Interface‐Induced Pseudocapacitance in Nonporous Heterogeneous Particles for High Volumetric Sodium Storage
Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short solid‐state diffusion distance and high surface area, which leads to low volumetric capacity and severe parasitic reactions. In this work, non...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 42 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short solid‐state diffusion distance and high surface area, which leads to low volumetric capacity and severe parasitic reactions. In this work, nonporous bulky heterogeneous particles composed of TiO2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such nonporous heterogeneous particles exhibit “interface‐induced pseudocapacitance” with an enhanced volumetric capacity, which is over 50% higher than that of commercial hard carbon anodes. This study demonstrates heterogeneous particles with a well‐engineered nanostructure as a new paradigm for electrode materials design.
Nonporous bulky heterogeneous particles composed of a TiO2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such “interface‐induced pseudocapacitance” in nonporous particles leads to enhanced volumetric capacity. |
---|---|
AbstractList | Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short solid‐state diffusion distance and high surface area, which leads to low volumetric capacity and severe parasitic reactions. In this work, nonporous bulky heterogeneous particles composed of TiO2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such nonporous heterogeneous particles exhibit “interface‐induced pseudocapacitance” with an enhanced volumetric capacity, which is over 50% higher than that of commercial hard carbon anodes. This study demonstrates heterogeneous particles with a well‐engineered nanostructure as a new paradigm for electrode materials design. Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short solid‐state diffusion distance and high surface area, which leads to low volumetric capacity and severe parasitic reactions. In this work, nonporous bulky heterogeneous particles composed of TiO 2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such nonporous heterogeneous particles exhibit “interface‐induced pseudocapacitance” with an enhanced volumetric capacity, which is over 50% higher than that of commercial hard carbon anodes. This study demonstrates heterogeneous particles with a well‐engineered nanostructure as a new paradigm for electrode materials design. Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short solid‐state diffusion distance and high surface area, which leads to low volumetric capacity and severe parasitic reactions. In this work, nonporous bulky heterogeneous particles composed of TiO2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such nonporous heterogeneous particles exhibit “interface‐induced pseudocapacitance” with an enhanced volumetric capacity, which is over 50% higher than that of commercial hard carbon anodes. This study demonstrates heterogeneous particles with a well‐engineered nanostructure as a new paradigm for electrode materials design. Nonporous bulky heterogeneous particles composed of a TiO2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such “interface‐induced pseudocapacitance” in nonporous particles leads to enhanced volumetric capacity. |
Author | Liu, Qianqian Chen, Yujie Zhao, Bo Liu, Qian Yu, Qian Wu, Hao Bin |
Author_xml | – sequence: 1 givenname: Bo surname: Zhao fullname: Zhao, Bo organization: Zhejiang University – sequence: 2 givenname: Qianqian surname: Liu fullname: Liu, Qianqian organization: Zhejiang University – sequence: 3 givenname: Yujie surname: Chen fullname: Chen, Yujie organization: Zhejiang University – sequence: 4 givenname: Qian surname: Liu fullname: Liu, Qian organization: Zhejiang University – sequence: 5 givenname: Qian surname: Yu fullname: Yu, Qian organization: Zhejiang University – sequence: 6 givenname: Hao Bin orcidid: 0000-0002-0725-6442 surname: Wu fullname: Wu, Hao Bin email: hbwu@zju.edu.cn organization: Zhejiang University |
BookMark | eNqFkMFKAzEQhoNUsK1ePQc8tya7yXb3WKq1haqFqnhb0mRSU3aTmuwivfkIPqNP4pZKBUE8zT_D_80wfwe1rLOA0DklfUpIdCmULvsRiRpNaHaE2jShSS8mUdo6aPp8gjohrAmhg0HM2qic2gq8FhI-3z-mVtUSFJ4HqJWTYiOkqYSVgI3Fd85unHd1wBNoELcCC7tuLnxlZAEBa-fxxKxe8JMr6hIqbyReOGXqEi8q58UKTtGxFkWAs-_aRY_j64fRpDe7v5mOhrOejDnLepqkhKeM0DSjnAqdSMF1SiWLOVegJKfNPEqVzhItB0tGtJQxgUwyWC6VWsZddLHfu_HutYZQ5WtXe9uczCPGacwSnsaNi-1d0rsQPOh8925lnK28MEVOSb4LNt8Fmx-CbbD-L2zjTSn89m8g2wNvpoDtP-58eDW-_WG_AJ1bkKQ |
CitedBy_id | crossref_primary_10_1039_D2DT00924B crossref_primary_10_1002_aenm_202302426 crossref_primary_10_1016_j_apsusc_2023_156875 crossref_primary_10_1007_s40843_021_1969_8 crossref_primary_10_1016_j_jcis_2022_01_022 crossref_primary_10_1021_acsanm_0c02290 crossref_primary_10_1002_slct_202204669 crossref_primary_10_1016_j_ces_2021_117241 crossref_primary_10_1016_j_jechem_2021_11_040 crossref_primary_10_1039_D4NH00406J crossref_primary_10_1016_j_jcis_2022_09_063 crossref_primary_10_1021_acsami_1c20154 crossref_primary_10_1016_j_jcis_2021_09_022 crossref_primary_10_1016_j_electacta_2024_145257 crossref_primary_10_1016_j_ssi_2022_115927 crossref_primary_10_1021_acsnano_2c00557 crossref_primary_10_1021_acsaem_4c01257 crossref_primary_10_1002_adfm_202423530 crossref_primary_10_1021_acsami_2c03773 crossref_primary_10_1016_j_cej_2021_130534 crossref_primary_10_1016_j_mseb_2023_116684 crossref_primary_10_1002_adfm_202203291 crossref_primary_10_1016_j_isci_2023_106642 crossref_primary_10_1039_D1TA01930A crossref_primary_10_1016_j_est_2024_110788 crossref_primary_10_1016_j_compositesb_2023_110532 crossref_primary_10_1007_s40843_023_2460_6 crossref_primary_10_1016_j_jssc_2023_124014 crossref_primary_10_1039_D1TA09567F crossref_primary_10_1002_smll_202312119 crossref_primary_10_1016_j_jallcom_2023_170936 crossref_primary_10_3390_molecules29133219 crossref_primary_10_3390_molecules28124571 crossref_primary_10_1016_j_est_2024_112001 crossref_primary_10_1038_s41598_024_82179_z crossref_primary_10_1016_j_bios_2024_116080 crossref_primary_10_1142_S1793604722500199 crossref_primary_10_1016_j_electacta_2023_141910 crossref_primary_10_1016_j_cej_2021_133555 crossref_primary_10_1021_acs_energyfuels_1c04338 crossref_primary_10_1016_j_carbon_2024_119066 crossref_primary_10_1002_adfm_202205667 crossref_primary_10_1007_s12598_023_02269_1 crossref_primary_10_1016_j_jpowsour_2021_230746 crossref_primary_10_1016_j_apsusc_2023_156955 crossref_primary_10_3390_ma15238377 crossref_primary_10_1007_s11581_022_04793_z crossref_primary_10_1016_j_jallcom_2022_166849 crossref_primary_10_1016_j_mtsust_2023_100620 crossref_primary_10_1016_j_renene_2022_10_102 crossref_primary_10_1039_D0TA12417F crossref_primary_10_1016_j_nanoen_2023_109020 crossref_primary_10_1002_smll_202207224 crossref_primary_10_1016_j_electacta_2023_143226 crossref_primary_10_1007_s12598_021_01864_4 crossref_primary_10_1007_s12598_023_02399_6 crossref_primary_10_1021_acsomega_2c07689 crossref_primary_10_1002_smll_202409304 crossref_primary_10_1016_j_matchemphys_2022_126806 crossref_primary_10_1021_acsaem_2c02129 crossref_primary_10_1039_D4TA02211D crossref_primary_10_1002_smll_202300605 crossref_primary_10_1016_j_cej_2022_139768 crossref_primary_10_1007_s11581_021_03906_4 crossref_primary_10_1007_s12274_023_5539_8 crossref_primary_10_1039_D3NJ00992K crossref_primary_10_1016_j_jcis_2021_07_031 crossref_primary_10_1016_j_jallcom_2022_164758 crossref_primary_10_1021_acs_energyfuels_3c00801 crossref_primary_10_1021_acssuschemeng_2c03375 crossref_primary_10_1016_j_est_2024_112548 crossref_primary_10_1002_celc_202100793 crossref_primary_10_1016_j_ssi_2022_116114 crossref_primary_10_1002_aenm_202201834 crossref_primary_10_1016_j_electacta_2023_142422 crossref_primary_10_1016_j_est_2024_114206 crossref_primary_10_1016_j_cej_2021_134100 crossref_primary_10_1021_acs_jpclett_1c02969 crossref_primary_10_1039_D4TA02303J crossref_primary_10_1016_j_est_2024_110441 crossref_primary_10_1021_acsnano_2c05232 crossref_primary_10_1002_adma_202416665 crossref_primary_10_1016_j_ces_2022_117633 crossref_primary_10_1016_j_matchemphys_2023_127591 crossref_primary_10_1021_acsami_4c04855 crossref_primary_10_1016_j_jelechem_2024_118339 crossref_primary_10_1039_D1QM00867F |
Cites_doi | 10.1039/C6EE01501H 10.1016/j.nanoen.2017.12.038 10.1126/science.aao2808 10.1002/adma.201602300 10.1021/acsnano.7b00557 10.1038/nnano.2015.194 10.1021/acsnano.9b03766 10.1021/nn303002u 10.1016/j.nanoen.2017.03.003 10.1021/cr3001862 10.1039/c3ta12040f 10.1038/nmat3601 10.1038/s41560-017-0026-7 10.1002/cssc.201900582 10.1126/science.1249625 10.1002/adma.201607015 10.1021/cr400634p 10.1002/adma.201704337 10.1002/adfm.201402943 10.1021/acssuschemeng.6b02722 10.1002/adfm.201100854 10.1039/C3NR06730K 10.1038/s41560-017-0014-y 10.1038/ncomms5033 10.1021/cr300439k 10.1002/aenm.201501436 10.1002/advs.201600243 10.1021/acsnano.6b08332 10.1038/s41586-018-0347-0 10.1016/j.elecom.2013.01.001 10.1126/sciadv.1501038 10.1021/nn502045y 10.1016/j.ensm.2018.10.002 10.1038/507026a 10.1088/2053-1591/3/6/064001 10.1002/aenm.201803070 10.1002/anie.201813721 10.1002/adfm.201906680 10.1002/aenm.201200346 10.1038/ncomms12122 10.1038/s41467-018-07595-y 10.1002/adma.201504412 10.1021/am508670z |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202002019 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202002019 ADFM202002019 |
Genre | article |
GrantInformation_xml | – fundername: Zhejiang University |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3549-f0805840189151af6ca5f81c4355dedc5191528df96fc7b40fcc30e9c4ebbddb3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:52:36 EDT 2025 Tue Jul 01 04:12:18 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Wed Jan 22 16:33:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3549-f0805840189151af6ca5f81c4355dedc5191528df96fc7b40fcc30e9c4ebbddb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0725-6442 |
PQID | 2451346583 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2451346583 crossref_citationtrail_10_1002_adfm_202002019 crossref_primary_10_1002_adfm_202002019 wiley_primary_10_1002_adfm_202002019_ADFM202002019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2016; 6 2015; 25 2019; 9 2019; 13 2017; 11 2019; 12 2017; 35 2015; 10 2013 2013; 1 29 2013 2014 2018; 113 6 30 2017 2017 2013; 29 29 113 2017 2017; 35 11 2018 2014 2019 2019; 9 5 29 18 2015 2014 2016 2012; 7 114 28 6 2016 2016 2013 2016; 2 3 3 7 2019 2017; 58 4 2018; 45 2017 2017 2014; 2 2 507 2018 2013; 559 12 2014 2011; 8 21 2017; 358 2016; 9 2014; 343 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_7_4 e_1_2_7_7_3 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_15_4 e_1_2_7_17_2 e_1_2_7_18_1 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_23_3 e_1_2_7_23_2 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 9 start-page: 2314 year: 2016 publication-title: Energy Environ. Sci. – volume: 8 21 start-page: 7115 3859 year: 2014 2011 publication-title: ACS Nano Adv. Funct. Mater. – volume: 11 start-page: 5530 year: 2017 publication-title: ACS Nano – volume: 45 start-page: 136 year: 2018 publication-title: Nano Energy – volume: 9 5 29 18 start-page: 5100 4033 107 year: 2018 2014 2019 2019 publication-title: Nat. Commun. Nat. Commun. Adv. Funct. Mater. Energy Storage Mater. – volume: 12 start-page: 2415 year: 2019 publication-title: ChemSusChem – volume: 2 3 3 7 start-page: 128 year: 2016 2016 2013 2016 publication-title: Sci. Adv. Mater. Res. Express Adv. Energy Mater. Nat. Commun. – volume: 10 start-page: 980 year: 2015 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 9247 year: 2019 publication-title: ACS Nano – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 343 start-page: 1210 year: 2014 publication-title: Science – volume: 1 29 start-page: 8 year: 2013 2013 publication-title: J. Mater. Chem. A Electrochem. Commun. – volume: 559 12 start-page: 556 518 year: 2018 2013 publication-title: Nature Nat. Mater. – volume: 113 6 30 start-page: 6552 6328 year: 2013 2014 2018 publication-title: Chem. Rev. Nanoscale Adv. Mater. – volume: 7 114 28 6 start-page: 6567 9853 2259 8308 year: 2015 2014 2016 2012 publication-title: ACS Appl. Mater. Interfaces Chem. Rev. Adv. Mater. ACS Nano – volume: 5 start-page: 2393 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 35 11 start-page: 44 2952 year: 2017 2017 publication-title: Nano Energy ACS Nano – volume: 35 start-page: 44 year: 2017 publication-title: Nano Energy – volume: 58 4 start-page: 4022 year: 2019 2017 publication-title: Angew. Chem., Int. Ed. Adv. Sci. – volume: 2 2 507 start-page: 836 861 26 year: 2017 2017 2014 publication-title: Nat. Energy Nat. Energy Nature – volume: 358 year: 2017 publication-title: Science – volume: 29 29 113 start-page: 6734 year: 2017 2017 2013 publication-title: Adv. Mater. Adv. Mater. Chem. Rev. – volume: 25 start-page: 214 year: 2015 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_10_1 doi: 10.1039/C6EE01501H – ident: e_1_2_7_24_1 doi: 10.1016/j.nanoen.2017.12.038 – ident: e_1_2_7_3_1 doi: 10.1126/science.aao2808 – ident: e_1_2_7_5_2 doi: 10.1002/adma.201602300 – ident: e_1_2_7_20_1 doi: 10.1021/acsnano.7b00557 – ident: e_1_2_7_11_1 doi: 10.1038/nnano.2015.194 – ident: e_1_2_7_16_1 doi: 10.1021/acsnano.9b03766 – ident: e_1_2_7_15_4 doi: 10.1021/nn303002u – ident: e_1_2_7_19_1 doi: 10.1016/j.nanoen.2017.03.003 – ident: e_1_2_7_23_1 doi: 10.1021/cr3001862 – ident: e_1_2_7_13_1 doi: 10.1039/c3ta12040f – ident: e_1_2_7_4_2 doi: 10.1038/nmat3601 – ident: e_1_2_7_1_1 doi: 10.1038/s41560-017-0026-7 – ident: e_1_2_7_21_1 doi: 10.1002/cssc.201900582 – ident: e_1_2_7_6_1 doi: 10.1126/science.1249625 – ident: e_1_2_7_5_1 doi: 10.1002/adma.201607015 – ident: e_1_2_7_15_2 doi: 10.1021/cr400634p – ident: e_1_2_7_23_3 doi: 10.1002/adma.201704337 – ident: e_1_2_7_9_1 doi: 10.1002/adfm.201402943 – ident: e_1_2_7_18_1 doi: 10.1021/acssuschemeng.6b02722 – ident: e_1_2_7_8_2 doi: 10.1002/adfm.201100854 – ident: e_1_2_7_23_2 doi: 10.1039/C3NR06730K – ident: e_1_2_7_1_2 doi: 10.1038/s41560-017-0014-y – ident: e_1_2_7_7_2 doi: 10.1038/ncomms5033 – ident: e_1_2_7_5_3 doi: 10.1021/cr300439k – ident: e_1_2_7_14_1 doi: 10.1016/j.nanoen.2017.03.003 – ident: e_1_2_7_12_1 doi: 10.1002/aenm.201501436 – ident: e_1_2_7_17_2 doi: 10.1002/advs.201600243 – ident: e_1_2_7_14_2 doi: 10.1021/acsnano.6b08332 – ident: e_1_2_7_4_1 doi: 10.1038/s41586-018-0347-0 – ident: e_1_2_7_13_2 doi: 10.1016/j.elecom.2013.01.001 – ident: e_1_2_7_2_1 doi: 10.1126/sciadv.1501038 – ident: e_1_2_7_8_1 doi: 10.1021/nn502045y – ident: e_1_2_7_7_4 doi: 10.1016/j.ensm.2018.10.002 – ident: e_1_2_7_1_3 doi: 10.1038/507026a – ident: e_1_2_7_2_2 doi: 10.1088/2053-1591/3/6/064001 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.201803070 – ident: e_1_2_7_17_1 doi: 10.1002/anie.201813721 – ident: e_1_2_7_7_3 doi: 10.1002/adfm.201906680 – ident: e_1_2_7_2_3 doi: 10.1002/aenm.201200346 – ident: e_1_2_7_2_4 doi: 10.1038/ncomms12122 – ident: e_1_2_7_7_1 doi: 10.1038/s41467-018-07595-y – ident: e_1_2_7_15_3 doi: 10.1002/adma.201504412 – ident: e_1_2_7_15_1 doi: 10.1021/am508670z |
SSID | ssj0017734 |
Score | 2.624512 |
Snippet | Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | anodes Electrode materials Energy storage heterogeneous structures high volumetric capacity Materials science pseudocapacitance Sodium sodium‐ion batteries Titanium dioxide |
Title | Interface‐Induced Pseudocapacitance in Nonporous Heterogeneous Particles for High Volumetric Sodium Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202002019 https://www.proquest.com/docview/2451346583 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0YvejBbyOKZA8mngrddgv0SERCjBAiYrg13a-EKK0RevHkT_A3-kucaWkBE2Oit26z27Q7sztvt2_fEHLJDcQtCESW0kpbXGhuAW42ls_hRsg1sxUecO71690Rvx1745VT_Jk-RLHhhiMjna9xgIdiVluKhobK4ElyJBnYqe4nErYQFd0X-lGs0ch-K9cZErzYOFdttJ3aevP1qLSEmquANY04nT0S5u-aEU2eqslcVOXbNxnH_3zMPtldwFHayvzngGzo6JDsrIgUHpFpumloQqk_3z8w04fUig5mOlEQBmHFPZmj49BJRPsxJqaPkxntIskmBt_UWBrk7DsKCJkis4Q-ppMiZgegw1hNkikdwuIf5rZjMurcPFx3rUWSBku6sLa0DEBOADE2a_oAHkJTl6FnmkwCDPPA3BIQIkCEpjI-nioS3DZSurb2JddCKCXcE7IZxZE-JRQmF9e360Yx3uBc-YIZAQDW004T-Y-NErFyIwVyoWCOiTSeg0x72QmwG4OiG0vkqqj_kml3_FiznNs8WIzhWeBwj7kcEJpbIk5qvF-eErTanV5ROvtLo3OyjdcZW7BMNuevib4A1DMXFbLVavfuhpXUw78AZcv8rg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2idNF20TfqFCheUHUViBNnJlmwQExHw2NGqEA1uzR-VaOWBHUSVWXFJ_Ar_Eo_gS_h3ryASlWlSixYxnIsx77X99g5PhdgVViMWxiIHG20cYQ0wkHcbJ1IYEEiDHc1XXAejbvDI7EzCSZzcNHchan0IdoDN_KMcr0mB6cD6fVr1dBEW7pKTiwDxCk1r3LX_PqJu7bZxnYfp_i95w0-Hm4NnTqxgKN83A85FmESBl6XhxEGvMR2VRLYkCuEDgF2USGqwbAWahvRTRgpXKuU75pICSOl1tLHdh_AQ0ojTnL9_U-tYhXv9aof2V1OlDI-aXQiXW_9dn9vx8FrcHsTIpcxbvAMfjejU1Fbvq0VuVxTp38IR96r4XsOT2vEzTYrF3kBcyZ9CU9u6DC-guPyXNQmylyenVMyE2U025-ZQmOkP0nUNCffYNOUjbMUNyxZMWND4hFl6H6GnvYbgiHDTQAj8gz7XK77lACBHWR6Whyzgxz97at5DUd38r0LMJ9mqXkDDNdPP3K7VnPRE0JHkluJGD0wXkgUz14HnMYqYlWLtFOukO9xJS_txTRtcTttHfjQ1j-p5En-WnOpMbK4XqZmsScC7qMZh34HvNJa_tFKvNkfjNqnt__z0go8Gh6O9uK97fHuIjym8oocuQTz-Y_CLCPIy-W70q0YfLlrQ7wCpkNaKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qrYRgAeVRMdCHFyBWaePEyUwWXVSdjqYtHY0oRbML8QuNoMmISYRg1U_op_RX-IV-Se_Nqy0SQkLqgmUsx3Lse32PneNzAV4Li3ELA5GjjTaOkEY4iJutEwksSIThrqYLzkejcHgiDibBZAEumrswlT5Ee-BGnlGu1-TgM223rkVDE23pJjmRDBCm1LTKQ_PjO27a5tv7fZzhN5432PuwO3TqvAKO8nE75FhESRh3Xd6LMN4lNlRJYHtcIXIIsIcKQQ1GtZ62EV2EkcK1SvmuiZQwUmotfWz3HiyJ0I0oWUT_fStYxbvd6j92yIlRxieNTKTrbd3u7-0weI1tbyLkMsQNHsOvZnAqZsuXzSKXm-rnb7qR_9PoLcOjGm-zncpBnsCCSZ_CwxsqjM_gtDwVtYkyl2fnlMpEGc3Gc1NojPOzRE1z8gw2TdkoS3G7khVzNiQWUYbOZ-hp3NALGW4BGFFn2Mdy1af0B-w409PilB3n6G2fzXM4uZPvXYHFNEvNC2C4evqRG1rNRVcIHUluJSL0wHg9Inh2O-A0RhGrWqKdMoV8jStxaS-maYvbaevA27b-rBIn-WPN1cbG4nqRmseeCLgvEIL6HfBKY_lLK_FOf3DUPr38l5c24P64P4jf7Y8OX8EDKq6YkauwmH8rzBoivFyul07F4NNd2-EVIsJY1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface%E2%80%90Induced+Pseudocapacitance+in+Nonporous+Heterogeneous+Particles+for+High+Volumetric+Sodium+Storage&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Bo&rft.au=Liu%2C+Qianqian&rft.au=Chen%2C+Yujie&rft.au=Liu%2C+Qian&rft.date=2020-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=42&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202002019&rft.externalDBID=10.1002%252Fadfm.202002019&rft.externalDocID=ADFM202002019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |