Sodium‐Alginate‐Based Binders for Lithium‐Rich Cathode Materials in Lithium‐Ion Batteries to Suppress Voltage and Capacity Fading
A series of sodium alginate (SA)‐based binders are prepared for Li‐rich and Mn‐based oxides (LRMO) to address capacity loss and voltage fading issue. Our results demonstrate that the Ba2+ and Al3+ cations crosslinked SA binders can significantly enhance the electrochemical performance. A small volta...
Saved in:
Published in | ChemElectroChem Vol. 5; no. 9; pp. 1321 - 1329 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A series of sodium alginate (SA)‐based binders are prepared for Li‐rich and Mn‐based oxides (LRMO) to address capacity loss and voltage fading issue. Our results demonstrate that the Ba2+ and Al3+ cations crosslinked SA binders can significantly enhance the electrochemical performance. A small voltage fading of 0.326 V and a capacity retention of 82.5 % are displayed with Ba2+‐doped SA binder; and a voltage decay of 0.208 V and a capacity retention of 99.9 % are measured on the Al3+‐doped one. FESEM and TEM observations prove that the doped SA based binders can form a coating layer on the surface of the primary particles, which functions as an effective screen to prevent the active materials from being etched by the electrolyte and hence stabilizes the layered crystal structure of the LRMO. XPS depth profiles of the cycled LRMO with SA‐based binders further confirm that the Mn element dissolution, an issue which causes severe capacity loss and irreversible structural transformation, can be effectively alleviated by Ba2+‐ and Al3+‐doped SA binders. On this basis, the usage of SA‐based binders are a promising approach to suppress the voltage and capacity fading of LRMO.
Suppressing binder: Sodium‐alginate‐based binders are used for the Li‐rich and Mn‐based cathode materials to suppress the capacity and voltage fading. The crosslinked sodium alginate by Ba2+ and Al3+ can prevent the active materials from being etched by the electrolyte and hence guarantee an enhanced electrochemical performance. |
---|---|
AbstractList | A series of sodium alginate (SA)‐based binders are prepared for Li‐rich and Mn‐based oxides (LRMO) to address capacity loss and voltage fading issue. Our results demonstrate that the Ba2+ and Al3+ cations crosslinked SA binders can significantly enhance the electrochemical performance. A small voltage fading of 0.326 V and a capacity retention of 82.5 % are displayed with Ba2+‐doped SA binder; and a voltage decay of 0.208 V and a capacity retention of 99.9 % are measured on the Al3+‐doped one. FESEM and TEM observations prove that the doped SA based binders can form a coating layer on the surface of the primary particles, which functions as an effective screen to prevent the active materials from being etched by the electrolyte and hence stabilizes the layered crystal structure of the LRMO. XPS depth profiles of the cycled LRMO with SA‐based binders further confirm that the Mn element dissolution, an issue which causes severe capacity loss and irreversible structural transformation, can be effectively alleviated by Ba2+‐ and Al3+‐doped SA binders. On this basis, the usage of SA‐based binders are a promising approach to suppress the voltage and capacity fading of LRMO.
Suppressing binder: Sodium‐alginate‐based binders are used for the Li‐rich and Mn‐based cathode materials to suppress the capacity and voltage fading. The crosslinked sodium alginate by Ba2+ and Al3+ can prevent the active materials from being etched by the electrolyte and hence guarantee an enhanced electrochemical performance. A series of sodium alginate (SA)‐based binders are prepared for Li‐rich and Mn‐based oxides (LRMO) to address capacity loss and voltage fading issue. Our results demonstrate that the Ba 2+ and Al 3+ cations crosslinked SA binders can significantly enhance the electrochemical performance. A small voltage fading of 0.326 V and a capacity retention of 82.5 % are displayed with Ba 2+ ‐doped SA binder; and a voltage decay of 0.208 V and a capacity retention of 99.9 % are measured on the Al 3+ ‐doped one. FESEM and TEM observations prove that the doped SA based binders can form a coating layer on the surface of the primary particles, which functions as an effective screen to prevent the active materials from being etched by the electrolyte and hence stabilizes the layered crystal structure of the LRMO. XPS depth profiles of the cycled LRMO with SA‐based binders further confirm that the Mn element dissolution, an issue which causes severe capacity loss and irreversible structural transformation, can be effectively alleviated by Ba 2+ ‐ and Al 3+ ‐doped SA binders. On this basis, the usage of SA‐based binders are a promising approach to suppress the voltage and capacity fading of LRMO. A series of sodium alginate (SA)‐based binders are prepared for Li‐rich and Mn‐based oxides (LRMO) to address capacity loss and voltage fading issue. Our results demonstrate that the Ba2+ and Al3+ cations crosslinked SA binders can significantly enhance the electrochemical performance. A small voltage fading of 0.326 V and a capacity retention of 82.5 % are displayed with Ba2+‐doped SA binder; and a voltage decay of 0.208 V and a capacity retention of 99.9 % are measured on the Al3+‐doped one. FESEM and TEM observations prove that the doped SA based binders can form a coating layer on the surface of the primary particles, which functions as an effective screen to prevent the active materials from being etched by the electrolyte and hence stabilizes the layered crystal structure of the LRMO. XPS depth profiles of the cycled LRMO with SA‐based binders further confirm that the Mn element dissolution, an issue which causes severe capacity loss and irreversible structural transformation, can be effectively alleviated by Ba2+‐ and Al3+‐doped SA binders. On this basis, the usage of SA‐based binders are a promising approach to suppress the voltage and capacity fading of LRMO. |
Author | Zhou, Yao Wu, Zhan‐Yu Shen, Chong‐Heng Zhang, Shao‐Jian Yin, Zu‐Wei Li, Jun‐Tao Lu, Yan‐Qiu Huang, Ling Sun, Shi‐Gang Deng, Ya‐Ping Wu, Qi‐Hui |
Author_xml | – sequence: 1 givenname: Shao‐Jian surname: Zhang fullname: Zhang, Shao‐Jian organization: Xiamen University – sequence: 2 givenname: Ya‐Ping surname: Deng fullname: Deng, Ya‐Ping organization: Xiamen University – sequence: 3 givenname: Qi‐Hui surname: Wu fullname: Wu, Qi‐Hui organization: Quanzhou Normal University – sequence: 4 givenname: Yao surname: Zhou fullname: Zhou, Yao organization: Xiamen University – sequence: 5 givenname: Jun‐Tao orcidid: 0000-0002-9650-6385 surname: Li fullname: Li, Jun‐Tao email: jtli@xmu.edu.cn organization: Xiamen University – sequence: 6 givenname: Zhan‐Yu surname: Wu fullname: Wu, Zhan‐Yu organization: Xiamen University – sequence: 7 givenname: Zu‐Wei surname: Yin fullname: Yin, Zu‐Wei organization: Xiamen University – sequence: 8 givenname: Yan‐Qiu surname: Lu fullname: Lu, Yan‐Qiu organization: Xiamen University – sequence: 9 givenname: Chong‐Heng surname: Shen fullname: Shen, Chong‐Heng organization: Xiamen University – sequence: 10 givenname: Ling surname: Huang fullname: Huang, Ling organization: Xiamen University – sequence: 11 givenname: Shi‐Gang surname: Sun fullname: Sun, Shi‐Gang organization: Xiamen University |
BookMark | eNqFkE1rGzEQhkVIIKmTa86Cnu2OpP2Qj_GStAaXQvNxXWRpZMtspK0kE3zrtbf-xv6SrnFoQiD0pAE9zzvM-4Ec--CRkEsGEwbAP2ns9IQDq4GJUh6RM86m1Rg4q45fzafkIqUNADAGpZDVGfl1G4zbPv75-fuqWzmvMg7jTCU0dOa8wZioDZEuXF4fsO9Or2mj8joYpF8HPjrVJer8K2YePJ2pvP_DRHOgt9u-j5gSfQhdViukypshpFfa5R29Ucb51Tk5sUMSXjy_I3J_c33XfBkvvn2eN1eLsRZlIcf1kktjJJZWFkuOhQbknFulrQSrpEBAgdJAUVujK1UWuKyFElW9lIVFo8WIfDzk9jH82GLK7SZsox9WthyEqEGWRT1QkwOlY0gpom376B5V3LUM2n3j7b7x9l_jg1C8EYbbVHbB56hc9742PWhPrsPdf5a0zfWieXH_AvClnfI |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2019_04_063 crossref_primary_10_1016_j_est_2024_112816 crossref_primary_10_1039_D4GC02666G crossref_primary_10_1002_aenm_202002508 crossref_primary_10_1016_j_carbpol_2021_118063 crossref_primary_10_1039_D0GC02246B crossref_primary_10_1039_D3IM00089C crossref_primary_10_1002_adma_202401482 crossref_primary_10_1007_s11581_018_2611_6 crossref_primary_10_1002_adma_202005937 crossref_primary_10_1016_j_jpowsour_2019_01_054 crossref_primary_10_1021_acsami_0c10874 crossref_primary_10_1002_adfm_201808522 crossref_primary_10_1002_slct_201803236 crossref_primary_10_1021_acssuschemeng_3c07971 crossref_primary_10_1039_D3CS00771E crossref_primary_10_1002_cssc_201903577 crossref_primary_10_1021_acsnano_4c10901 crossref_primary_10_1002_est2_634 crossref_primary_10_1038_s41467_019_09400_w crossref_primary_10_1016_j_jmst_2022_07_053 crossref_primary_10_1016_j_pecs_2020_100846 crossref_primary_10_1016_j_electacta_2020_136401 crossref_primary_10_1149_1945_7111_ad9fe6 crossref_primary_10_1002_aenm_202001984 crossref_primary_10_1002_adma_202006019 crossref_primary_10_1016_j_pmatsci_2020_100655 crossref_primary_10_1002_smll_202405823 crossref_primary_10_1093_pnasnexus_pgac127 crossref_primary_10_1021_acsenergylett_8b02433 crossref_primary_10_1039_D0TA05169A crossref_primary_10_1039_D4CS00366G crossref_primary_10_1002_adfm_202213260 crossref_primary_10_1002_adma_202205229 crossref_primary_10_1016_j_jpowsour_2019_02_086 crossref_primary_10_1039_D4TA03305A crossref_primary_10_1149_2_0881902jes crossref_primary_10_1007_s40242_020_9103_8 crossref_primary_10_1016_j_biortech_2023_130225 |
Cites_doi | 10.1002/aenm.201502398 10.1039/C3EE41664J 10.1002/adfm.201200536 10.1149/1.1837300 10.1002/aenm.201401937 10.1039/b417616m 10.1002/anie.201506408 10.1021/jp405158m 10.1016/j.electacta.2016.02.043 10.1039/B815378G 10.1038/nmat4137 10.1039/c2ra20122d 10.1021/acs.nanolett.5b00795 10.1039/b925711j 10.1039/C4TA01217H 10.1016/j.nanoen.2016.09.028 10.1002/adma.201203981 10.1016/j.jpowsour.2009.02.005 10.1021/am200421h 10.1021/cm5031415 10.1016/j.matlet.2013.09.072 10.1021/acsami.7b04726 10.1149/1.2194764 10.1039/c4cc00081a 10.1021/cr800344k 10.1016/j.elecom.2008.10.036 10.1021/cm504583y 10.1016/j.electacta.2017.05.094 10.1021/ja3091438 10.1002/aenm.201501008 10.1002/aenm.201401156 10.1002/aenm.201601066 10.1016/j.jpowsour.2007.01.070 10.1021/am504412n 10.1016/S0378-7753(03)00149-6 10.1039/C5CC10534J 10.1002/adma.201300598 10.1002/adfm.201704690 10.1039/c2ee03389e 10.1021/nn305065u 10.1039/C5TA03764F 10.1021/nl500486y 10.1126/science.1209150 10.1016/j.apsusc.2016.02.139 10.1149/1.3463782 10.1021/nl501164y 10.1021/ef301893b |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1002/celc.201701358 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | 1329 |
ExternalDocumentID | 10_1002_celc_201701358 CELC201701358 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 20720160124; 20720162011 – fundername: National Natural Science Foundation of China funderid: 21373008; 21621091 – fundername: National Key Research and Development of China funderid: 2016YFB0100202 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS EJD G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJNI ADMLS CITATION 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3548-7b28dd8e5f84b2e4c0e222facf80fa83e0e3e8d047fdc6a54eb73a367b84fedc3 |
ISSN | 2196-0216 |
IngestDate | Fri Jul 25 12:13:29 EDT 2025 Thu Apr 24 23:00:27 EDT 2025 Tue Jul 01 00:45:00 EDT 2025 Sat Aug 24 00:54:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3548-7b28dd8e5f84b2e4c0e222facf80fa83e0e3e8d047fdc6a54eb73a367b84fedc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9650-6385 |
PQID | 2033708547 |
PQPubID | 2034587 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2033708547 crossref_primary_10_1002_celc_201701358 crossref_citationtrail_10_1002_celc_201701358 wiley_primary_10_1002_celc_201701358_CELC201701358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2007; 167 2017; 7 2011; 334 2015; 15 2015; 14 2018; 28 2015; 5 2013; 25 2015; 3 2013; 27 2013; 23 2015; 54 2009 2014; 26 2016; 30 2016; 52 2006; 153 1996; 143 2013; 7 2011; 3 2014; 114 2017; 9 2009; 11 2016; 6 2010; 20 2012; 2 2015; 27 2014; 2 2009; 191 2003; 119–121 2010; 157 2013; 117 2010; 110 2014; 14 2013; 135 2005; 15 2016; 193 2014; 7 2014; 50 2017; 245 2014; 6 2012; 5 2016; 370 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 117 start-page: 15947 year: 2013 end-page: 15957 publication-title: J. Phys. Chem. C – volume: 30 start-page: 717 year: 2016 end-page: 727 publication-title: Nano Energy – volume: 52 start-page: 4683 year: 2016 end-page: 4686 publication-title: Chem. Commun. – volume: 3 start-page: 17376 year: 2015 end-page: 17384 publication-title: J. Mater. Chem. A – volume: 27 start-page: 757 year: 2015 end-page: 767 publication-title: Chem. Mater. – volume: 3 start-page: 2966 year: 2011 end-page: 2972 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 7124 year: 2012 publication-title: Energy Environ. Sci. – volume: 119–121 start-page: 330 year: 2003 end-page: 337 publication-title: J. Power Sources – volume: 15 start-page: 2257 year: 2005 publication-title: J. Mater. Chem. – volume: 27 start-page: 1162 year: 2013 end-page: 1167 publication-title: Energy Fuels – volume: 20 start-page: 3961 year: 2010 publication-title: J. Mater. Chem. – volume: 153 start-page: 1186 year: 2006 end-page: 1192 publication-title: J. Electrochem. Soc. – volume: 167 start-page: 178 year: 2007 end-page: 184 publication-title: J. Power Sources – volume: 23 start-page: 1070 year: 2013 end-page: 1075 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 3550 year: 2014 end-page: 3555 publication-title: Nano Lett. – volume: 157 start-page: 1121 year: 2010 publication-title: J. Electrochem. Soc. – volume: 25 start-page: 1571 year: 2013 end-page: 1576 publication-title: Adv. Mater. – volume: 14 start-page: 230 year: 2015 end-page: 238 publication-title: Nat. Mater. – volume: 5 start-page: 1401937 year: 2015 publication-title: Adv. Energy Mater. – volume: 54 start-page: 13058 year: 2015 end-page: 13062 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 1501008 year: 2015 publication-title: Adv. Energy Mater. – volume: 26 start-page: 6272 year: 2014 end-page: 6280 publication-title: Chem. Mater. – start-page: 218 year: 2009 end-page: 20 publication-title: Chem. Commun. – volume: 14 start-page: 2628 year: 2014 end-page: 2635 publication-title: Nano Lett. – volume: 7 start-page: 1601066 year: 2017 publication-title: Adv. Energy Mater. – volume: 135 start-page: 1167 year: 2013 end-page: 1176 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 75 year: 2011 end-page: 79 publication-title: Science – volume: 191 start-page: 644 year: 2009 end-page: 647 publication-title: J. Power Sources – volume: 2 start-page: 9656 year: 2014 end-page: 9665 publication-title: J. Mater. Chem. A – volume: 143 start-page: 3809 year: 1996 end-page: 3820 publication-title: J. Electrochem. Soc. – volume: 114 start-page: 48 year: 2014 end-page: 51 publication-title: Mater. Lett. – volume: 28 start-page: 1704690 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 197 year: 2015 end-page: 211 publication-title: Adv. Energy Mater. – volume: 7 start-page: 760 year: 2013 end-page: 767 publication-title: ACS Nano – volume: 25 start-page: 3722 year: 2013 end-page: 3726 publication-title: Adv. Mater. – volume: 370 start-page: 437 year: 2016 end-page: 444 publication-title: Appl. Surf. Sci. – volume: 15 start-page: 4440 year: 2015 end-page: 4447 publication-title: Nano Lett. – volume: 245 start-page: 371 year: 2017 end-page: 378 publication-title: Electrochimica Acta – volume: 6 start-page: 1502398 year: 2016 publication-title: Adv. Energy Mater. – volume: 193 start-page: 45 year: 2016 end-page: 53 publication-title: Electrochimica Acta – volume: 2 start-page: 3423 year: 2012 publication-title: RSC Adv. – volume: 110 start-page: 1278 year: 2010 end-page: 1239 publication-title: Chem. Rev. – volume: 50 start-page: 6386 year: 2014 end-page: 6389 publication-title: Chem. Commun. – volume: 7 start-page: 705 year: 2014 end-page: 714 publication-title: Energy Environ. Sci. – volume: 6 start-page: 16888 year: 2014 end-page: 16894 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 84 year: 2009 end-page: 86 publication-title: Electrochem. Commun. – volume: 9 start-page: 21065 year: 2017 end-page: 21070 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_7_12_1 doi: 10.1002/aenm.201502398 – ident: e_1_2_7_25_1 doi: 10.1039/C3EE41664J – ident: e_1_2_7_26_1 doi: 10.1002/adfm.201200536 – ident: e_1_2_7_44_1 doi: 10.1149/1.1837300 – ident: e_1_2_7_33_1 doi: 10.1002/aenm.201401937 – ident: e_1_2_7_40_1 doi: 10.1039/b417616m – ident: e_1_2_7_17_1 doi: 10.1002/anie.201506408 – ident: e_1_2_7_47_1 doi: 10.1021/jp405158m – ident: e_1_2_7_46_1 doi: 10.1016/j.electacta.2016.02.043 – ident: e_1_2_7_3_1 doi: 10.1039/B815378G – ident: e_1_2_7_2_1 doi: 10.1038/nmat4137 – ident: e_1_2_7_41_1 doi: 10.1039/c2ra20122d – ident: e_1_2_7_37_1 doi: 10.1021/acs.nanolett.5b00795 – ident: e_1_2_7_42_1 doi: 10.1039/b925711j – ident: e_1_2_7_24_1 doi: 10.1039/C4TA01217H – ident: e_1_2_7_13_1 doi: 10.1016/j.nanoen.2016.09.028 – ident: e_1_2_7_36_1 doi: 10.1002/adma.201203981 – ident: e_1_2_7_10_1 doi: 10.1016/j.jpowsour.2009.02.005 – ident: e_1_2_7_32_1 doi: 10.1021/am200421h – ident: e_1_2_7_7_1 doi: 10.1021/cm5031415 – ident: e_1_2_7_18_1 doi: 10.1016/j.matlet.2013.09.072 – ident: e_1_2_7_29_1 doi: 10.1021/acsami.7b04726 – ident: e_1_2_7_8_1 doi: 10.1149/1.2194764 – ident: e_1_2_7_38_1 doi: 10.1039/c4cc00081a – ident: e_1_2_7_30_1 doi: 10.1021/cr800344k – ident: e_1_2_7_9_1 doi: 10.1016/j.elecom.2008.10.036 – ident: e_1_2_7_4_1 doi: 10.1021/cm504583y – ident: e_1_2_7_39_1 doi: 10.1016/j.electacta.2017.05.094 – ident: e_1_2_7_1_1 doi: 10.1021/ja3091438 – ident: e_1_2_7_23_1 doi: 10.1002/aenm.201501008 – ident: e_1_2_7_28_1 doi: 10.1002/aenm.201401156 – ident: e_1_2_7_19_1 doi: 10.1002/aenm.201601066 – ident: e_1_2_7_14_1 doi: 10.1016/j.jpowsour.2007.01.070 – ident: e_1_2_7_5_1 doi: 10.1021/am504412n – ident: e_1_2_7_45_1 doi: 10.1016/S0378-7753(03)00149-6 – ident: e_1_2_7_20_1 doi: 10.1039/C5CC10534J – ident: e_1_2_7_27_1 doi: 10.1002/adma.201300598 – ident: e_1_2_7_21_1 doi: 10.1002/adfm.201704690 – ident: e_1_2_7_22_1 doi: 10.1039/c2ee03389e – ident: e_1_2_7_6_1 doi: 10.1021/nn305065u – ident: e_1_2_7_15_1 doi: 10.1039/C5TA03764F – ident: e_1_2_7_11_1 doi: 10.1021/nl500486y – ident: e_1_2_7_35_1 doi: 10.1126/science.1209150 – ident: e_1_2_7_16_1 doi: 10.1016/j.apsusc.2016.02.139 – ident: e_1_2_7_31_1 doi: 10.1149/1.3463782 – ident: e_1_2_7_34_1 doi: 10.1021/nl501164y – ident: e_1_2_7_43_1 doi: 10.1021/ef301893b |
SSID | ssj0001105386 |
Score | 2.3055732 |
Snippet | A series of sodium alginate (SA)‐based binders are prepared for Li‐rich and Mn‐based oxides (LRMO) to address capacity loss and voltage fading issue. Our... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1321 |
SubjectTerms | cathode materials Crosslinking Crystal structure Electric potential Electrochemical analysis Electrode materials Fading layered/spinel heterostructure Lithium-ion batteries Sodium alginate |
Title | Sodium‐Alginate‐Based Binders for Lithium‐Rich Cathode Materials in Lithium‐Ion Batteries to Suppress Voltage and Capacity Fading |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201701358 https://www.proquest.com/docview/2033708547 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoAL4lN0DOQDEgcUSGI3H8cu61SmDoG2oXGKHOdFjdQ1CJILJ67c-Bv3l_AcO04K5WuXyLVfnLTv1_dh2b9HyDPGC7T6EDtRJhWpdpA7ERShg7r2XAgLPwC1oH_yJpif8-OLycVodDXYtdTU2Uv5Zeu5kutoFftQr-qU7H9o1k6KHdhG_eIVNYzXf9LxaZWXzaXdrzBdqSILNdiOA3RR-YuDsj3A0m4oXJT1cniLOlffngKsclWEqNZvrRZBfpZ8jTDRZJylZoVQ9UDbcybvq1Wtdv6oJfgEfa9Ugf2RsE6x40FYwuVMF91RzV9XrJeisk87HqD2ELTAB2GH33ZzK3fSqMF3pR2cN2U_edXoW6vh8oYX9ZsJtRVEi6p2SXuGL3tLnzHjkwFa44FJxnTbG7h3_BhvdR2ailbCShFbKpZ6pjnlNzm6reTkz7JthJDMFokdv0F2fUxl0BbvTg9PFqf9SiCGuKwtSWq_V8cu6vqvNh-yGT31KdEwsWojo7M75LZJaehU4_MuGcH6HrmZdJUE75NvGqdXX793CMVmi01qsEkRm9QgDscUKqlBJbWopOV6IIN4pBaPtK5oh0dq8EgRj7TDI9V4fEDOj2ZnydwxJUAcyTCXdsLMj_I8gkkR8cwHLl3AgLYQsojcQkQMXGAQ5S4Pi1wGYsIhC5lgQZhFvIBcsodkZ12t4RGhIsDUDLUv_CzkrhCxl0nOgccyFx5INiZO99Om0vDjqzItq1Qze_upUkVqVTEmz638R80M81vJ_U5TqbEen3GUsRDzHR6Oid9q7y-zpBto2rvOTY_Jrf4vtk926k8NPMGYus6eGlD-AGe4wvQ |
linkProvider | EBSCOhost |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbSeHCXoHkhTtKUQ4FMgmWRFunRMWI4re2lcRBkESjyiBhwpKBV9qzZ8hv7S3qnh50MRYFuepw46O7I7w533zH2VUiPuz4MAp1aItWOXaDBqwB13QtB-SgGSujP5vFkIb_d9ptqQuqFqfgh1gk38oxyvyYHp4R0d8MaamFFHIREKC76-gNrEbRBw24NbxZ3i02iBRGEKCc-onNSwW0vbsgbw6j7fpH3h9MGcb7FreXBM_7EdmrEyIeVinfZFmR7rD1qBrXts5cfuVs-Pfx-fh2uaMpCAXh5gaeT4xfLsneFIzLl02VxX4lRMz2n1r_cAZ-ZojJCvszeyFzlGa-4NzGU5kXOafwnheb8Jl8VuAlxkzlcBENuxPF8XJbiH7DF-PJ6NAnqCQuBFRiqBCqNtHMa-l7LNAJpQ0C84I31OvRGCwhBgHahVN7Z2PQlpEoYEatUSw_OikO2neUZHDFuYkS-GNqaKFUyNGbQS62UIAfWmR5Y0WFB82sTW9OP0xSMVVIRJ0cJqSJZq6LDztfyjxXxxl8lTxtNJbUD_sK3QiiEk1J1WFRq7x-rJKPL6Wh9d_w_H31h7cn1bJpMr-bfT9hHfK6r0shTtl38fILPCF-K9Kw20D-dOOxE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIkEvFZRWbAvFh0qcIrKxE3uPy5YVjwUhwSLEJXLssVhpSVZtuHPl1t_YX9Jxkn1wQJW45THxIeOZ-Wbk-QbgBxeOvD52A5UZT6qd2EChkwHpuhOidFGCvqB_cZmcjMTZXXy31MVf80PMC27eMip_7Q18at3hgjTU4MRTEHo-cR6rVViLKTSFLVjr3Y7uR4s6CwEIXg18JNv05207yYy7MYwOXy_yOjYtAOcybK3izmATPjaAkfVqDW_BCuafYKM_m9O2DS_XhR0_Pf59_tOb-CELJdLlEQUny47GVesKI2DKhuPyoRbzvfTMd_4VFtmFLus9yMb5ksxpkbOaepMyaVYWzE__9Jk5uy0mJfkgpnNLi1DGTTCeDaqT-J9hNDi-6Z8EzYCFwHDKVAKZRcpahbFTIotQmBAJLjhtnAqdVhxD5KhsKKSzJtGxwExyzROZKeHQGv4FWnmR4w4wnRDwpcxWR5kUodbdTmaEQNE1VnfQ8DYEs1-bmoZ93A_BmKQ1b3KUelWkc1W04WAuP615N96U3J1pKm3s7ze95VwSmhSyDVGlvf-skvaPh_353df3fLQP61c_B-nw9PL8G3ygxyqoWF53oVX-esI9Ai9l9r3Zn_8AIQLrZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sodium%E2%80%90Alginate%E2%80%90Based+Binders+for+Lithium%E2%80%90Rich+Cathode+Materials+in+Lithium%E2%80%90Ion+Batteries+to+Suppress+Voltage+and+Capacity+Fading&rft.jtitle=ChemElectroChem&rft.au=Zhang%2C+Shao%E2%80%90Jian&rft.au=Deng%2C+Ya%E2%80%90Ping&rft.au=Wu%2C+Qi%E2%80%90Hui&rft.au=Zhou%2C+Yao&rft.date=2018-05-01&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=5&rft.issue=9&rft.spage=1321&rft.epage=1329&rft_id=info:doi/10.1002%2Fcelc.201701358&rft.externalDBID=10.1002%252Fcelc.201701358&rft.externalDocID=CELC201701358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |