Interface‐Induced Pseudocapacitance in Nonporous Heterogeneous Particles for High Volumetric Sodium Storage

Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short solid‐state diffusion distance and high surface area, which leads to low volumetric capacity and severe parasitic reactions. In this work, non...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 42
Main Authors Zhao, Bo, Liu, Qianqian, Chen, Yujie, Liu, Qian, Yu, Qian, Wu, Hao Bin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short solid‐state diffusion distance and high surface area, which leads to low volumetric capacity and severe parasitic reactions. In this work, nonporous bulky heterogeneous particles composed of TiO2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such nonporous heterogeneous particles exhibit “interface‐induced pseudocapacitance” with an enhanced volumetric capacity, which is over 50% higher than that of commercial hard carbon anodes. This study demonstrates heterogeneous particles with a well‐engineered nanostructure as a new paradigm for electrode materials design. Nonporous bulky heterogeneous particles composed of a TiO2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such “interface‐induced pseudocapacitance” in nonporous particles leads to enhanced volumetric capacity.
AbstractList Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short solid‐state diffusion distance and high surface area, which leads to low volumetric capacity and severe parasitic reactions. In this work, nonporous bulky heterogeneous particles composed of TiO2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such nonporous heterogeneous particles exhibit “interface‐induced pseudocapacitance” with an enhanced volumetric capacity, which is over 50% higher than that of commercial hard carbon anodes. This study demonstrates heterogeneous particles with a well‐engineered nanostructure as a new paradigm for electrode materials design.
Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short solid‐state diffusion distance and high surface area, which leads to low volumetric capacity and severe parasitic reactions. In this work, nonporous bulky heterogeneous particles composed of TiO 2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such nonporous heterogeneous particles exhibit “interface‐induced pseudocapacitance” with an enhanced volumetric capacity, which is over 50% higher than that of commercial hard carbon anodes. This study demonstrates heterogeneous particles with a well‐engineered nanostructure as a new paradigm for electrode materials design.
Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short solid‐state diffusion distance and high surface area, which leads to low volumetric capacity and severe parasitic reactions. In this work, nonporous bulky heterogeneous particles composed of TiO2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such nonporous heterogeneous particles exhibit “interface‐induced pseudocapacitance” with an enhanced volumetric capacity, which is over 50% higher than that of commercial hard carbon anodes. This study demonstrates heterogeneous particles with a well‐engineered nanostructure as a new paradigm for electrode materials design. Nonporous bulky heterogeneous particles composed of a TiO2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such “interface‐induced pseudocapacitance” in nonporous particles leads to enhanced volumetric capacity.
Author Liu, Qianqian
Chen, Yujie
Zhao, Bo
Liu, Qian
Yu, Qian
Wu, Hao Bin
Author_xml – sequence: 1
  givenname: Bo
  surname: Zhao
  fullname: Zhao, Bo
  organization: Zhejiang University
– sequence: 2
  givenname: Qianqian
  surname: Liu
  fullname: Liu, Qianqian
  organization: Zhejiang University
– sequence: 3
  givenname: Yujie
  surname: Chen
  fullname: Chen, Yujie
  organization: Zhejiang University
– sequence: 4
  givenname: Qian
  surname: Liu
  fullname: Liu, Qian
  organization: Zhejiang University
– sequence: 5
  givenname: Qian
  surname: Yu
  fullname: Yu, Qian
  organization: Zhejiang University
– sequence: 6
  givenname: Hao Bin
  orcidid: 0000-0002-0725-6442
  surname: Wu
  fullname: Wu, Hao Bin
  email: hbwu@zju.edu.cn
  organization: Zhejiang University
BookMark eNqFkMFKAzEQhoNUsK1ePQc8tya7yXb3WKq1haqFqnhb0mRSU3aTmuwivfkIPqNP4pZKBUE8zT_D_80wfwe1rLOA0DklfUpIdCmULvsRiRpNaHaE2jShSS8mUdo6aPp8gjohrAmhg0HM2qic2gq8FhI-3z-mVtUSFJ4HqJWTYiOkqYSVgI3Fd85unHd1wBNoELcCC7tuLnxlZAEBa-fxxKxe8JMr6hIqbyReOGXqEi8q58UKTtGxFkWAs-_aRY_j64fRpDe7v5mOhrOejDnLepqkhKeM0DSjnAqdSMF1SiWLOVegJKfNPEqVzhItB0tGtJQxgUwyWC6VWsZddLHfu_HutYZQ5WtXe9uczCPGacwSnsaNi-1d0rsQPOh8925lnK28MEVOSb4LNt8Fmx-CbbD-L2zjTSn89m8g2wNvpoDtP-58eDW-_WG_AJ1bkKQ
CitedBy_id crossref_primary_10_1039_D2DT00924B
crossref_primary_10_1002_aenm_202302426
crossref_primary_10_1016_j_apsusc_2023_156875
crossref_primary_10_1007_s40843_021_1969_8
crossref_primary_10_1016_j_jcis_2022_01_022
crossref_primary_10_1021_acsanm_0c02290
crossref_primary_10_1002_slct_202204669
crossref_primary_10_1016_j_ces_2021_117241
crossref_primary_10_1016_j_jechem_2021_11_040
crossref_primary_10_1039_D4NH00406J
crossref_primary_10_1016_j_jcis_2022_09_063
crossref_primary_10_1021_acsami_1c20154
crossref_primary_10_1016_j_jcis_2021_09_022
crossref_primary_10_1016_j_electacta_2024_145257
crossref_primary_10_1016_j_ssi_2022_115927
crossref_primary_10_1021_acsnano_2c00557
crossref_primary_10_1021_acsaem_4c01257
crossref_primary_10_1002_adfm_202423530
crossref_primary_10_1021_acsami_2c03773
crossref_primary_10_1016_j_cej_2021_130534
crossref_primary_10_1016_j_mseb_2023_116684
crossref_primary_10_1002_adfm_202203291
crossref_primary_10_1016_j_isci_2023_106642
crossref_primary_10_1039_D1TA01930A
crossref_primary_10_1016_j_est_2024_110788
crossref_primary_10_1016_j_compositesb_2023_110532
crossref_primary_10_1007_s40843_023_2460_6
crossref_primary_10_1016_j_jssc_2023_124014
crossref_primary_10_1039_D1TA09567F
crossref_primary_10_1002_smll_202312119
crossref_primary_10_1016_j_jallcom_2023_170936
crossref_primary_10_3390_molecules29133219
crossref_primary_10_3390_molecules28124571
crossref_primary_10_1016_j_est_2024_112001
crossref_primary_10_1038_s41598_024_82179_z
crossref_primary_10_1016_j_bios_2024_116080
crossref_primary_10_1142_S1793604722500199
crossref_primary_10_1016_j_electacta_2023_141910
crossref_primary_10_1016_j_cej_2021_133555
crossref_primary_10_1021_acs_energyfuels_1c04338
crossref_primary_10_1016_j_carbon_2024_119066
crossref_primary_10_1002_adfm_202205667
crossref_primary_10_1007_s12598_023_02269_1
crossref_primary_10_1016_j_jpowsour_2021_230746
crossref_primary_10_1016_j_apsusc_2023_156955
crossref_primary_10_3390_ma15238377
crossref_primary_10_1007_s11581_022_04793_z
crossref_primary_10_1016_j_jallcom_2022_166849
crossref_primary_10_1016_j_mtsust_2023_100620
crossref_primary_10_1016_j_renene_2022_10_102
crossref_primary_10_1039_D0TA12417F
crossref_primary_10_1016_j_nanoen_2023_109020
crossref_primary_10_1002_smll_202207224
crossref_primary_10_1016_j_electacta_2023_143226
crossref_primary_10_1007_s12598_021_01864_4
crossref_primary_10_1007_s12598_023_02399_6
crossref_primary_10_1021_acsomega_2c07689
crossref_primary_10_1002_smll_202409304
crossref_primary_10_1016_j_matchemphys_2022_126806
crossref_primary_10_1021_acsaem_2c02129
crossref_primary_10_1039_D4TA02211D
crossref_primary_10_1002_smll_202300605
crossref_primary_10_1016_j_cej_2022_139768
crossref_primary_10_1007_s11581_021_03906_4
crossref_primary_10_1007_s12274_023_5539_8
crossref_primary_10_1039_D3NJ00992K
crossref_primary_10_1016_j_jcis_2021_07_031
crossref_primary_10_1016_j_jallcom_2022_164758
crossref_primary_10_1021_acs_energyfuels_3c00801
crossref_primary_10_1021_acssuschemeng_2c03375
crossref_primary_10_1016_j_est_2024_112548
crossref_primary_10_1002_celc_202100793
crossref_primary_10_1016_j_ssi_2022_116114
crossref_primary_10_1002_aenm_202201834
crossref_primary_10_1016_j_electacta_2023_142422
crossref_primary_10_1016_j_est_2024_114206
crossref_primary_10_1016_j_cej_2021_134100
crossref_primary_10_1021_acs_jpclett_1c02969
crossref_primary_10_1039_D4TA02303J
crossref_primary_10_1016_j_est_2024_110441
crossref_primary_10_1021_acsnano_2c05232
crossref_primary_10_1002_adma_202416665
crossref_primary_10_1016_j_ces_2022_117633
crossref_primary_10_1016_j_matchemphys_2023_127591
crossref_primary_10_1021_acsami_4c04855
crossref_primary_10_1016_j_jelechem_2024_118339
crossref_primary_10_1039_D1QM00867F
Cites_doi 10.1039/C6EE01501H
10.1016/j.nanoen.2017.12.038
10.1126/science.aao2808
10.1002/adma.201602300
10.1021/acsnano.7b00557
10.1038/nnano.2015.194
10.1021/acsnano.9b03766
10.1021/nn303002u
10.1016/j.nanoen.2017.03.003
10.1021/cr3001862
10.1039/c3ta12040f
10.1038/nmat3601
10.1038/s41560-017-0026-7
10.1002/cssc.201900582
10.1126/science.1249625
10.1002/adma.201607015
10.1021/cr400634p
10.1002/adma.201704337
10.1002/adfm.201402943
10.1021/acssuschemeng.6b02722
10.1002/adfm.201100854
10.1039/C3NR06730K
10.1038/s41560-017-0014-y
10.1038/ncomms5033
10.1021/cr300439k
10.1002/aenm.201501436
10.1002/advs.201600243
10.1021/acsnano.6b08332
10.1038/s41586-018-0347-0
10.1016/j.elecom.2013.01.001
10.1126/sciadv.1501038
10.1021/nn502045y
10.1016/j.ensm.2018.10.002
10.1038/507026a
10.1088/2053-1591/3/6/064001
10.1002/aenm.201803070
10.1002/anie.201813721
10.1002/adfm.201906680
10.1002/aenm.201200346
10.1038/ncomms12122
10.1038/s41467-018-07595-y
10.1002/adma.201504412
10.1021/am508670z
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202002019
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202002019
ADFM202002019
Genre article
GrantInformation_xml – fundername: Zhejiang University
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3549-f0805840189151af6ca5f81c4355dedc5191528df96fc7b40fcc30e9c4ebbddb3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:52:36 EDT 2025
Tue Jul 01 04:12:18 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Wed Jan 22 16:33:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3549-f0805840189151af6ca5f81c4355dedc5191528df96fc7b40fcc30e9c4ebbddb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0725-6442
PQID 2451346583
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2451346583
crossref_citationtrail_10_1002_adfm_202002019
crossref_primary_10_1002_adfm_202002019
wiley_primary_10_1002_adfm_202002019_ADFM202002019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2016; 6
2015; 25
2019; 9
2019; 13
2017; 11
2019; 12
2017; 35
2015; 10
2013 2013; 1 29
2013 2014 2018; 113 6 30
2017 2017 2013; 29 29 113
2017 2017; 35 11
2018 2014 2019 2019; 9 5 29 18
2015 2014 2016 2012; 7 114 28 6
2016 2016 2013 2016; 2 3 3 7
2019 2017; 58 4
2018; 45
2017 2017 2014; 2 2 507
2018 2013; 559 12
2014 2011; 8 21
2017; 358
2016; 9
2014; 343
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_1_3
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_7_4
e_1_2_7_7_3
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_15_4
e_1_2_7_17_2
e_1_2_7_18_1
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_23_3
e_1_2_7_23_2
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 2314
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 8 21
  start-page: 7115 3859
  year: 2014 2011
  publication-title: ACS Nano Adv. Funct. Mater.
– volume: 11
  start-page: 5530
  year: 2017
  publication-title: ACS Nano
– volume: 45
  start-page: 136
  year: 2018
  publication-title: Nano Energy
– volume: 9 5 29 18
  start-page: 5100 4033 107
  year: 2018 2014 2019 2019
  publication-title: Nat. Commun. Nat. Commun. Adv. Funct. Mater. Energy Storage Mater.
– volume: 12
  start-page: 2415
  year: 2019
  publication-title: ChemSusChem
– volume: 2 3 3 7
  start-page: 128
  year: 2016 2016 2013 2016
  publication-title: Sci. Adv. Mater. Res. Express Adv. Energy Mater. Nat. Commun.
– volume: 10
  start-page: 980
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 9247
  year: 2019
  publication-title: ACS Nano
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 343
  start-page: 1210
  year: 2014
  publication-title: Science
– volume: 1 29
  start-page: 8
  year: 2013 2013
  publication-title: J. Mater. Chem. A Electrochem. Commun.
– volume: 559 12
  start-page: 556 518
  year: 2018 2013
  publication-title: Nature Nat. Mater.
– volume: 113 6 30
  start-page: 6552 6328
  year: 2013 2014 2018
  publication-title: Chem. Rev. Nanoscale Adv. Mater.
– volume: 7 114 28 6
  start-page: 6567 9853 2259 8308
  year: 2015 2014 2016 2012
  publication-title: ACS Appl. Mater. Interfaces Chem. Rev. Adv. Mater. ACS Nano
– volume: 5
  start-page: 2393
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 35 11
  start-page: 44 2952
  year: 2017 2017
  publication-title: Nano Energy ACS Nano
– volume: 35
  start-page: 44
  year: 2017
  publication-title: Nano Energy
– volume: 58 4
  start-page: 4022
  year: 2019 2017
  publication-title: Angew. Chem., Int. Ed. Adv. Sci.
– volume: 2 2 507
  start-page: 836 861 26
  year: 2017 2017 2014
  publication-title: Nat. Energy Nat. Energy Nature
– volume: 358
  year: 2017
  publication-title: Science
– volume: 29 29 113
  start-page: 6734
  year: 2017 2017 2013
  publication-title: Adv. Mater. Adv. Mater. Chem. Rev.
– volume: 25
  start-page: 214
  year: 2015
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_10_1
  doi: 10.1039/C6EE01501H
– ident: e_1_2_7_24_1
  doi: 10.1016/j.nanoen.2017.12.038
– ident: e_1_2_7_3_1
  doi: 10.1126/science.aao2808
– ident: e_1_2_7_5_2
  doi: 10.1002/adma.201602300
– ident: e_1_2_7_20_1
  doi: 10.1021/acsnano.7b00557
– ident: e_1_2_7_11_1
  doi: 10.1038/nnano.2015.194
– ident: e_1_2_7_16_1
  doi: 10.1021/acsnano.9b03766
– ident: e_1_2_7_15_4
  doi: 10.1021/nn303002u
– ident: e_1_2_7_19_1
  doi: 10.1016/j.nanoen.2017.03.003
– ident: e_1_2_7_23_1
  doi: 10.1021/cr3001862
– ident: e_1_2_7_13_1
  doi: 10.1039/c3ta12040f
– ident: e_1_2_7_4_2
  doi: 10.1038/nmat3601
– ident: e_1_2_7_1_1
  doi: 10.1038/s41560-017-0026-7
– ident: e_1_2_7_21_1
  doi: 10.1002/cssc.201900582
– ident: e_1_2_7_6_1
  doi: 10.1126/science.1249625
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201607015
– ident: e_1_2_7_15_2
  doi: 10.1021/cr400634p
– ident: e_1_2_7_23_3
  doi: 10.1002/adma.201704337
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.201402943
– ident: e_1_2_7_18_1
  doi: 10.1021/acssuschemeng.6b02722
– ident: e_1_2_7_8_2
  doi: 10.1002/adfm.201100854
– ident: e_1_2_7_23_2
  doi: 10.1039/C3NR06730K
– ident: e_1_2_7_1_2
  doi: 10.1038/s41560-017-0014-y
– ident: e_1_2_7_7_2
  doi: 10.1038/ncomms5033
– ident: e_1_2_7_5_3
  doi: 10.1021/cr300439k
– ident: e_1_2_7_14_1
  doi: 10.1016/j.nanoen.2017.03.003
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.201501436
– ident: e_1_2_7_17_2
  doi: 10.1002/advs.201600243
– ident: e_1_2_7_14_2
  doi: 10.1021/acsnano.6b08332
– ident: e_1_2_7_4_1
  doi: 10.1038/s41586-018-0347-0
– ident: e_1_2_7_13_2
  doi: 10.1016/j.elecom.2013.01.001
– ident: e_1_2_7_2_1
  doi: 10.1126/sciadv.1501038
– ident: e_1_2_7_8_1
  doi: 10.1021/nn502045y
– ident: e_1_2_7_7_4
  doi: 10.1016/j.ensm.2018.10.002
– ident: e_1_2_7_1_3
  doi: 10.1038/507026a
– ident: e_1_2_7_2_2
  doi: 10.1088/2053-1591/3/6/064001
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.201803070
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.201813721
– ident: e_1_2_7_7_3
  doi: 10.1002/adfm.201906680
– ident: e_1_2_7_2_3
  doi: 10.1002/aenm.201200346
– ident: e_1_2_7_2_4
  doi: 10.1038/ncomms12122
– ident: e_1_2_7_7_1
  doi: 10.1038/s41467-018-07595-y
– ident: e_1_2_7_15_3
  doi: 10.1002/adma.201504412
– ident: e_1_2_7_15_1
  doi: 10.1021/am508670z
SSID ssj0017734
Score 2.624512
Snippet Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms anodes
Electrode materials
Energy storage
heterogeneous structures
high volumetric capacity
Materials science
pseudocapacitance
Sodium
sodium‐ion batteries
Titanium dioxide
Title Interface‐Induced Pseudocapacitance in Nonporous Heterogeneous Particles for High Volumetric Sodium Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202002019
https://www.proquest.com/docview/2451346583
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0YvejBbyOKZA8mngrddgv0SERCjBAiYrg13a-EKK0RevHkT_A3-kucaWkBE2Oit26z27Q7sztvt2_fEHLJDcQtCESW0kpbXGhuAW42ls_hRsg1sxUecO71690Rvx1745VT_Jk-RLHhhiMjna9xgIdiVluKhobK4ElyJBnYqe4nErYQFd0X-lGs0ch-K9cZErzYOFdttJ3aevP1qLSEmquANY04nT0S5u-aEU2eqslcVOXbNxnH_3zMPtldwFHayvzngGzo6JDsrIgUHpFpumloQqk_3z8w04fUig5mOlEQBmHFPZmj49BJRPsxJqaPkxntIskmBt_UWBrk7DsKCJkis4Q-ppMiZgegw1hNkikdwuIf5rZjMurcPFx3rUWSBku6sLa0DEBOADE2a_oAHkJTl6FnmkwCDPPA3BIQIkCEpjI-nioS3DZSurb2JddCKCXcE7IZxZE-JRQmF9e360Yx3uBc-YIZAQDW004T-Y-NErFyIwVyoWCOiTSeg0x72QmwG4OiG0vkqqj_kml3_FiznNs8WIzhWeBwj7kcEJpbIk5qvF-eErTanV5ROvtLo3OyjdcZW7BMNuevib4A1DMXFbLVavfuhpXUw78AZcv8rg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2idNF20TfqFCheUHUViBNnJlmwQExHw2NGqEA1uzR-VaOWBHUSVWXFJ_Ar_Eo_gS_h3ryASlWlSixYxnIsx77X99g5PhdgVViMWxiIHG20cYQ0wkHcbJ1IYEEiDHc1XXAejbvDI7EzCSZzcNHchan0IdoDN_KMcr0mB6cD6fVr1dBEW7pKTiwDxCk1r3LX_PqJu7bZxnYfp_i95w0-Hm4NnTqxgKN83A85FmESBl6XhxEGvMR2VRLYkCuEDgF2USGqwbAWahvRTRgpXKuU75pICSOl1tLHdh_AQ0ojTnL9_U-tYhXv9aof2V1OlDI-aXQiXW_9dn9vx8FrcHsTIpcxbvAMfjejU1Fbvq0VuVxTp38IR96r4XsOT2vEzTYrF3kBcyZ9CU9u6DC-guPyXNQmylyenVMyE2U025-ZQmOkP0nUNCffYNOUjbMUNyxZMWND4hFl6H6GnvYbgiHDTQAj8gz7XK77lACBHWR6Whyzgxz97at5DUd38r0LMJ9mqXkDDNdPP3K7VnPRE0JHkluJGD0wXkgUz14HnMYqYlWLtFOukO9xJS_txTRtcTttHfjQ1j-p5En-WnOpMbK4XqZmsScC7qMZh34HvNJa_tFKvNkfjNqnt__z0go8Gh6O9uK97fHuIjym8oocuQTz-Y_CLCPIy-W70q0YfLlrQ7wCpkNaKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qrYRgAeVRMdCHFyBWaePEyUwWXVSdjqYtHY0oRbML8QuNoMmISYRg1U_op_RX-IV-Se_Nqy0SQkLqgmUsx3Lse32PneNzAV4Li3ELA5GjjTaOkEY4iJutEwksSIThrqYLzkejcHgiDibBZAEumrswlT5Ee-BGnlGu1-TgM223rkVDE23pJjmRDBCm1LTKQ_PjO27a5tv7fZzhN5432PuwO3TqvAKO8nE75FhESRh3Xd6LMN4lNlRJYHtcIXIIsIcKQQ1GtZ62EV2EkcK1SvmuiZQwUmotfWz3HiyJ0I0oWUT_fStYxbvd6j92yIlRxieNTKTrbd3u7-0weI1tbyLkMsQNHsOvZnAqZsuXzSKXm-rnb7qR_9PoLcOjGm-zncpBnsCCSZ_CwxsqjM_gtDwVtYkyl2fnlMpEGc3Gc1NojPOzRE1z8gw2TdkoS3G7khVzNiQWUYbOZ-hp3NALGW4BGFFn2Mdy1af0B-w409PilB3n6G2fzXM4uZPvXYHFNEvNC2C4evqRG1rNRVcIHUluJSL0wHg9Inh2O-A0RhGrWqKdMoV8jStxaS-maYvbaevA27b-rBIn-WPN1cbG4nqRmseeCLgvEIL6HfBKY_lLK_FOf3DUPr38l5c24P64P4jf7Y8OX8EDKq6YkauwmH8rzBoivFyul07F4NNd2-EVIsJY1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface%E2%80%90Induced+Pseudocapacitance+in+Nonporous+Heterogeneous+Particles+for+High+Volumetric+Sodium+Storage&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Bo&rft.au=Liu%2C+Qianqian&rft.au=Chen%2C+Yujie&rft.au=Liu%2C+Qian&rft.date=2020-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=42&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202002019&rft.externalDBID=10.1002%252Fadfm.202002019&rft.externalDocID=ADFM202002019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon