Sodium‐Alginate‐Based Binders for Lithium‐Rich Cathode Materials in Lithium‐Ion Batteries to Suppress Voltage and Capacity Fading

A series of sodium alginate (SA)‐based binders are prepared for Li‐rich and Mn‐based oxides (LRMO) to address capacity loss and voltage fading issue. Our results demonstrate that the Ba2+ and Al3+ cations crosslinked SA binders can significantly enhance the electrochemical performance. A small volta...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 5; no. 9; pp. 1321 - 1329
Main Authors Zhang, Shao‐Jian, Deng, Ya‐Ping, Wu, Qi‐Hui, Zhou, Yao, Li, Jun‐Tao, Wu, Zhan‐Yu, Yin, Zu‐Wei, Lu, Yan‐Qiu, Shen, Chong‐Heng, Huang, Ling, Sun, Shi‐Gang
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A series of sodium alginate (SA)‐based binders are prepared for Li‐rich and Mn‐based oxides (LRMO) to address capacity loss and voltage fading issue. Our results demonstrate that the Ba2+ and Al3+ cations crosslinked SA binders can significantly enhance the electrochemical performance. A small voltage fading of 0.326 V and a capacity retention of 82.5 % are displayed with Ba2+‐doped SA binder; and a voltage decay of 0.208 V and a capacity retention of 99.9 % are measured on the Al3+‐doped one. FESEM and TEM observations prove that the doped SA based binders can form a coating layer on the surface of the primary particles, which functions as an effective screen to prevent the active materials from being etched by the electrolyte and hence stabilizes the layered crystal structure of the LRMO. XPS depth profiles of the cycled LRMO with SA‐based binders further confirm that the Mn element dissolution, an issue which causes severe capacity loss and irreversible structural transformation, can be effectively alleviated by Ba2+‐ and Al3+‐doped SA binders. On this basis, the usage of SA‐based binders are a promising approach to suppress the voltage and capacity fading of LRMO. Suppressing binder: Sodium‐alginate‐based binders are used for the Li‐rich and Mn‐based cathode materials to suppress the capacity and voltage fading. The crosslinked sodium alginate by Ba2+ and Al3+ can prevent the active materials from being etched by the electrolyte and hence guarantee an enhanced electrochemical performance.
AbstractList A series of sodium alginate (SA)‐based binders are prepared for Li‐rich and Mn‐based oxides (LRMO) to address capacity loss and voltage fading issue. Our results demonstrate that the Ba2+ and Al3+ cations crosslinked SA binders can significantly enhance the electrochemical performance. A small voltage fading of 0.326 V and a capacity retention of 82.5 % are displayed with Ba2+‐doped SA binder; and a voltage decay of 0.208 V and a capacity retention of 99.9 % are measured on the Al3+‐doped one. FESEM and TEM observations prove that the doped SA based binders can form a coating layer on the surface of the primary particles, which functions as an effective screen to prevent the active materials from being etched by the electrolyte and hence stabilizes the layered crystal structure of the LRMO. XPS depth profiles of the cycled LRMO with SA‐based binders further confirm that the Mn element dissolution, an issue which causes severe capacity loss and irreversible structural transformation, can be effectively alleviated by Ba2+‐ and Al3+‐doped SA binders. On this basis, the usage of SA‐based binders are a promising approach to suppress the voltage and capacity fading of LRMO. Suppressing binder: Sodium‐alginate‐based binders are used for the Li‐rich and Mn‐based cathode materials to suppress the capacity and voltage fading. The crosslinked sodium alginate by Ba2+ and Al3+ can prevent the active materials from being etched by the electrolyte and hence guarantee an enhanced electrochemical performance.
A series of sodium alginate (SA)‐based binders are prepared for Li‐rich and Mn‐based oxides (LRMO) to address capacity loss and voltage fading issue. Our results demonstrate that the Ba 2+ and Al 3+ cations crosslinked SA binders can significantly enhance the electrochemical performance. A small voltage fading of 0.326 V and a capacity retention of 82.5 % are displayed with Ba 2+ ‐doped SA binder; and a voltage decay of 0.208 V and a capacity retention of 99.9 % are measured on the Al 3+ ‐doped one. FESEM and TEM observations prove that the doped SA based binders can form a coating layer on the surface of the primary particles, which functions as an effective screen to prevent the active materials from being etched by the electrolyte and hence stabilizes the layered crystal structure of the LRMO. XPS depth profiles of the cycled LRMO with SA‐based binders further confirm that the Mn element dissolution, an issue which causes severe capacity loss and irreversible structural transformation, can be effectively alleviated by Ba 2+ ‐ and Al 3+ ‐doped SA binders. On this basis, the usage of SA‐based binders are a promising approach to suppress the voltage and capacity fading of LRMO.
A series of sodium alginate (SA)‐based binders are prepared for Li‐rich and Mn‐based oxides (LRMO) to address capacity loss and voltage fading issue. Our results demonstrate that the Ba2+ and Al3+ cations crosslinked SA binders can significantly enhance the electrochemical performance. A small voltage fading of 0.326 V and a capacity retention of 82.5 % are displayed with Ba2+‐doped SA binder; and a voltage decay of 0.208 V and a capacity retention of 99.9 % are measured on the Al3+‐doped one. FESEM and TEM observations prove that the doped SA based binders can form a coating layer on the surface of the primary particles, which functions as an effective screen to prevent the active materials from being etched by the electrolyte and hence stabilizes the layered crystal structure of the LRMO. XPS depth profiles of the cycled LRMO with SA‐based binders further confirm that the Mn element dissolution, an issue which causes severe capacity loss and irreversible structural transformation, can be effectively alleviated by Ba2+‐ and Al3+‐doped SA binders. On this basis, the usage of SA‐based binders are a promising approach to suppress the voltage and capacity fading of LRMO.
Author Zhou, Yao
Wu, Zhan‐Yu
Shen, Chong‐Heng
Zhang, Shao‐Jian
Yin, Zu‐Wei
Li, Jun‐Tao
Lu, Yan‐Qiu
Huang, Ling
Sun, Shi‐Gang
Deng, Ya‐Ping
Wu, Qi‐Hui
Author_xml – sequence: 1
  givenname: Shao‐Jian
  surname: Zhang
  fullname: Zhang, Shao‐Jian
  organization: Xiamen University
– sequence: 2
  givenname: Ya‐Ping
  surname: Deng
  fullname: Deng, Ya‐Ping
  organization: Xiamen University
– sequence: 3
  givenname: Qi‐Hui
  surname: Wu
  fullname: Wu, Qi‐Hui
  organization: Quanzhou Normal University
– sequence: 4
  givenname: Yao
  surname: Zhou
  fullname: Zhou, Yao
  organization: Xiamen University
– sequence: 5
  givenname: Jun‐Tao
  orcidid: 0000-0002-9650-6385
  surname: Li
  fullname: Li, Jun‐Tao
  email: jtli@xmu.edu.cn
  organization: Xiamen University
– sequence: 6
  givenname: Zhan‐Yu
  surname: Wu
  fullname: Wu, Zhan‐Yu
  organization: Xiamen University
– sequence: 7
  givenname: Zu‐Wei
  surname: Yin
  fullname: Yin, Zu‐Wei
  organization: Xiamen University
– sequence: 8
  givenname: Yan‐Qiu
  surname: Lu
  fullname: Lu, Yan‐Qiu
  organization: Xiamen University
– sequence: 9
  givenname: Chong‐Heng
  surname: Shen
  fullname: Shen, Chong‐Heng
  organization: Xiamen University
– sequence: 10
  givenname: Ling
  surname: Huang
  fullname: Huang, Ling
  organization: Xiamen University
– sequence: 11
  givenname: Shi‐Gang
  surname: Sun
  fullname: Sun, Shi‐Gang
  organization: Xiamen University
BookMark eNqFkE1rGzEQhkVIIKmTa86Cnu2OpP2Qj_GStAaXQvNxXWRpZMtspK0kE3zrtbf-xv6SrnFoQiD0pAE9zzvM-4Ec--CRkEsGEwbAP2ns9IQDq4GJUh6RM86m1Rg4q45fzafkIqUNADAGpZDVGfl1G4zbPv75-fuqWzmvMg7jTCU0dOa8wZioDZEuXF4fsO9Or2mj8joYpF8HPjrVJer8K2YePJ2pvP_DRHOgt9u-j5gSfQhdViukypshpFfa5R29Ucb51Tk5sUMSXjy_I3J_c33XfBkvvn2eN1eLsRZlIcf1kktjJJZWFkuOhQbknFulrQSrpEBAgdJAUVujK1UWuKyFElW9lIVFo8WIfDzk9jH82GLK7SZsox9WthyEqEGWRT1QkwOlY0gpom376B5V3LUM2n3j7b7x9l_jg1C8EYbbVHbB56hc9742PWhPrsPdf5a0zfWieXH_AvClnfI
CitedBy_id crossref_primary_10_1016_j_jpowsour_2019_04_063
crossref_primary_10_1016_j_est_2024_112816
crossref_primary_10_1039_D4GC02666G
crossref_primary_10_1002_aenm_202002508
crossref_primary_10_1016_j_carbpol_2021_118063
crossref_primary_10_1039_D0GC02246B
crossref_primary_10_1039_D3IM00089C
crossref_primary_10_1002_adma_202401482
crossref_primary_10_1007_s11581_018_2611_6
crossref_primary_10_1002_adma_202005937
crossref_primary_10_1016_j_jpowsour_2019_01_054
crossref_primary_10_1021_acsami_0c10874
crossref_primary_10_1002_adfm_201808522
crossref_primary_10_1002_slct_201803236
crossref_primary_10_1021_acssuschemeng_3c07971
crossref_primary_10_1039_D3CS00771E
crossref_primary_10_1002_cssc_201903577
crossref_primary_10_1021_acsnano_4c10901
crossref_primary_10_1002_est2_634
crossref_primary_10_1038_s41467_019_09400_w
crossref_primary_10_1016_j_jmst_2022_07_053
crossref_primary_10_1016_j_pecs_2020_100846
crossref_primary_10_1016_j_electacta_2020_136401
crossref_primary_10_1149_1945_7111_ad9fe6
crossref_primary_10_1002_aenm_202001984
crossref_primary_10_1002_adma_202006019
crossref_primary_10_1016_j_pmatsci_2020_100655
crossref_primary_10_1002_smll_202405823
crossref_primary_10_1093_pnasnexus_pgac127
crossref_primary_10_1021_acsenergylett_8b02433
crossref_primary_10_1039_D0TA05169A
crossref_primary_10_1039_D4CS00366G
crossref_primary_10_1002_adfm_202213260
crossref_primary_10_1002_adma_202205229
crossref_primary_10_1016_j_jpowsour_2019_02_086
crossref_primary_10_1039_D4TA03305A
crossref_primary_10_1149_2_0881902jes
crossref_primary_10_1007_s40242_020_9103_8
crossref_primary_10_1016_j_biortech_2023_130225
Cites_doi 10.1002/aenm.201502398
10.1039/C3EE41664J
10.1002/adfm.201200536
10.1149/1.1837300
10.1002/aenm.201401937
10.1039/b417616m
10.1002/anie.201506408
10.1021/jp405158m
10.1016/j.electacta.2016.02.043
10.1039/B815378G
10.1038/nmat4137
10.1039/c2ra20122d
10.1021/acs.nanolett.5b00795
10.1039/b925711j
10.1039/C4TA01217H
10.1016/j.nanoen.2016.09.028
10.1002/adma.201203981
10.1016/j.jpowsour.2009.02.005
10.1021/am200421h
10.1021/cm5031415
10.1016/j.matlet.2013.09.072
10.1021/acsami.7b04726
10.1149/1.2194764
10.1039/c4cc00081a
10.1021/cr800344k
10.1016/j.elecom.2008.10.036
10.1021/cm504583y
10.1016/j.electacta.2017.05.094
10.1021/ja3091438
10.1002/aenm.201501008
10.1002/aenm.201401156
10.1002/aenm.201601066
10.1016/j.jpowsour.2007.01.070
10.1021/am504412n
10.1016/S0378-7753(03)00149-6
10.1039/C5CC10534J
10.1002/adma.201300598
10.1002/adfm.201704690
10.1039/c2ee03389e
10.1021/nn305065u
10.1039/C5TA03764F
10.1021/nl500486y
10.1126/science.1209150
10.1016/j.apsusc.2016.02.139
10.1149/1.3463782
10.1021/nl501164y
10.1021/ef301893b
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/celc.201701358
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage 1329
ExternalDocumentID 10_1002_celc_201701358
CELC201701358
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 20720160124; 20720162011
– fundername: National Natural Science Foundation of China
  funderid: 21373008; 21621091
– fundername: National Key Research and Development of China
  funderid: 2016YFB0100202
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJNI
ADMLS
CITATION
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3548-7b28dd8e5f84b2e4c0e222facf80fa83e0e3e8d047fdc6a54eb73a367b84fedc3
ISSN 2196-0216
IngestDate Fri Jul 25 12:13:29 EDT 2025
Thu Apr 24 23:00:27 EDT 2025
Tue Jul 01 00:45:00 EDT 2025
Sat Aug 24 00:54:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3548-7b28dd8e5f84b2e4c0e222facf80fa83e0e3e8d047fdc6a54eb73a367b84fedc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9650-6385
PQID 2033708547
PQPubID 2034587
PageCount 9
ParticipantIDs proquest_journals_2033708547
crossref_primary_10_1002_celc_201701358
crossref_citationtrail_10_1002_celc_201701358
wiley_primary_10_1002_celc_201701358_CELC201701358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2007; 167
2017; 7
2011; 334
2015; 15
2015; 14
2018; 28
2015; 5
2013; 25
2015; 3
2013; 27
2013; 23
2015; 54
2009
2014; 26
2016; 30
2016; 52
2006; 153
1996; 143
2013; 7
2011; 3
2014; 114
2017; 9
2009; 11
2016; 6
2010; 20
2012; 2
2015; 27
2014; 2
2009; 191
2003; 119–121
2010; 157
2013; 117
2010; 110
2014; 14
2013; 135
2005; 15
2016; 193
2014; 7
2014; 50
2017; 245
2014; 6
2012; 5
2016; 370
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 117
  start-page: 15947
  year: 2013
  end-page: 15957
  publication-title: J. Phys. Chem. C
– volume: 30
  start-page: 717
  year: 2016
  end-page: 727
  publication-title: Nano Energy
– volume: 52
  start-page: 4683
  year: 2016
  end-page: 4686
  publication-title: Chem. Commun.
– volume: 3
  start-page: 17376
  year: 2015
  end-page: 17384
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 757
  year: 2015
  end-page: 767
  publication-title: Chem. Mater.
– volume: 3
  start-page: 2966
  year: 2011
  end-page: 2972
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 7124
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 119–121
  start-page: 330
  year: 2003
  end-page: 337
  publication-title: J. Power Sources
– volume: 15
  start-page: 2257
  year: 2005
  publication-title: J. Mater. Chem.
– volume: 27
  start-page: 1162
  year: 2013
  end-page: 1167
  publication-title: Energy Fuels
– volume: 20
  start-page: 3961
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 153
  start-page: 1186
  year: 2006
  end-page: 1192
  publication-title: J. Electrochem. Soc.
– volume: 167
  start-page: 178
  year: 2007
  end-page: 184
  publication-title: J. Power Sources
– volume: 23
  start-page: 1070
  year: 2013
  end-page: 1075
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 3550
  year: 2014
  end-page: 3555
  publication-title: Nano Lett.
– volume: 157
  start-page: 1121
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 25
  start-page: 1571
  year: 2013
  end-page: 1576
  publication-title: Adv. Mater.
– volume: 14
  start-page: 230
  year: 2015
  end-page: 238
  publication-title: Nat. Mater.
– volume: 5
  start-page: 1401937
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 54
  start-page: 13058
  year: 2015
  end-page: 13062
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 1501008
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 6272
  year: 2014
  end-page: 6280
  publication-title: Chem. Mater.
– start-page: 218
  year: 2009
  end-page: 20
  publication-title: Chem. Commun.
– volume: 14
  start-page: 2628
  year: 2014
  end-page: 2635
  publication-title: Nano Lett.
– volume: 7
  start-page: 1601066
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 135
  start-page: 1167
  year: 2013
  end-page: 1176
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 75
  year: 2011
  end-page: 79
  publication-title: Science
– volume: 191
  start-page: 644
  year: 2009
  end-page: 647
  publication-title: J. Power Sources
– volume: 2
  start-page: 9656
  year: 2014
  end-page: 9665
  publication-title: J. Mater. Chem. A
– volume: 143
  start-page: 3809
  year: 1996
  end-page: 3820
  publication-title: J. Electrochem. Soc.
– volume: 114
  start-page: 48
  year: 2014
  end-page: 51
  publication-title: Mater. Lett.
– volume: 28
  start-page: 1704690
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 197
  year: 2015
  end-page: 211
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 760
  year: 2013
  end-page: 767
  publication-title: ACS Nano
– volume: 25
  start-page: 3722
  year: 2013
  end-page: 3726
  publication-title: Adv. Mater.
– volume: 370
  start-page: 437
  year: 2016
  end-page: 444
  publication-title: Appl. Surf. Sci.
– volume: 15
  start-page: 4440
  year: 2015
  end-page: 4447
  publication-title: Nano Lett.
– volume: 245
  start-page: 371
  year: 2017
  end-page: 378
  publication-title: Electrochimica Acta
– volume: 6
  start-page: 1502398
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 193
  start-page: 45
  year: 2016
  end-page: 53
  publication-title: Electrochimica Acta
– volume: 2
  start-page: 3423
  year: 2012
  publication-title: RSC Adv.
– volume: 110
  start-page: 1278
  year: 2010
  end-page: 1239
  publication-title: Chem. Rev.
– volume: 50
  start-page: 6386
  year: 2014
  end-page: 6389
  publication-title: Chem. Commun.
– volume: 7
  start-page: 705
  year: 2014
  end-page: 714
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 16888
  year: 2014
  end-page: 16894
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 84
  year: 2009
  end-page: 86
  publication-title: Electrochem. Commun.
– volume: 9
  start-page: 21065
  year: 2017
  end-page: 21070
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.201502398
– ident: e_1_2_7_25_1
  doi: 10.1039/C3EE41664J
– ident: e_1_2_7_26_1
  doi: 10.1002/adfm.201200536
– ident: e_1_2_7_44_1
  doi: 10.1149/1.1837300
– ident: e_1_2_7_33_1
  doi: 10.1002/aenm.201401937
– ident: e_1_2_7_40_1
  doi: 10.1039/b417616m
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.201506408
– ident: e_1_2_7_47_1
  doi: 10.1021/jp405158m
– ident: e_1_2_7_46_1
  doi: 10.1016/j.electacta.2016.02.043
– ident: e_1_2_7_3_1
  doi: 10.1039/B815378G
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat4137
– ident: e_1_2_7_41_1
  doi: 10.1039/c2ra20122d
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.nanolett.5b00795
– ident: e_1_2_7_42_1
  doi: 10.1039/b925711j
– ident: e_1_2_7_24_1
  doi: 10.1039/C4TA01217H
– ident: e_1_2_7_13_1
  doi: 10.1016/j.nanoen.2016.09.028
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.201203981
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jpowsour.2009.02.005
– ident: e_1_2_7_32_1
  doi: 10.1021/am200421h
– ident: e_1_2_7_7_1
  doi: 10.1021/cm5031415
– ident: e_1_2_7_18_1
  doi: 10.1016/j.matlet.2013.09.072
– ident: e_1_2_7_29_1
  doi: 10.1021/acsami.7b04726
– ident: e_1_2_7_8_1
  doi: 10.1149/1.2194764
– ident: e_1_2_7_38_1
  doi: 10.1039/c4cc00081a
– ident: e_1_2_7_30_1
  doi: 10.1021/cr800344k
– ident: e_1_2_7_9_1
  doi: 10.1016/j.elecom.2008.10.036
– ident: e_1_2_7_4_1
  doi: 10.1021/cm504583y
– ident: e_1_2_7_39_1
  doi: 10.1016/j.electacta.2017.05.094
– ident: e_1_2_7_1_1
  doi: 10.1021/ja3091438
– ident: e_1_2_7_23_1
  doi: 10.1002/aenm.201501008
– ident: e_1_2_7_28_1
  doi: 10.1002/aenm.201401156
– ident: e_1_2_7_19_1
  doi: 10.1002/aenm.201601066
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jpowsour.2007.01.070
– ident: e_1_2_7_5_1
  doi: 10.1021/am504412n
– ident: e_1_2_7_45_1
  doi: 10.1016/S0378-7753(03)00149-6
– ident: e_1_2_7_20_1
  doi: 10.1039/C5CC10534J
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201300598
– ident: e_1_2_7_21_1
  doi: 10.1002/adfm.201704690
– ident: e_1_2_7_22_1
  doi: 10.1039/c2ee03389e
– ident: e_1_2_7_6_1
  doi: 10.1021/nn305065u
– ident: e_1_2_7_15_1
  doi: 10.1039/C5TA03764F
– ident: e_1_2_7_11_1
  doi: 10.1021/nl500486y
– ident: e_1_2_7_35_1
  doi: 10.1126/science.1209150
– ident: e_1_2_7_16_1
  doi: 10.1016/j.apsusc.2016.02.139
– ident: e_1_2_7_31_1
  doi: 10.1149/1.3463782
– ident: e_1_2_7_34_1
  doi: 10.1021/nl501164y
– ident: e_1_2_7_43_1
  doi: 10.1021/ef301893b
SSID ssj0001105386
Score 2.3055732
Snippet A series of sodium alginate (SA)‐based binders are prepared for Li‐rich and Mn‐based oxides (LRMO) to address capacity loss and voltage fading issue. Our...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1321
SubjectTerms cathode materials
Crosslinking
Crystal structure
Electric potential
Electrochemical analysis
Electrode materials
Fading
layered/spinel heterostructure
Lithium-ion batteries
Sodium alginate
Title Sodium‐Alginate‐Based Binders for Lithium‐Rich Cathode Materials in Lithium‐Ion Batteries to Suppress Voltage and Capacity Fading
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201701358
https://www.proquest.com/docview/2033708547
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoAL4lN0DOQDEgcUSGI3H8cu61SmDoG2oXGKHOdFjdQ1CJILJ67c-Bv3l_AcO04K5WuXyLVfnLTv1_dh2b9HyDPGC7T6EDtRJhWpdpA7ERShg7r2XAgLPwC1oH_yJpif8-OLycVodDXYtdTU2Uv5Zeu5kutoFftQr-qU7H9o1k6KHdhG_eIVNYzXf9LxaZWXzaXdrzBdqSILNdiOA3RR-YuDsj3A0m4oXJT1cniLOlffngKsclWEqNZvrRZBfpZ8jTDRZJylZoVQ9UDbcybvq1Wtdv6oJfgEfa9Ugf2RsE6x40FYwuVMF91RzV9XrJeisk87HqD2ELTAB2GH33ZzK3fSqMF3pR2cN2U_edXoW6vh8oYX9ZsJtRVEi6p2SXuGL3tLnzHjkwFa44FJxnTbG7h3_BhvdR2ailbCShFbKpZ6pjnlNzm6reTkz7JthJDMFokdv0F2fUxl0BbvTg9PFqf9SiCGuKwtSWq_V8cu6vqvNh-yGT31KdEwsWojo7M75LZJaehU4_MuGcH6HrmZdJUE75NvGqdXX793CMVmi01qsEkRm9QgDscUKqlBJbWopOV6IIN4pBaPtK5oh0dq8EgRj7TDI9V4fEDOj2ZnydwxJUAcyTCXdsLMj_I8gkkR8cwHLl3AgLYQsojcQkQMXGAQ5S4Pi1wGYsIhC5lgQZhFvIBcsodkZ12t4RGhIsDUDLUv_CzkrhCxl0nOgccyFx5INiZO99Om0vDjqzItq1Qze_upUkVqVTEmz638R80M81vJ_U5TqbEen3GUsRDzHR6Oid9q7y-zpBto2rvOTY_Jrf4vtk926k8NPMGYus6eGlD-AGe4wvQ
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbSeHCXoHkhTtKUQ4FMgmWRFunRMWI4re2lcRBkESjyiBhwpKBV9qzZ8hv7S3qnh50MRYFuepw46O7I7w533zH2VUiPuz4MAp1aItWOXaDBqwB13QtB-SgGSujP5vFkIb_d9ptqQuqFqfgh1gk38oxyvyYHp4R0d8MaamFFHIREKC76-gNrEbRBw24NbxZ3i02iBRGEKCc-onNSwW0vbsgbw6j7fpH3h9MGcb7FreXBM_7EdmrEyIeVinfZFmR7rD1qBrXts5cfuVs-Pfx-fh2uaMpCAXh5gaeT4xfLsneFIzLl02VxX4lRMz2n1r_cAZ-ZojJCvszeyFzlGa-4NzGU5kXOafwnheb8Jl8VuAlxkzlcBENuxPF8XJbiH7DF-PJ6NAnqCQuBFRiqBCqNtHMa-l7LNAJpQ0C84I31OvRGCwhBgHahVN7Z2PQlpEoYEatUSw_OikO2neUZHDFuYkS-GNqaKFUyNGbQS62UIAfWmR5Y0WFB82sTW9OP0xSMVVIRJ0cJqSJZq6LDztfyjxXxxl8lTxtNJbUD_sK3QiiEk1J1WFRq7x-rJKPL6Wh9d_w_H31h7cn1bJpMr-bfT9hHfK6r0shTtl38fILPCF-K9Kw20D-dOOxE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIkEvFZRWbAvFh0qcIrKxE3uPy5YVjwUhwSLEJXLssVhpSVZtuHPl1t_YX9Jxkn1wQJW45THxIeOZ-Wbk-QbgBxeOvD52A5UZT6qd2EChkwHpuhOidFGCvqB_cZmcjMTZXXy31MVf80PMC27eMip_7Q18at3hgjTU4MRTEHo-cR6rVViLKTSFLVjr3Y7uR4s6CwEIXg18JNv05207yYy7MYwOXy_yOjYtAOcybK3izmATPjaAkfVqDW_BCuafYKM_m9O2DS_XhR0_Pf59_tOb-CELJdLlEQUny47GVesKI2DKhuPyoRbzvfTMd_4VFtmFLus9yMb5ksxpkbOaepMyaVYWzE__9Jk5uy0mJfkgpnNLi1DGTTCeDaqT-J9hNDi-6Z8EzYCFwHDKVAKZRcpahbFTIotQmBAJLjhtnAqdVhxD5KhsKKSzJtGxwExyzROZKeHQGv4FWnmR4w4wnRDwpcxWR5kUodbdTmaEQNE1VnfQ8DYEs1-bmoZ93A_BmKQ1b3KUelWkc1W04WAuP615N96U3J1pKm3s7ze95VwSmhSyDVGlvf-skvaPh_353df3fLQP61c_B-nw9PL8G3ygxyqoWF53oVX-esI9Ai9l9r3Zn_8AIQLrZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sodium%E2%80%90Alginate%E2%80%90Based+Binders+for+Lithium%E2%80%90Rich+Cathode+Materials+in+Lithium%E2%80%90Ion+Batteries+to+Suppress+Voltage+and+Capacity+Fading&rft.jtitle=ChemElectroChem&rft.au=Zhang%2C+Shao%E2%80%90Jian&rft.au=Deng%2C+Ya%E2%80%90Ping&rft.au=Wu%2C+Qi%E2%80%90Hui&rft.au=Zhou%2C+Yao&rft.date=2018-05-01&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=5&rft.issue=9&rft.spage=1321&rft.epage=1329&rft_id=info:doi/10.1002%2Fcelc.201701358&rft.externalDBID=10.1002%252Fcelc.201701358&rft.externalDocID=CELC201701358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon