jcou_2022_102152 crossref_primary_10_1002_adfm_202006704 crossref_primary_10_1016_j_jiec_2024_07_003 crossref_primary_10_1007_s12274_021_3677_4 crossref_primary_10_1039_D0RA04715E crossref_primary_10_1039_D1NR00649E crossref_primary_10_1039_D3QI01522J crossref_primary_10_1002_celc_202100942 crossref_primary_10_1039_D2TA02086F crossref_primary_10_1002_aenm_202402278 crossref_primary_10_1016_j_matchemphys_2023_128408 crossref_primary_10_1021_acsanm_4c02570 crossref_primary_10_1016_j_cej_2022_140926 crossref_primary_10_1016_j_apcatb_2021_120481 crossref_primary_10_1002_adfm_202107182 crossref_primary_10_1002_cctc_202201321 crossref_primary_10_1016_j_microc_2023_108861 crossref_primary_10_1016_j_jclepro_2023_138912 crossref_primary_10_1002_adfm_202315368 crossref_primary_10_1021_acsami_3c13240 crossref_primary_10_1002_anie_202102832 crossref_primary_10_1016_j_chemosphere_2022_134570 crossref_primary_10_1039_D1RA01185E crossref_primary_10_1016_j_mcat_2025_114845 crossref_primary_10_1021_acsami_2c01152 crossref_primary_10_1016_j_pecs_2024_101175 crossref_primary_10_1016_j_fuel_2021_121127 crossref_primary_10_1021_acscatal_1c02495 crossref_primary_10_1016_S1872_5805_22_60592_4 crossref_primary_10_1021_acscatal_2c05155 crossref_primary_10_1007_s12598_021_01728_x crossref_primary_10_1002_ange_202407665 crossref_primary_10_1007_s11426_024_2384_6 crossref_primary_10_1002_smll_202400191 crossref_primary_10_1039_D2DT03112D crossref_primary_10_1002_zaac_202400213 crossref_primary_10_1002_eem2_12204 crossref_primary_10_1002_smll_202306795 crossref_primary_10_1016_j_chempr_2024_02_014 crossref_primary_10_1073_pnas_2305604120 crossref_primary_10_1002_slct_202405553 crossref_primary_10_1007_s12274_022_4199_4 crossref_primary_10_1002_adfm_202424357 crossref_primary_10_1021_acs_jpclett_2c02570 crossref_primary_10_1002_cctc_202401007 crossref_primary_10_1016_j_matre_2023_100181 crossref_primary_10_1016_j_mcat_2024_113926 crossref_primary_10_1002_smll_202408132 crossref_primary_10_1016_j_jmgm_2022_108321 crossref_primary_10_1021_acs_nanolett_1c02053 crossref_primary_10_1002_adfm_202113075 crossref_primary_10_1016_j_cjche_2022_03_006 crossref_primary_10_1002_celc_202001613 crossref_primary_10_1016_j_ces_2022_118354 crossref_primary_10_1021_acs_inorgchem_4c03106 crossref_primary_10_1039_D2GC04482J crossref_primary_10_1002_anie_202306503 crossref_primary_10_1039_D4CP03161J crossref_primary_10_1016_j_jcou_2022_102228 crossref_primary_10_1002_anie_202311911 crossref_primary_10_1016_j_ces_2021_117409 crossref_primary_10_1039_D4NJ00948G crossref_primary_10_1007_s12274_024_6536_2 crossref_primary_10_1016_j_cej_2022_137311 crossref_primary_10_1016_j_fuel_2021_121341 crossref_primary_10_1016_j_matre_2023_100191 crossref_primary_10_3390_pr10050826 crossref_primary_10_1007_s12274_021_3694_3 crossref_primary_10_1016_j_fuel_2022_124103 crossref_primary_10_1007_s11581_023_05000_3 crossref_primary_10_1016_j_ijoes_2024_100792 crossref_primary_10_1002_ange_202306503 crossref_primary_10_1021_acs_jpcc_1c03790 crossref_primary_10_1021_acsami_3c05892 crossref_primary_10_1016_j_jiec_2022_06_001 crossref_primary_10_1021_acsomega_2c01562 crossref_primary_10_1016_j_cattod_2023_114284 crossref_primary_10_1039_D1RA08572G crossref_primary_10_3390_coatings13122088 crossref_primary_10_1002_ange_202104564 crossref_primary_10_1016_j_nanoen_2023_108638 crossref_primary_10_1002_adfm_202400928 crossref_primary_10_3390_catal14030191 crossref_primary_10_1016_j_apcatb_2022_121377 crossref_primary_10_1039_D0RA06812H crossref_primary_10_1039_D0RA08732G crossref_primary_10_1002_smll_202306129 crossref_primary_10_1088_1361_6528_ad7145 crossref_primary_10_1007_s12274_023_5444_1 crossref_primary_10_1016_j_colsurfa_2021_127840 crossref_primary_10_1021_acs_energyfuels_3c04866 crossref_primary_10_1016_j_mcat_2024_113894 crossref_primary_10_1002_anie_202407665 crossref_primary_10_1039_D2TA08521F crossref_primary_10_1016_j_electacta_2022_141256 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1002_adsu_202400562 crossref_primary_10_1007_s40820_024_01480_8 crossref_primary_10_1002_ange_202318585 crossref_primary_10_1134_S1023193522080079 crossref_primary_10_1039_D4TA08653H crossref_primary_10_1016_j_cej_2021_131514 crossref_primary_10_1039_D1TA09142E crossref_primary_10_1016_j_scib_2021_03_020 crossref_primary_10_1039_D0TA11880J crossref_primary_10_1002_aenm_202103960 crossref_primary_10_6023_A22010012 crossref_primary_10_1016_j_electacta_2023_142893 crossref_primary_10_1021_acsaem_1c01195 crossref_primary_10_1039_D2TA04485D crossref_primary_10_1002_anie_202318585 crossref_primary_10_1021_acsaem_2c02048 crossref_primary_10_1021_acs_inorgchem_2c03073 crossref_primary_10_1016_j_jpowsour_2021_230638 crossref_primary_10_1002_celc_202101648 crossref_primary_10_1016_j_cej_2023_143531 crossref_primary_10_1016_j_chemosphere_2024_143312 crossref_primary_10_1016_j_jcou_2023_102604 crossref_primary_10_1039_D3CP03822J crossref_primary_10_1007_s40820_023_01092_8 crossref_primary_10_1002_anie_202408412 crossref_primary_10_1016_j_jece_2022_109171 crossref_primary_10_1007_s12274_021_3903_0 crossref_primary_10_1002_ange_202408412 crossref_primary_10_1002_aenm_202101424 crossref_primary_10_1016_j_ccr_2021_213902 crossref_primary_10_1002_anie_202104564 crossref_primary_10_1007_s11426_024_2112_2 crossref_primary_10_1002_adma_202008631 crossref_primary_10_1039_D2CC00114D crossref_primary_10_1021_acs_jpcc_2c07203 crossref_primary_10_1002_ange_202102832 crossref_primary_10_1016_j_ijhydene_2022_03_229 crossref_primary_10_1021_acsestengg_3c00249 |
Cites_doi | 10.1002/anie.201509800 10.1021/acs.nanolett.9b02748 10.1002/anie.201900167 10.1038/s41929-019-0241-7 10.1038/s41929-018-0200-8 10.1038/s41929-019-0306-7 10.1038/s41560-019-0450-y 10.1002/adma.201802858 10.1039/C9TA06750G 10.1126/science.aas9100 10.1038/nature16455 10.1016/j.joule.2019.05.010 10.1016/j.nanoen.2020.104601 10.1039/C9TA13298H 10.1002/smll.201804224 10.1016/j.joule.2018.11.008 10.1021/acs.chemrev.8b00705 10.1002/adma.201808135 10.1002/adma.201903470 10.1038/s41560-019-0451-x 10.1002/anie.201907674 10.1021/acscatal.9b00366 10.1002/anie.201807466 10.1038/s41467-018-03712-z 10.1038/s41467-019-08805-x 10.1038/nature11475 10.1021/acscatal.9b02443 10.1038/nmat4834 10.1002/anie.202000657 10.1039/C9CC02522G 10.1038/s41467-018-06311-0 10.1021/acs.nanolett.9b02782 10.1360/N032018-00043 10.1021/jacs.8b13786 10.1038/s41929-019-0235-5 10.1016/j.joule.2018.10.015 10.1038/s41467-020-14914-9 10.1021/acscatal.7b03242 10.1002/anie.201807891 10.1002/anie.201808049 10.1021/acscatal.9b04516 10.1038/s41586-019-1782-2 10.1021/acscatal.9b04368 10.1038/s41467-019-11903-5 10.1038/s41929-018-0084-7 10.1002/adma.201905679 10.1039/C8SC04344B 10.1039/C9TA03611C 10.1021/jacs.5b12484 10.1039/C9EE00018F 10.1016/j.apcatb.2019.118134 10.1007/978-0-387-49489-0_3 10.1038/s41929-018-0168-4 10.1021/acscatal.9b02312 10.1002/aenm.201702524 10.1021/jacs.9b11123 10.1002/adma.201802066 10.1038/s41467-019-10819-4 10.1021/acscatal.9b04043 10.1039/C9TA09681G 10.1002/adfm.201906478 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202001709 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202001709 AENM202001709 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21673087; 21873032; 21903032 – fundername: Electron Microscope Center – fundername: Shenzhen University – fundername: Shenzhen University Young Teacher Research Project funderid: 000002110713 – fundername: HRTEM |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3549-f7f0e39db1d7a132d69cced0f0f96a7f86e67dfa27ed56aaff3caf0ad75a2c343 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:33:57 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Tue Jul 01 01:43:35 EDT 2025 Wed Jan 22 16:32:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3549-f7f0e39db1d7a132d69cced0f0f96a7f86e67dfa27ed56aaff3caf0ad75a2c343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9524-2843 |
PQID | 2444525464 |
PQPubID | 886389 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2444525464 crossref_citationtrail_10_1002_aenm_202001709 crossref_primary_10_1002_aenm_202001709 wiley_primary_10_1002_aenm_202001709_AENM202001709 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2019 2019 2018; 3 3 57 2019; 9 2019 2020 2019 2019 2019; 119 8 2 2 4 2019 2019 2019; 10 19 58 2020 2020; 10 10 2019; 55 2019; 2 2012 2017 2020 2019; 488 16 32 32 2019; 10 2016 2018; 138 57 2019; 58 2020 2018 2020; 30 8 59 2008 2019; 19 2019 2020 2020; 12 10 11 2018 2018; 30 9 2019 2019; 141 15 2018 2020 2020 2020; 360 577 71 2020 2018 2018; 260 1 9 2018; 1 2019 2019 2019 2018 2019; 141 9 9 8 31 2016 2016; 529 55 2019 2019; 3 2 2018 2019 2019 2019 2019 2018; 30 7 31 10 4 48 2018; 57 e_1_2_4_21_1 e_1_2_4_21_3 e_1_2_4_23_1 e_1_2_4_21_2 e_1_2_4_25_1 e_1_2_4_23_2 e_1_2_4_27_1 e_1_2_4_27_3 Qiao J. (e_1_2_4_1_3) 2020; 32 e_1_2_4_27_2 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_3_3 e_1_2_4_5_1 e_1_2_4_1_4 e_1_2_4_3_2 Vasileff A. (e_1_2_4_7_3) 2020 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_7_2 e_1_2_4_9_3 e_1_2_4_7_4 e_1_2_4_9_2 e_1_2_4_9_5 e_1_2_4_9_4 e_1_2_4_9_6 e_1_2_4_10_1 e_1_2_4_10_2 e_1_2_4_10_3 e_1_2_4_12_1 e_1_2_4_10_4 e_1_2_4_10_5 e_1_2_4_14_1 e_1_2_4_16_1 e_1_2_4_18_1 e_1_2_4_16_2 e_1_2_4_18_3 e_1_2_4_18_2 e_1_2_4_20_1 e_1_2_4_22_2 e_1_2_4_22_1 e_1_2_4_24_1 e_1_2_4_26_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_2 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_2 e_1_2_4_8_1 e_1_2_4_8_4 e_1_2_4_8_3 e_1_2_4_8_5 e_1_2_4_11_1 e_1_2_4_13_1 e_1_2_4_13_2 e_1_2_4_13_3 e_1_2_4_15_1 e_1_2_4_15_2 e_1_2_4_17_1 e_1_2_4_19_2 e_1_2_4_19_1 |
References_xml | – volume: 12 10 11 start-page: 1334 358 1088 year: 2019 2020 2020 publication-title: Energy Environ. Sci. ACS Catal. Nat. Commun. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 19 start-page: 8461 year: 2019 publication-title: Nano Lett. – volume: 119 8 2 2 4 start-page: 7610 1511 198 648 732 year: 2019 2020 2019 2019 2019 publication-title: Chem. Rev. J. Mater. Chem. A Nat. Catal. Nat. Catal. Nat. Energy – volume: 30 9 start-page: 1320 year: 2018 2018 publication-title: Adv. Mater. Nat. Commun. – volume: 529 55 start-page: 68 698 year: 2016 2016 publication-title: Nature Angew. Chem., Int. Ed. – volume: 360 577 71 start-page: 783 509 year: 2018 2020 2020 2020 publication-title: Science Nature Angew. Chem., Int. Ed. Nano Energy – volume: 138 57 start-page: 1970 year: 2016 2018 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 10 start-page: 2199 year: 2019 publication-title: Chem. Sci. – volume: 141 15 year: 2019 2019 publication-title: J. Am. Chem. Soc. Small – volume: 10 10 start-page: 672 743 year: 2020 2020 publication-title: ACS Catal. ACS Catal. – volume: 260 1 9 start-page: 946 3828 year: 2020 2018 2018 publication-title: Appl. Catal., B Nat. Catal. Nat. Commun. – volume: 30 7 31 10 4 48 start-page: 2807 776 1027 year: 2018 2019 2019 2019 2019 2018 publication-title: Adv. Mater. J. Mater. Chem. A Adv. Mater. Nat. Commun. Nat. Energy Sci. Sin.: Chim. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 19 58 start-page: 892 6547 5609 year: 2019 2019 2019 publication-title: Nat. Commun. Nano Lett. Angew. Chem., Int. Ed. – volume: 3 2 start-page: 1703 55 year: 2019 2019 publication-title: Joule Nat. Catal. – start-page: 89 year: 2008 end-page: 189 – volume: 55 start-page: 8796 year: 2019 publication-title: Chem. Commun. – volume: 2 start-page: 448 year: 2019 publication-title: Nat. Catal. – volume: 30 8 59 start-page: 931 year: 2020 2018 2020 publication-title: Adv. Funct. Mater. ACS Catal. Angew. Chem., Int. Ed. – volume: 3 3 57 start-page: 584 265 year: 2019 2019 2018 publication-title: Joule Joule Angew. Chem., Int. Ed. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 488 16 32 32 start-page: 294 16 631 year: 2012 2017 2020 2019 publication-title: Nature Nat. Mater. Chem. Soc. Rev. Adv. Mater. – volume: 9 start-page: 2902 year: 2019 publication-title: ACS Catal. – volume: 1 start-page: 421 year: 2018 publication-title: Nat. Catal. – volume: 141 9 9 8 31 start-page: 2911 9411 year: 2019 2019 2019 2018 2019 publication-title: J. Am. Chem. Soc. ACS Catal. ACS Catal. Adv. Energy Mater. Adv. Mater. – volume: 10 start-page: 3919 year: 2019 publication-title: Nat. Commun. – ident: e_1_2_4_15_2 doi: 10.1002/anie.201509800 – ident: e_1_2_4_28_1 doi: 10.1021/acs.nanolett.9b02748 – ident: e_1_2_4_13_3 doi: 10.1002/anie.201900167 – ident: e_1_2_4_25_1 doi: 10.1038/s41929-019-0241-7 – ident: e_1_2_4_4_2 doi: 10.1038/s41929-018-0200-8 – ident: e_1_2_4_8_4 doi: 10.1038/s41929-019-0306-7 – ident: e_1_2_4_8_5 doi: 10.1038/s41560-019-0450-y – ident: e_1_2_4_19_1 doi: 10.1002/adma.201802858 – ident: e_1_2_4_17_1 doi: 10.1039/C9TA06750G – ident: e_1_2_4_7_1 doi: 10.1126/science.aas9100 – ident: e_1_2_4_15_1 doi: 10.1038/nature16455 – ident: e_1_2_4_4_1 doi: 10.1016/j.joule.2019.05.010 – ident: e_1_2_4_7_4 doi: 10.1016/j.nanoen.2020.104601 – ident: e_1_2_4_8_2 doi: 10.1039/C9TA13298H – ident: e_1_2_4_16_2 doi: 10.1002/smll.201804224 – ident: e_1_2_4_3_1 doi: 10.1016/j.joule.2018.11.008 – ident: e_1_2_4_8_1 doi: 10.1021/acs.chemrev.8b00705 – ident: e_1_2_4_10_5 doi: 10.1002/adma.201808135 – ident: e_1_2_4_9_3 doi: 10.1002/adma.201903470 – ident: e_1_2_4_9_5 doi: 10.1038/s41560-019-0451-x – ident: e_1_2_4_26_1 doi: 10.1002/anie.201907674 – ident: e_1_2_4_24_1 doi: 10.1021/acscatal.9b00366 – ident: e_1_2_4_20_1 doi: 10.1002/anie.201807466 – ident: e_1_2_4_19_2 doi: 10.1038/s41467-018-03712-z – ident: e_1_2_4_13_1 doi: 10.1038/s41467-019-08805-x – ident: e_1_2_4_1_1 doi: 10.1038/nature11475 – ident: e_1_2_4_10_2 doi: 10.1021/acscatal.9b02443 – ident: e_1_2_4_1_2 doi: 10.1038/nmat4834 – ident: e_1_2_4_21_3 doi: 10.1002/anie.202000657 – ident: e_1_2_4_2_1 doi: 10.1039/C9CC02522G – ident: e_1_2_4_27_3 doi: 10.1038/s41467-018-06311-0 – ident: e_1_2_4_13_2 doi: 10.1021/acs.nanolett.9b02782 – ident: e_1_2_4_9_6 doi: 10.1360/N032018-00043 – ident: e_1_2_4_10_1 doi: 10.1021/jacs.8b13786 – ident: e_1_2_4_8_3 doi: 10.1038/s41929-019-0235-5 – ident: e_1_2_4_3_2 doi: 10.1016/j.joule.2018.10.015 – ident: e_1_2_4_18_3 doi: 10.1038/s41467-020-14914-9 – year: 2020 ident: e_1_2_4_7_3 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_4_21_2 doi: 10.1021/acscatal.7b03242 – ident: e_1_2_4_23_2 doi: 10.1002/anie.201807891 – ident: e_1_2_4_3_3 doi: 10.1002/anie.201808049 – ident: e_1_2_4_18_2 doi: 10.1021/acscatal.9b04516 – ident: e_1_2_4_7_2 doi: 10.1038/s41586-019-1782-2 – ident: e_1_2_4_22_1 doi: 10.1021/acscatal.9b04368 – ident: e_1_2_4_14_1 doi: 10.1038/s41467-019-11903-5 – ident: e_1_2_4_5_1 doi: 10.1038/s41929-018-0084-7 – ident: e_1_2_4_1_4 doi: 10.1002/adma.201905679 – ident: e_1_2_4_6_1 doi: 10.1039/C8SC04344B – ident: e_1_2_4_11_1 doi: 10.1039/C9TA03611C – ident: e_1_2_4_23_1 doi: 10.1021/jacs.5b12484 – volume: 32 start-page: 631 year: 2020 ident: e_1_2_4_1_3 publication-title: Chem. Soc. Rev. – ident: e_1_2_4_18_1 doi: 10.1039/C9EE00018F – ident: e_1_2_4_27_1 doi: 10.1016/j.apcatb.2019.118134 – ident: e_1_2_4_12_1 doi: 10.1007/978-0-387-49489-0_3 – ident: e_1_2_4_27_2 doi: 10.1038/s41929-018-0168-4 – ident: e_1_2_4_10_3 doi: 10.1021/acscatal.9b02312 – ident: e_1_2_4_10_4 doi: 10.1002/aenm.201702524 – ident: e_1_2_4_16_1 doi: 10.1021/jacs.9b11123 – ident: e_1_2_4_9_1 doi: 10.1002/adma.201802066 – ident: e_1_2_4_9_4 doi: 10.1038/s41467-019-10819-4 – ident: e_1_2_4_22_2 doi: 10.1021/acscatal.9b04043 – ident: e_1_2_4_9_2 doi: 10.1039/C9TA09681G – ident: e_1_2_4_21_1 doi: 10.1002/adfm.201906478 |
SSID | ssj0000491033 |
Score | 2.670309 |
Snippet | Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack... Electroreduction of carbon dioxide (CO 2 ) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bismuth Carbon dioxide CO2 electroreduction Current density Diffusion effects Electrocatalysts Electrowinning flow cells Flow stability Formic acid hybrid Bi/BiO surface Industrial applications leafy Bi nanosheets Nanosheets Selectivity Surface structure |
Title | Bi‐Based Metal‐Organic Framework Derived Leafy Bismuth Nanosheets for Carbon Dioxide Electroreduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202001709 https://www.proquest.com/docview/2444525464 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOK56isCAfkDhUAcfOY3Ns2a5Wq7YcaEVvkePYbCRIUR_SwokDP4DfyC9h_IiTZXksXKJmZLmt58t4ZjL-BqFnJVGUpYUKGBU6dROKgBdhETBChYyy5IiZavfpLDldRGfLeNnrfe1ULe22xQvx-ZfnSv5HqyADvepTsv-gWT8pCOAz6BeuoGG4XkvHo8rXKoxgNyoHUwm-tJfZc5ZCO6e2AAusyxqsW6lZVdWnwajafNhtz7WFXW3OpdwabgZdA1IAJo6r1UVVysHYNspZa45Xr8WGt7apIJD2CCG4v_Z_e2Pi0tFnHRS-dbJlxXXHoDb1araDna6pf3d1bN3NT0Aw2hRgXdcKdqwv-AoBwMOaZ9mVWU4nb7JJB5qWQOXKVmCpZbmsNd8ANTxBWbvpNS_6Z6_zk8Vkks_Hy_kNtE8h2ABruT88nk7e-FwdRFEhYeasRvMLG_5PQl9e_orL_k0btHRDH-O7zG-jAxd04KFF0B3Uk_VddKtDRXkPVaPq-5dvBkXYoAjuHH6wxw92-MEGP9jhB7f4wYAfbPGDHX7wz_i5jxYn4_mr08C14QgEi6MsUKkikmVlEZYpDxktk0wAsogiKkt4qo4SmaSl4jSVZZxwrhQTXBFepjGngkXsAdqrV7V8iHDGuCqk5HFBikgJmTFw0USimx6kIUzfR0GzeLlwHPW6Vcr73LJr01wvdu4Xu4-e-_EfLTvLb0ceNrrI3RO8ycG11a_1oyTqI2r085dZ8uF4NvV3j_4852N0s30eDtHedr2TT8CD3RZPHcB-APzHndg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi%E2%80%90Based+Metal%E2%80%90Organic+Framework+Derived+Leafy+Bismuth+Nanosheets+for+Carbon+Dioxide+Electroreduction&rft.jtitle=Advanced+energy+materials&rft.au=Yang%2C+Jian&rft.au=Wang%2C+Xiaolin&rft.au=Qu%2C+Yunteng&rft.au=Wang%2C+Xin&rft.date=2020-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=36&rft_id=info:doi/10.1002%2Faenm.202001709&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |