Bi‐Based Metal‐Organic Framework Derived Leafy Bismuth Nanosheets for Carbon Dioxide Electroreduction

Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hyb...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 36
Main Authors Yang, Jian, Wang, Xiaolin, Qu, Yunteng, Wang, Xin, Huo, Hang, Fan, Qikui, Wang, Jin, Yang, Li‐Ming, Wu, Yuen
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hybrid Bi/BiO interface (Bi NSs) is developed, which enables CO2 reduction to formic acid (HCOOH) with high activity, selectivity, and stability. Specially, the flow cell configuration is employed to eliminate the diffusion effect of CO2 molecules and simultaneously achieve considerable current density (200 mA cm−2) for industrial application. The faradaic efficiency for transforming CO2 to HCOOH can achieve over 85 or 90% in 1 m KHCO3 or KOH for at least 10 h despite a current density that exceeds 200 mA cm−2, outperforming most of the reported CO2 electroreduction catalysts. The hybrid Bi/BiO surface of leafy bismuth nanosheets boosts the adsorption of CO2 and protects the surface structure of the as‐prepared leafy bismuth nanosheets, which benefits its activity and stability for CO2 electroreduction. This work shows that modifying electrocatalysts by surface oxygen groups is a promising pathway to regulate the activity and stability for selective CO2 reduction to HCOOH. Herein, leafy bismuth nanosheets are shown to achieve CO2 electroreduction to HCOOH with high activity (>200 mA cm−2), selectivity (>90%) and stability (>10 h) by employing in gas diffusion cell configuration. According to the in‐depth characterizations, the large electrochemically accessible surface area and the superficial BiO species for Bi nanosheets are the key factors that enable the high catalytic activity.
AbstractList Electroreduction of carbon dioxide (CO 2 ) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hybrid Bi/BiO interface (Bi NSs) is developed, which enables CO 2 reduction to formic acid (HCOOH) with high activity, selectivity, and stability. Specially, the flow cell configuration is employed to eliminate the diffusion effect of CO 2 molecules and simultaneously achieve considerable current density (200 mA cm −2 ) for industrial application. The faradaic efficiency for transforming CO 2 to HCOOH can achieve over 85 or 90% in 1 m KHCO 3 or KOH for at least 10 h despite a current density that exceeds 200 mA cm −2 , outperforming most of the reported CO 2 electroreduction catalysts. The hybrid Bi/BiO surface of leafy bismuth nanosheets boosts the adsorption of CO 2 and protects the surface structure of the as‐prepared leafy bismuth nanosheets, which benefits its activity and stability for CO 2 electroreduction. This work shows that modifying electrocatalysts by surface oxygen groups is a promising pathway to regulate the activity and stability for selective CO 2 reduction to HCOOH.
Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hybrid Bi/BiO interface (Bi NSs) is developed, which enables CO2 reduction to formic acid (HCOOH) with high activity, selectivity, and stability. Specially, the flow cell configuration is employed to eliminate the diffusion effect of CO2 molecules and simultaneously achieve considerable current density (200 mA cm−2) for industrial application. The faradaic efficiency for transforming CO2 to HCOOH can achieve over 85 or 90% in 1 m KHCO3 or KOH for at least 10 h despite a current density that exceeds 200 mA cm−2, outperforming most of the reported CO2 electroreduction catalysts. The hybrid Bi/BiO surface of leafy bismuth nanosheets boosts the adsorption of CO2 and protects the surface structure of the as‐prepared leafy bismuth nanosheets, which benefits its activity and stability for CO2 electroreduction. This work shows that modifying electrocatalysts by surface oxygen groups is a promising pathway to regulate the activity and stability for selective CO2 reduction to HCOOH. Herein, leafy bismuth nanosheets are shown to achieve CO2 electroreduction to HCOOH with high activity (>200 mA cm−2), selectivity (>90%) and stability (>10 h) by employing in gas diffusion cell configuration. According to the in‐depth characterizations, the large electrochemically accessible surface area and the superficial BiO species for Bi nanosheets are the key factors that enable the high catalytic activity.
Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hybrid Bi/BiO interface (Bi NSs) is developed, which enables CO2 reduction to formic acid (HCOOH) with high activity, selectivity, and stability. Specially, the flow cell configuration is employed to eliminate the diffusion effect of CO2 molecules and simultaneously achieve considerable current density (200 mA cm−2) for industrial application. The faradaic efficiency for transforming CO2 to HCOOH can achieve over 85 or 90% in 1 m KHCO3 or KOH for at least 10 h despite a current density that exceeds 200 mA cm−2, outperforming most of the reported CO2 electroreduction catalysts. The hybrid Bi/BiO surface of leafy bismuth nanosheets boosts the adsorption of CO2 and protects the surface structure of the as‐prepared leafy bismuth nanosheets, which benefits its activity and stability for CO2 electroreduction. This work shows that modifying electrocatalysts by surface oxygen groups is a promising pathway to regulate the activity and stability for selective CO2 reduction to HCOOH.
Author Yang, Li‐Ming
Yang, Jian
Wang, Xiaolin
Wang, Xin
Wu, Yuen
Fan, Qikui
Wang, Jin
Huo, Hang
Qu, Yunteng
Author_xml – sequence: 1
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
  email: yang520@mail.ustc.edu.cn
  organization: Shenzhen University
– sequence: 2
  givenname: Xiaolin
  surname: Wang
  fullname: Wang, Xiaolin
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Yunteng
  surname: Qu
  fullname: Qu, Yunteng
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Hang
  surname: Huo
  fullname: Huo, Hang
  organization: Shenzhen University
– sequence: 6
  givenname: Qikui
  surname: Fan
  fullname: Fan, Qikui
  organization: Shenzhen University
– sequence: 7
  givenname: Jin
  surname: Wang
  fullname: Wang, Jin
  organization: Shenzhen University
– sequence: 8
  givenname: Li‐Ming
  surname: Yang
  fullname: Yang, Li‐Ming
  email: Lmyang@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 9
  givenname: Yuen
  orcidid: 0000-0001-9524-2843
  surname: Wu
  fullname: Wu, Yuen
  email: yuenwu@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNqFkE1LAzEQhoMoWLVXzwHPrfna3e6xrfUDanvR8zJNJpq63WiyVXvzJ_gb_SXuUlEQxFwmA88zM7wHZLfyFRJyzFmfMyZOAatVXzDBGM9YvkM6POWqlw4U2_3-S7FPujEuWfNUzpmUHeJG7uPtfQQRDb3GGsqmm4c7qJym5wFW-OLDAz3D4J4bYopgN3Tk4mpd39MZVD7eI9aRWh_oGMLCV_TM-VdnkE5K1HXwAc1a185XR2TPQhmx-1UPye355GZ82ZvOL67Gw2lPy0TlPZtZhjI3C24y4FKYNNcaDbPM5ilkdpBimhkLIkOTpADWSg2WgckSEFoqeUhOtnMfg39aY6yLpV-HqllZCKVUIhKVtpTaUjr4GAPaQrsa2jvrAK4sOCvaXIs21-I710br_9Ieg1tB2Pwt5FvhxZW4-YcuhpPZ9Y_7CRoQkPg
CitedBy_id crossref_primary_10_1039_D1TA04360A
crossref_primary_10_1016_j_jcou_2021_101822
crossref_primary_10_1002_smll_202100602
crossref_primary_10_1002_cphc_202200657
crossref_primary_10_1002_ange_202311911
crossref_primary_10_1002_advs_202204472
crossref_primary_10_1016_j_desal_2023_116680
crossref_primary_10_1016_j_cej_2024_158066
crossref_primary_10_1021_acsaem_4c01845
crossref_primary_10_1021_acs_jpcc_4c01686
crossref_primary_10_1002_cssc_202002596
crossref_primary_10_1016_j_jscs_2024_101926
crossref_primary_10_1016_j_mtphys_2023_101250
crossref_primary_10_1016_j_nantod_2020_101028
crossref_primary_10_1016_j_seppur_2024_126520
crossref_primary_10_1021_acsami_1c01477
crossref_primary_10_1021_acsnano_2c09888
crossref_primary_10_1039_D2NJ01497A
crossref_primary_10_1021_acsnano_1c05737
crossref_primary_10_1021_acsami_3c10011
crossref_primary_10_1002_adma_202415639
crossref_primary_10_26599_NRE_2024_9120112
crossref_primary_10_1016_j_mcat_2023_113116
crossref_primary_10_1016_j_apsusc_2022_156025
crossref_primary_10_1016_j_jcat_2023_115128
crossref_primary_10_1039_D1TA06564E
crossref_primary_10_1021_acs_jpclett_2c02180
crossref_primary_10_1002_aenm_202201461
crossref_primary_10_1021_acssuschemeng_4c09914
crossref_primary_10_1002_cey2_362
crossref_primary_10_1016_j_electacta_2021_139526
crossref_primary_10_1016_j_diamond_2024_110849
crossref_primary_10_1021_acs_inorgchem_1c03938
crossref_primary_10_1021_acscatal_2c02715
crossref_primary_10_1021_acsenergylett_3c00489
crossref_primary_10_1002_anie_202104747
crossref_primary_10_1002_smll_202304084
crossref_primary_10_1016_j_jssc_2024_124804
crossref_primary_10_1002_smll_202207305
crossref_primary_10_1016_j_jcou_2021_101802
crossref_primary_10_1021_acscatal_2c03369
crossref_primary_10_1021_acsmaterialslett_2c00751
crossref_primary_10_1021_acsnano_1c07820
crossref_primary_10_3390_catal13071109
crossref_primary_10_1039_D1RA00590A
crossref_primary_10_1039_D2CY00859A
crossref_primary_10_1038_s41467_021_26124_y
crossref_primary_10_1039_D0CS00071J
crossref_primary_10_1002_adma_202110699
crossref_primary_10_1016_j_scriptamat_2023_115509
crossref_primary_10_1002_ange_202014341
crossref_primary_10_1039_D1RA00752A
crossref_primary_10_1002_adma_202400237
crossref_primary_10_1016_j_ensm_2023_03_023
crossref_primary_10_1016_j_jcis_2021_12_174
crossref_primary_10_1021_acssuschemeng_1c06295
crossref_primary_10_1021_acs_jpcc_2c03551
crossref_primary_10_1021_acs_chemrev_2c00469
crossref_primary_10_1039_D2TA01727J
crossref_primary_10_1016_j_jcis_2025_02_017
crossref_primary_10_1039_D1TA01516H
crossref_primary_10_1002_anie_202014341
crossref_primary_10_1021_acscatal_1c04978
crossref_primary_10_1039_D3PY00777D
crossref_primary_10_1002_ente_202200561
crossref_primary_10_1039_D3QM00835E
crossref_primary_10_1002_smll_202206440
crossref_primary_10_1016_j_cej_2024_152855
crossref_primary_10_1002_adma_202105163
crossref_primary_10_1007_s40843_022_2222_6
crossref_primary_10_1039_D3CC04916G
crossref_primary_10_1016_j_apcatb_2020_119723
crossref_primary_10_1039_D1QI00065A
crossref_primary_10_1039_D1EE01495A
crossref_primary_10_1002_ange_202111136
crossref_primary_10_1002_inf2_12375
crossref_primary_10_1021_acs_nanolett_2c03573
crossref_primary_10_1002_aenm_202102447
crossref_primary_10_1088_1361_6528_ad0594
crossref_primary_10_1039_D3TA05498E
crossref_primary_10_1039_D4TA02863E
crossref_primary_10_1007_s41918_023_00183_9
crossref_primary_10_1007_s43979_024_00106_7
crossref_primary_10_1039_D4CC02635G
crossref_primary_10_1016_j_apsusc_2022_155499
crossref_primary_10_1016_j_jpowsour_2024_234298
crossref_primary_10_1039_D4TA01556H
crossref_primary_10_1021_acscatal_4c01519
crossref_primary_10_1002_eom2_12346
crossref_primary_10_1039_D3NR00286A
crossref_primary_10_1016_j_jcis_2021_10_096
crossref_primary_10_1016_j_apcatb_2023_123566
crossref_primary_10_1039_D3EY00034F
crossref_primary_10_1039_D4MH01153H
crossref_primary_10_1039_D1QM00344E
crossref_primary_10_1002_adma_202305587
crossref_primary_10_1039_D0RA10017J
crossref_primary_10_1016_j_seppur_2024_127926
crossref_primary_10_1016_j_apcatb_2021_120693
crossref_primary_10_1002_cssc_202101122
crossref_primary_10_1016_j_mcat_2021_112073
crossref_primary_10_1039_D1QM01557E
crossref_primary_10_1002_anie_202111136
crossref_primary_10_1016_j_cej_2025_159732
crossref_primary_10_1016_j_jechem_2023_01_017
crossref_primary_10_1007_s40843_021_1950_0
crossref_primary_10_1002_ange_202104747
crossref_primary_10_1016_j_mtphys_2021_100479
crossref_primary_10_1016_j_seppur_2023_123806
crossref_primary_10_1016_j_chphma_2024_06_002
crossref_primary_10_1039_D4TA05552G
crossref_primary_10_1016_j_checat_2022_01_021
crossref_primary_10_1016_j_jece_2023_110069
crossref_primary_10_1016_j_scp_2025_101973
crossref_primary_10_1021_acs_nanolett_1c04683
crossref_primary_10_1016_j_jcou_2022_102031
crossref_primary_10_1016_j_jcou_2022_102152
crossref_primary_10_1002_adfm_202006704
crossref_primary_10_1016_j_jiec_2024_07_003
crossref_primary_10_1007_s12274_021_3677_4
crossref_primary_10_1039_D0RA04715E
crossref_primary_10_1039_D1NR00649E
crossref_primary_10_1039_D3QI01522J
crossref_primary_10_1002_celc_202100942
crossref_primary_10_1039_D2TA02086F
crossref_primary_10_1002_aenm_202402278
crossref_primary_10_1016_j_matchemphys_2023_128408
crossref_primary_10_1021_acsanm_4c02570
crossref_primary_10_1016_j_cej_2022_140926
crossref_primary_10_1016_j_apcatb_2021_120481
crossref_primary_10_1002_adfm_202107182
crossref_primary_10_1002_cctc_202201321
crossref_primary_10_1016_j_microc_2023_108861
crossref_primary_10_1016_j_jclepro_2023_138912
crossref_primary_10_1002_adfm_202315368
crossref_primary_10_1021_acsami_3c13240
crossref_primary_10_1002_anie_202102832
crossref_primary_10_1016_j_chemosphere_2022_134570
crossref_primary_10_1039_D1RA01185E
crossref_primary_10_1016_j_mcat_2025_114845
crossref_primary_10_1021_acsami_2c01152
crossref_primary_10_1016_j_pecs_2024_101175
crossref_primary_10_1016_j_fuel_2021_121127
crossref_primary_10_1021_acscatal_1c02495
crossref_primary_10_1016_S1872_5805_22_60592_4
crossref_primary_10_1021_acscatal_2c05155
crossref_primary_10_1007_s12598_021_01728_x
crossref_primary_10_1002_ange_202407665
crossref_primary_10_1007_s11426_024_2384_6
crossref_primary_10_1002_smll_202400191
crossref_primary_10_1039_D2DT03112D
crossref_primary_10_1002_zaac_202400213
crossref_primary_10_1002_eem2_12204
crossref_primary_10_1002_smll_202306795
crossref_primary_10_1016_j_chempr_2024_02_014
crossref_primary_10_1073_pnas_2305604120
crossref_primary_10_1002_slct_202405553
crossref_primary_10_1007_s12274_022_4199_4
crossref_primary_10_1002_adfm_202424357
crossref_primary_10_1021_acs_jpclett_2c02570
crossref_primary_10_1002_cctc_202401007
crossref_primary_10_1016_j_matre_2023_100181
crossref_primary_10_1016_j_mcat_2024_113926
crossref_primary_10_1002_smll_202408132
crossref_primary_10_1016_j_jmgm_2022_108321
crossref_primary_10_1021_acs_nanolett_1c02053
crossref_primary_10_1002_adfm_202113075
crossref_primary_10_1016_j_cjche_2022_03_006
crossref_primary_10_1002_celc_202001613
crossref_primary_10_1016_j_ces_2022_118354
crossref_primary_10_1021_acs_inorgchem_4c03106
crossref_primary_10_1039_D2GC04482J
crossref_primary_10_1002_anie_202306503
crossref_primary_10_1039_D4CP03161J
crossref_primary_10_1016_j_jcou_2022_102228
crossref_primary_10_1002_anie_202311911
crossref_primary_10_1016_j_ces_2021_117409
crossref_primary_10_1039_D4NJ00948G
crossref_primary_10_1007_s12274_024_6536_2
crossref_primary_10_1016_j_cej_2022_137311
crossref_primary_10_1016_j_fuel_2021_121341
crossref_primary_10_1016_j_matre_2023_100191
crossref_primary_10_3390_pr10050826
crossref_primary_10_1007_s12274_021_3694_3
crossref_primary_10_1016_j_fuel_2022_124103
crossref_primary_10_1007_s11581_023_05000_3
crossref_primary_10_1016_j_ijoes_2024_100792
crossref_primary_10_1002_ange_202306503
crossref_primary_10_1021_acs_jpcc_1c03790
crossref_primary_10_1021_acsami_3c05892
crossref_primary_10_1016_j_jiec_2022_06_001
crossref_primary_10_1021_acsomega_2c01562
crossref_primary_10_1016_j_cattod_2023_114284
crossref_primary_10_1039_D1RA08572G
crossref_primary_10_3390_coatings13122088
crossref_primary_10_1002_ange_202104564
crossref_primary_10_1016_j_nanoen_2023_108638
crossref_primary_10_1002_adfm_202400928
crossref_primary_10_3390_catal14030191
crossref_primary_10_1016_j_apcatb_2022_121377
crossref_primary_10_1039_D0RA06812H
crossref_primary_10_1039_D0RA08732G
crossref_primary_10_1002_smll_202306129
crossref_primary_10_1088_1361_6528_ad7145
crossref_primary_10_1007_s12274_023_5444_1
crossref_primary_10_1016_j_colsurfa_2021_127840
crossref_primary_10_1021_acs_energyfuels_3c04866
crossref_primary_10_1016_j_mcat_2024_113894
crossref_primary_10_1002_anie_202407665
crossref_primary_10_1039_D2TA08521F
crossref_primary_10_1016_j_electacta_2022_141256
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1002_adsu_202400562
crossref_primary_10_1007_s40820_024_01480_8
crossref_primary_10_1002_ange_202318585
crossref_primary_10_1134_S1023193522080079
crossref_primary_10_1039_D4TA08653H
crossref_primary_10_1016_j_cej_2021_131514
crossref_primary_10_1039_D1TA09142E
crossref_primary_10_1016_j_scib_2021_03_020
crossref_primary_10_1039_D0TA11880J
crossref_primary_10_1002_aenm_202103960
crossref_primary_10_6023_A22010012
crossref_primary_10_1016_j_electacta_2023_142893
crossref_primary_10_1021_acsaem_1c01195
crossref_primary_10_1039_D2TA04485D
crossref_primary_10_1002_anie_202318585
crossref_primary_10_1021_acsaem_2c02048
crossref_primary_10_1021_acs_inorgchem_2c03073
crossref_primary_10_1016_j_jpowsour_2021_230638
crossref_primary_10_1002_celc_202101648
crossref_primary_10_1016_j_cej_2023_143531
crossref_primary_10_1016_j_chemosphere_2024_143312
crossref_primary_10_1016_j_jcou_2023_102604
crossref_primary_10_1039_D3CP03822J
crossref_primary_10_1007_s40820_023_01092_8
crossref_primary_10_1002_anie_202408412
crossref_primary_10_1016_j_jece_2022_109171
crossref_primary_10_1007_s12274_021_3903_0
crossref_primary_10_1002_ange_202408412
crossref_primary_10_1002_aenm_202101424
crossref_primary_10_1016_j_ccr_2021_213902
crossref_primary_10_1002_anie_202104564
crossref_primary_10_1007_s11426_024_2112_2
crossref_primary_10_1002_adma_202008631
crossref_primary_10_1039_D2CC00114D
crossref_primary_10_1021_acs_jpcc_2c07203
crossref_primary_10_1002_ange_202102832
crossref_primary_10_1016_j_ijhydene_2022_03_229
crossref_primary_10_1021_acsestengg_3c00249
Cites_doi 10.1002/anie.201509800
10.1021/acs.nanolett.9b02748
10.1002/anie.201900167
10.1038/s41929-019-0241-7
10.1038/s41929-018-0200-8
10.1038/s41929-019-0306-7
10.1038/s41560-019-0450-y
10.1002/adma.201802858
10.1039/C9TA06750G
10.1126/science.aas9100
10.1038/nature16455
10.1016/j.joule.2019.05.010
10.1016/j.nanoen.2020.104601
10.1039/C9TA13298H
10.1002/smll.201804224
10.1016/j.joule.2018.11.008
10.1021/acs.chemrev.8b00705
10.1002/adma.201808135
10.1002/adma.201903470
10.1038/s41560-019-0451-x
10.1002/anie.201907674
10.1021/acscatal.9b00366
10.1002/anie.201807466
10.1038/s41467-018-03712-z
10.1038/s41467-019-08805-x
10.1038/nature11475
10.1021/acscatal.9b02443
10.1038/nmat4834
10.1002/anie.202000657
10.1039/C9CC02522G
10.1038/s41467-018-06311-0
10.1021/acs.nanolett.9b02782
10.1360/N032018-00043
10.1021/jacs.8b13786
10.1038/s41929-019-0235-5
10.1016/j.joule.2018.10.015
10.1038/s41467-020-14914-9
10.1021/acscatal.7b03242
10.1002/anie.201807891
10.1002/anie.201808049
10.1021/acscatal.9b04516
10.1038/s41586-019-1782-2
10.1021/acscatal.9b04368
10.1038/s41467-019-11903-5
10.1038/s41929-018-0084-7
10.1002/adma.201905679
10.1039/C8SC04344B
10.1039/C9TA03611C
10.1021/jacs.5b12484
10.1039/C9EE00018F
10.1016/j.apcatb.2019.118134
10.1007/978-0-387-49489-0_3
10.1038/s41929-018-0168-4
10.1021/acscatal.9b02312
10.1002/aenm.201702524
10.1021/jacs.9b11123
10.1002/adma.201802066
10.1038/s41467-019-10819-4
10.1021/acscatal.9b04043
10.1039/C9TA09681G
10.1002/adfm.201906478
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202001709
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202001709
AENM202001709
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21673087; 21873032; 21903032
– fundername: Electron Microscope Center
– fundername: Shenzhen University
– fundername: Shenzhen University Young Teacher Research Project
  funderid: 000002110713
– fundername: HRTEM
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3549-f7f0e39db1d7a132d69cced0f0f96a7f86e67dfa27ed56aaff3caf0ad75a2c343
ISSN 1614-6832
IngestDate Fri Jul 25 12:33:57 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Tue Jul 01 01:43:35 EDT 2025
Wed Jan 22 16:32:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3549-f7f0e39db1d7a132d69cced0f0f96a7f86e67dfa27ed56aaff3caf0ad75a2c343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9524-2843
PQID 2444525464
PQPubID 886389
PageCount 7
ParticipantIDs proquest_journals_2444525464
crossref_citationtrail_10_1002_aenm_202001709
crossref_primary_10_1002_aenm_202001709
wiley_primary_10_1002_aenm_202001709_AENM202001709
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2019 2019 2018; 3 3 57
2019; 9
2019 2020 2019 2019 2019; 119 8 2 2 4
2019 2019 2019; 10 19 58
2020 2020; 10 10
2019; 55
2019; 2
2012 2017 2020 2019; 488 16 32 32
2019; 10
2016 2018; 138 57
2019; 58
2020 2018 2020; 30 8 59
2008
2019; 19
2019 2020 2020; 12 10 11
2018 2018; 30 9
2019 2019; 141 15
2018 2020 2020 2020; 360 577 71
2020 2018 2018; 260 1 9
2018; 1
2019 2019 2019 2018 2019; 141 9 9 8 31
2016 2016; 529 55
2019 2019; 3 2
2018 2019 2019 2019 2019 2018; 30 7 31 10 4 48
2018; 57
e_1_2_4_21_1
e_1_2_4_21_3
e_1_2_4_23_1
e_1_2_4_21_2
e_1_2_4_25_1
e_1_2_4_23_2
e_1_2_4_27_1
e_1_2_4_27_3
Qiao J. (e_1_2_4_1_3) 2020; 32
e_1_2_4_27_2
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_3_3
e_1_2_4_5_1
e_1_2_4_1_4
e_1_2_4_3_2
Vasileff A. (e_1_2_4_7_3) 2020
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_7_2
e_1_2_4_9_3
e_1_2_4_7_4
e_1_2_4_9_2
e_1_2_4_9_5
e_1_2_4_9_4
e_1_2_4_9_6
e_1_2_4_10_1
e_1_2_4_10_2
e_1_2_4_10_3
e_1_2_4_12_1
e_1_2_4_10_4
e_1_2_4_10_5
e_1_2_4_14_1
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_16_2
e_1_2_4_18_3
e_1_2_4_18_2
e_1_2_4_20_1
e_1_2_4_22_2
e_1_2_4_22_1
e_1_2_4_24_1
e_1_2_4_26_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_2
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_2
e_1_2_4_8_1
e_1_2_4_8_4
e_1_2_4_8_3
e_1_2_4_8_5
e_1_2_4_11_1
e_1_2_4_13_1
e_1_2_4_13_2
e_1_2_4_13_3
e_1_2_4_15_1
e_1_2_4_15_2
e_1_2_4_17_1
e_1_2_4_19_2
e_1_2_4_19_1
References_xml – volume: 12 10 11
  start-page: 1334 358 1088
  year: 2019 2020 2020
  publication-title: Energy Environ. Sci. ACS Catal. Nat. Commun.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 8461
  year: 2019
  publication-title: Nano Lett.
– volume: 119 8 2 2 4
  start-page: 7610 1511 198 648 732
  year: 2019 2020 2019 2019 2019
  publication-title: Chem. Rev. J. Mater. Chem. A Nat. Catal. Nat. Catal. Nat. Energy
– volume: 30 9
  start-page: 1320
  year: 2018 2018
  publication-title: Adv. Mater. Nat. Commun.
– volume: 529 55
  start-page: 68 698
  year: 2016 2016
  publication-title: Nature Angew. Chem., Int. Ed.
– volume: 360 577 71
  start-page: 783 509
  year: 2018 2020 2020 2020
  publication-title: Science Nature Angew. Chem., Int. Ed. Nano Energy
– volume: 138 57
  start-page: 1970
  year: 2016 2018
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 10
  start-page: 2199
  year: 2019
  publication-title: Chem. Sci.
– volume: 141 15
  year: 2019 2019
  publication-title: J. Am. Chem. Soc. Small
– volume: 10 10
  start-page: 672 743
  year: 2020 2020
  publication-title: ACS Catal. ACS Catal.
– volume: 260 1 9
  start-page: 946 3828
  year: 2020 2018 2018
  publication-title: Appl. Catal., B Nat. Catal. Nat. Commun.
– volume: 30 7 31 10 4 48
  start-page: 2807 776 1027
  year: 2018 2019 2019 2019 2019 2018
  publication-title: Adv. Mater. J. Mater. Chem. A Adv. Mater. Nat. Commun. Nat. Energy Sci. Sin.: Chim.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10 19 58
  start-page: 892 6547 5609
  year: 2019 2019 2019
  publication-title: Nat. Commun. Nano Lett. Angew. Chem., Int. Ed.
– volume: 3 2
  start-page: 1703 55
  year: 2019 2019
  publication-title: Joule Nat. Catal.
– start-page: 89
  year: 2008
  end-page: 189
– volume: 55
  start-page: 8796
  year: 2019
  publication-title: Chem. Commun.
– volume: 2
  start-page: 448
  year: 2019
  publication-title: Nat. Catal.
– volume: 30 8 59
  start-page: 931
  year: 2020 2018 2020
  publication-title: Adv. Funct. Mater. ACS Catal. Angew. Chem., Int. Ed.
– volume: 3 3 57
  start-page: 584 265
  year: 2019 2019 2018
  publication-title: Joule Joule Angew. Chem., Int. Ed.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 488 16 32 32
  start-page: 294 16 631
  year: 2012 2017 2020 2019
  publication-title: Nature Nat. Mater. Chem. Soc. Rev. Adv. Mater.
– volume: 9
  start-page: 2902
  year: 2019
  publication-title: ACS Catal.
– volume: 1
  start-page: 421
  year: 2018
  publication-title: Nat. Catal.
– volume: 141 9 9 8 31
  start-page: 2911 9411
  year: 2019 2019 2019 2018 2019
  publication-title: J. Am. Chem. Soc. ACS Catal. ACS Catal. Adv. Energy Mater. Adv. Mater.
– volume: 10
  start-page: 3919
  year: 2019
  publication-title: Nat. Commun.
– ident: e_1_2_4_15_2
  doi: 10.1002/anie.201509800
– ident: e_1_2_4_28_1
  doi: 10.1021/acs.nanolett.9b02748
– ident: e_1_2_4_13_3
  doi: 10.1002/anie.201900167
– ident: e_1_2_4_25_1
  doi: 10.1038/s41929-019-0241-7
– ident: e_1_2_4_4_2
  doi: 10.1038/s41929-018-0200-8
– ident: e_1_2_4_8_4
  doi: 10.1038/s41929-019-0306-7
– ident: e_1_2_4_8_5
  doi: 10.1038/s41560-019-0450-y
– ident: e_1_2_4_19_1
  doi: 10.1002/adma.201802858
– ident: e_1_2_4_17_1
  doi: 10.1039/C9TA06750G
– ident: e_1_2_4_7_1
  doi: 10.1126/science.aas9100
– ident: e_1_2_4_15_1
  doi: 10.1038/nature16455
– ident: e_1_2_4_4_1
  doi: 10.1016/j.joule.2019.05.010
– ident: e_1_2_4_7_4
  doi: 10.1016/j.nanoen.2020.104601
– ident: e_1_2_4_8_2
  doi: 10.1039/C9TA13298H
– ident: e_1_2_4_16_2
  doi: 10.1002/smll.201804224
– ident: e_1_2_4_3_1
  doi: 10.1016/j.joule.2018.11.008
– ident: e_1_2_4_8_1
  doi: 10.1021/acs.chemrev.8b00705
– ident: e_1_2_4_10_5
  doi: 10.1002/adma.201808135
– ident: e_1_2_4_9_3
  doi: 10.1002/adma.201903470
– ident: e_1_2_4_9_5
  doi: 10.1038/s41560-019-0451-x
– ident: e_1_2_4_26_1
  doi: 10.1002/anie.201907674
– ident: e_1_2_4_24_1
  doi: 10.1021/acscatal.9b00366
– ident: e_1_2_4_20_1
  doi: 10.1002/anie.201807466
– ident: e_1_2_4_19_2
  doi: 10.1038/s41467-018-03712-z
– ident: e_1_2_4_13_1
  doi: 10.1038/s41467-019-08805-x
– ident: e_1_2_4_1_1
  doi: 10.1038/nature11475
– ident: e_1_2_4_10_2
  doi: 10.1021/acscatal.9b02443
– ident: e_1_2_4_1_2
  doi: 10.1038/nmat4834
– ident: e_1_2_4_21_3
  doi: 10.1002/anie.202000657
– ident: e_1_2_4_2_1
  doi: 10.1039/C9CC02522G
– ident: e_1_2_4_27_3
  doi: 10.1038/s41467-018-06311-0
– ident: e_1_2_4_13_2
  doi: 10.1021/acs.nanolett.9b02782
– ident: e_1_2_4_9_6
  doi: 10.1360/N032018-00043
– ident: e_1_2_4_10_1
  doi: 10.1021/jacs.8b13786
– ident: e_1_2_4_8_3
  doi: 10.1038/s41929-019-0235-5
– ident: e_1_2_4_3_2
  doi: 10.1016/j.joule.2018.10.015
– ident: e_1_2_4_18_3
  doi: 10.1038/s41467-020-14914-9
– year: 2020
  ident: e_1_2_4_7_3
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_4_21_2
  doi: 10.1021/acscatal.7b03242
– ident: e_1_2_4_23_2
  doi: 10.1002/anie.201807891
– ident: e_1_2_4_3_3
  doi: 10.1002/anie.201808049
– ident: e_1_2_4_18_2
  doi: 10.1021/acscatal.9b04516
– ident: e_1_2_4_7_2
  doi: 10.1038/s41586-019-1782-2
– ident: e_1_2_4_22_1
  doi: 10.1021/acscatal.9b04368
– ident: e_1_2_4_14_1
  doi: 10.1038/s41467-019-11903-5
– ident: e_1_2_4_5_1
  doi: 10.1038/s41929-018-0084-7
– ident: e_1_2_4_1_4
  doi: 10.1002/adma.201905679
– ident: e_1_2_4_6_1
  doi: 10.1039/C8SC04344B
– ident: e_1_2_4_11_1
  doi: 10.1039/C9TA03611C
– ident: e_1_2_4_23_1
  doi: 10.1021/jacs.5b12484
– volume: 32
  start-page: 631
  year: 2020
  ident: e_1_2_4_1_3
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_4_18_1
  doi: 10.1039/C9EE00018F
– ident: e_1_2_4_27_1
  doi: 10.1016/j.apcatb.2019.118134
– ident: e_1_2_4_12_1
  doi: 10.1007/978-0-387-49489-0_3
– ident: e_1_2_4_27_2
  doi: 10.1038/s41929-018-0168-4
– ident: e_1_2_4_10_3
  doi: 10.1021/acscatal.9b02312
– ident: e_1_2_4_10_4
  doi: 10.1002/aenm.201702524
– ident: e_1_2_4_16_1
  doi: 10.1021/jacs.9b11123
– ident: e_1_2_4_9_1
  doi: 10.1002/adma.201802066
– ident: e_1_2_4_9_4
  doi: 10.1038/s41467-019-10819-4
– ident: e_1_2_4_22_2
  doi: 10.1021/acscatal.9b04043
– ident: e_1_2_4_9_2
  doi: 10.1039/C9TA09681G
– ident: e_1_2_4_21_1
  doi: 10.1002/adfm.201906478
SSID ssj0000491033
Score 2.670309
Snippet Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack...
Electroreduction of carbon dioxide (CO 2 ) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bismuth
Carbon dioxide
CO2 electroreduction
Current density
Diffusion effects
Electrocatalysts
Electrowinning
flow cells
Flow stability
Formic acid
hybrid Bi/BiO surface
Industrial applications
leafy Bi nanosheets
Nanosheets
Selectivity
Surface structure
Title Bi‐Based Metal‐Organic Framework Derived Leafy Bismuth Nanosheets for Carbon Dioxide Electroreduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202001709
https://www.proquest.com/docview/2444525464
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOK56isCAfkDhUAcfOY3Ns2a5Wq7YcaEVvkePYbCRIUR_SwokDP4DfyC9h_IiTZXksXKJmZLmt58t4ZjL-BqFnJVGUpYUKGBU6dROKgBdhETBChYyy5IiZavfpLDldRGfLeNnrfe1ULe22xQvx-ZfnSv5HqyADvepTsv-gWT8pCOAz6BeuoGG4XkvHo8rXKoxgNyoHUwm-tJfZc5ZCO6e2AAusyxqsW6lZVdWnwajafNhtz7WFXW3OpdwabgZdA1IAJo6r1UVVysHYNspZa45Xr8WGt7apIJD2CCG4v_Z_e2Pi0tFnHRS-dbJlxXXHoDb1araDna6pf3d1bN3NT0Aw2hRgXdcKdqwv-AoBwMOaZ9mVWU4nb7JJB5qWQOXKVmCpZbmsNd8ANTxBWbvpNS_6Z6_zk8Vkks_Hy_kNtE8h2ABruT88nk7e-FwdRFEhYeasRvMLG_5PQl9e_orL_k0btHRDH-O7zG-jAxd04KFF0B3Uk_VddKtDRXkPVaPq-5dvBkXYoAjuHH6wxw92-MEGP9jhB7f4wYAfbPGDHX7wz_i5jxYn4_mr08C14QgEi6MsUKkikmVlEZYpDxktk0wAsogiKkt4qo4SmaSl4jSVZZxwrhQTXBFepjGngkXsAdqrV7V8iHDGuCqk5HFBikgJmTFw0USimx6kIUzfR0GzeLlwHPW6Vcr73LJr01wvdu4Xu4-e-_EfLTvLb0ceNrrI3RO8ycG11a_1oyTqI2r085dZ8uF4NvV3j_4852N0s30eDtHedr2TT8CD3RZPHcB-APzHndg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi%E2%80%90Based+Metal%E2%80%90Organic+Framework+Derived+Leafy+Bismuth+Nanosheets+for+Carbon+Dioxide+Electroreduction&rft.jtitle=Advanced+energy+materials&rft.au=Yang%2C+Jian&rft.au=Wang%2C+Xiaolin&rft.au=Qu%2C+Yunteng&rft.au=Wang%2C+Xin&rft.date=2020-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=36&rft_id=info:doi/10.1002%2Faenm.202001709&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon