Highly Stretchable, Fast Self‐Healing, Responsive Conductive Hydrogels for Supercapacitor Electrode and Motion Sensor

Conductive hydrogels as potential soft materials have attracted tremendous attention in wearable electronic devices. Nonetheless, manufacturing intelligent materials that integrate mouldability, stretchability, responsive ability, fast self‐healing ability, as well as mechanical and electrochemical...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular materials and engineering Vol. 305; no. 5
Main Authors Wei, Duanli, Wang, Haonan, Zhu, Jiaqing, Luo, Licheng, Huang, Huabo, Li, Liang, Yu, Xianghua
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conductive hydrogels as potential soft materials have attracted tremendous attention in wearable electronic devices. Nonetheless, manufacturing intelligent materials that integrate mouldability, stretchability, responsive ability, fast self‐healing ability, as well as mechanical and electrochemical properties is still a challenge. Here, multifunctional conductive hydrogels composed of poly(vinyl alcohol) (PVA) and polypyrrole (PPy) nanotube are prepared using borax as cross‐linker. The existence of multicomplexation, entangled PVA chains, and interconnected PPy nanotubes, as well as extensive hydrogen bonding results in the fabrication of hierarchical network of PVA‐PPy hydrogels. PVA‐PPy hydrogels exhibit high stretchability (more than 1000%), multiresponsiveness, low density (0.95 g cm−3), high water content (96%), and 15 s self‐healing features. Furthermore, the self‐healing supercapacitor electrode and motion sensor based on PVA‐PPy hydrogels demonstrate ideal performances. This facile strategy in this work would be promising to construct an excellent multifunctional soft material for various flexible electrode and biosensor. Multifunctional conductive hydrogels composed of poly(vinyl alcohol) (PVA) and polypyrrole (PPy) nanotube are prepared using borax as cross‐linker. PVA‐PPy hydrogels with hierarchical 3D network exhibit high stretchability, multiresponsiveness, low density, high water content, and fast self‐healing features. The self‐healing supercapacitor electrode and motion sensor based on PVA‐PPy hydrogels demonstrate ideal performance.
AbstractList Abstract Conductive hydrogels as potential soft materials have attracted tremendous attention in wearable electronic devices. Nonetheless, manufacturing intelligent materials that integrate mouldability, stretchability, responsive ability, fast self‐healing ability, as well as mechanical and electrochemical properties is still a challenge. Here, multifunctional conductive hydrogels composed of poly(vinyl alcohol) (PVA) and polypyrrole (PPy) nanotube are prepared using borax as cross‐linker. The existence of multicomplexation, entangled PVA chains, and interconnected PPy nanotubes, as well as extensive hydrogen bonding results in the fabrication of hierarchical network of PVA‐PPy hydrogels. PVA‐PPy hydrogels exhibit high stretchability (more than 1000%), multiresponsiveness, low density (0.95 g cm −3 ), high water content (96%), and 15 s self‐healing features. Furthermore, the self‐healing supercapacitor electrode and motion sensor based on PVA‐PPy hydrogels demonstrate ideal performances. This facile strategy in this work would be promising to construct an excellent multifunctional soft material for various flexible electrode and biosensor.
Conductive hydrogels as potential soft materials have attracted tremendous attention in wearable electronic devices. Nonetheless, manufacturing intelligent materials that integrate mouldability, stretchability, responsive ability, fast self‐healing ability, as well as mechanical and electrochemical properties is still a challenge. Here, multifunctional conductive hydrogels composed of poly(vinyl alcohol) (PVA) and polypyrrole (PPy) nanotube are prepared using borax as cross‐linker. The existence of multicomplexation, entangled PVA chains, and interconnected PPy nanotubes, as well as extensive hydrogen bonding results in the fabrication of hierarchical network of PVA‐PPy hydrogels. PVA‐PPy hydrogels exhibit high stretchability (more than 1000%), multiresponsiveness, low density (0.95 g cm−3), high water content (96%), and 15 s self‐healing features. Furthermore, the self‐healing supercapacitor electrode and motion sensor based on PVA‐PPy hydrogels demonstrate ideal performances. This facile strategy in this work would be promising to construct an excellent multifunctional soft material for various flexible electrode and biosensor.
Conductive hydrogels as potential soft materials have attracted tremendous attention in wearable electronic devices. Nonetheless, manufacturing intelligent materials that integrate mouldability, stretchability, responsive ability, fast self‐healing ability, as well as mechanical and electrochemical properties is still a challenge. Here, multifunctional conductive hydrogels composed of poly(vinyl alcohol) (PVA) and polypyrrole (PPy) nanotube are prepared using borax as cross‐linker. The existence of multicomplexation, entangled PVA chains, and interconnected PPy nanotubes, as well as extensive hydrogen bonding results in the fabrication of hierarchical network of PVA‐PPy hydrogels. PVA‐PPy hydrogels exhibit high stretchability (more than 1000%), multiresponsiveness, low density (0.95 g cm−3), high water content (96%), and 15 s self‐healing features. Furthermore, the self‐healing supercapacitor electrode and motion sensor based on PVA‐PPy hydrogels demonstrate ideal performances. This facile strategy in this work would be promising to construct an excellent multifunctional soft material for various flexible electrode and biosensor. Multifunctional conductive hydrogels composed of poly(vinyl alcohol) (PVA) and polypyrrole (PPy) nanotube are prepared using borax as cross‐linker. PVA‐PPy hydrogels with hierarchical 3D network exhibit high stretchability, multiresponsiveness, low density, high water content, and fast self‐healing features. The self‐healing supercapacitor electrode and motion sensor based on PVA‐PPy hydrogels demonstrate ideal performance.
Author Zhu, Jiaqing
Yu, Xianghua
Li, Liang
Huang, Huabo
Wei, Duanli
Wang, Haonan
Luo, Licheng
Author_xml – sequence: 1
  givenname: Duanli
  orcidid: 0000-0001-5378-4089
  surname: Wei
  fullname: Wei, Duanli
  organization: The college of Post and Telecommunication of Wuhan Institute of Technology
– sequence: 2
  givenname: Haonan
  surname: Wang
  fullname: Wang, Haonan
  organization: Wuhan Institute of Technology
– sequence: 3
  givenname: Jiaqing
  surname: Zhu
  fullname: Zhu, Jiaqing
  organization: Wuhan Institute of Technology
– sequence: 4
  givenname: Licheng
  surname: Luo
  fullname: Luo, Licheng
  organization: Wuhan Institute of Technology
– sequence: 5
  givenname: Huabo
  surname: Huang
  fullname: Huang, Huabo
  organization: Wuhan Institute of Technology
– sequence: 6
  givenname: Liang
  orcidid: 0000-0003-4601-8890
  surname: Li
  fullname: Li, Liang
  email: msell08@wit.edu.cn, msell08@163.com
  organization: Nanjing University
– sequence: 7
  givenname: Xianghua
  surname: Yu
  fullname: Yu, Xianghua
  email: yuxianghua05@163.com
  organization: Wuhan Institute of Technology
BookMark eNqFkM1OwkAUhScGExHdup7ELcX5K51ZEgJiAjERXTfT6S2UlJk6UyTsfASf0SexiNGld3PPTb5zbnIuUcc6CwjdUDKghLC7rd7CgBFG2qHyDHWp4CpiJBadby2jRCh2gS5D2LREIhXvov2sXK2rA142Hhqz1lkFfTzVocFLqIrP948Z6Kq0qz5-glA7G8o3wGNn851pjnJ2yL1bQRVw4Txe7mrwRtfalE17TiowjXc5YG1zvHBN6Wyba4PzV-i80FWA65_dQy_TyfN4Fs0f7x_Go3lkeCxkxIfGZHGmExnHiRFMCgmJFDTPhqAMY3mcA8sUzxIKwohCxdRkkmQFp4QPecJ76PaUW3v3uoPQpBu387Z9mTJBiFQqTkRLDU6U8S4ED0Va-3Kr_SGlJD2Wmx7LTX_LbQ3qZNiXFRz-odPFaDH5834BJ5iBrQ
CitedBy_id crossref_primary_10_1016_j_diamond_2023_110581
crossref_primary_10_1016_j_cej_2021_130823
crossref_primary_10_1016_j_colsurfa_2021_128145
crossref_primary_10_1007_s10904_021_02037_7
crossref_primary_10_1016_j_cej_2021_129518
crossref_primary_10_1039_D3MH01519J
crossref_primary_10_1002_mame_202000285
crossref_primary_10_1021_acsami_2c23230
crossref_primary_10_1002_pi_6354
crossref_primary_10_1016_j_colsurfa_2023_131577
crossref_primary_10_1016_j_jcis_2022_03_037
crossref_primary_10_1016_j_ijbiomac_2022_02_065
crossref_primary_10_1021_acsami_3c08623
crossref_primary_10_1002_ange_202013254
crossref_primary_10_1016_j_matchemphys_2021_124524
crossref_primary_10_3390_polym12112594
crossref_primary_10_1016_j_synthmet_2021_116952
crossref_primary_10_1038_s41598_020_78650_2
crossref_primary_10_1002_adma_202108932
crossref_primary_10_1007_s11664_021_09356_y
crossref_primary_10_1016_j_mtcomm_2023_105919
crossref_primary_10_1021_acssensors_4c00307
crossref_primary_10_1016_j_colsurfa_2021_127125
crossref_primary_10_1039_D4TA01128G
crossref_primary_10_3390_gels7040216
crossref_primary_10_1002_admt_202301933
crossref_primary_10_1002_mame_202000475
crossref_primary_10_1021_acsami_1c15784
crossref_primary_10_1002_anie_202013254
crossref_primary_10_1007_s00289_023_04903_5
crossref_primary_10_1002_adma_202207742
crossref_primary_10_1016_j_cej_2023_142828
crossref_primary_10_1039_D1GC01726H
crossref_primary_10_1016_j_ijbiomac_2021_01_017
crossref_primary_10_1016_j_jcis_2024_06_186
crossref_primary_10_1002_mame_202100159
crossref_primary_10_1002_smm2_1160
crossref_primary_10_1002_vnl_21842
crossref_primary_10_1021_acsami_1c01343
crossref_primary_10_1002_pi_6515
crossref_primary_10_1016_j_apmt_2020_100776
crossref_primary_10_1002_smll_202101518
crossref_primary_10_1016_j_ijhydene_2022_12_223
crossref_primary_10_1007_s12274_023_6063_6
Cites_doi 10.1039/c2sm27253a
10.1021/acssensors.7b00648
10.1002/adma.201605099
10.1039/C4TA00484A
10.1021/acs.chemmater.8b01446
10.1016/j.biomaterials.2009.12.052
10.1038/ncomms10310
10.1039/C9NJ00116F
10.1002/adma.201602126
10.1039/C5RA06064H
10.1016/j.jpowsour.2013.09.014
10.1021/acs.chemmater.9b01239
10.1021/acsami.7b17118
10.1002/adfm.201290075
10.1016/j.eurpolymj.2015.03.020
10.1039/C5CP02476E
10.1039/C7TA08152A
10.1016/j.jpowsour.2018.10.064
10.1016/j.carbpol.2013.02.071
10.1021/acsami.8b09656
10.1002/anie.201707239
10.1021/acsami.6b00510
10.1021/am502077p
10.1002/adma.201503543
10.1126/science.aaf8810
10.1016/j.orgel.2013.09.042
10.1016/j.nantod.2016.10.002
10.1002/adfm.201404247
10.1002/anie.201708614
10.1039/C4TA03332A
10.1021/acs.nanolett.5b03069
10.1021/acsnano.8b04609
10.1002/anie.201705212
10.1038/srep05792
10.1016/j.electacta.2016.06.165
10.1021/nn502704g
10.1007/s10570-017-1409-4
10.1021/acs.chemmater.7b02895
10.1038/nnano.2012.192
10.1038/nature08693
10.1016/j.carbon.2019.05.011
10.1021/jp301099r
10.1021/bk-2002-0833
10.1038/s41467-018-05238-w
10.1021/acssuschemeng.8b00193
10.1021/acsami.9b00274
10.1021/acsami.6b00912
10.1039/C4NR03322A
10.1021/ma990923i
10.1002/marc.201700018
10.1021/acsami.9b04871
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/mame.202000018
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1439-2054
EndPage n/a
ExternalDocumentID 10_1002_mame_202000018
MAME202000018
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AVUZU
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HCIFZ
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KB.
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PDBOC
PTHSS
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c3548-36ccb5ba78557c42848e7841db6e9c22d5de2b93b71e4c4f951cb80bf31036373
IEDL.DBID DR2
ISSN 1438-7492
IngestDate Thu Oct 10 22:42:26 EDT 2024
Thu Sep 12 16:47:41 EDT 2024
Sat Aug 24 01:07:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3548-36ccb5ba78557c42848e7841db6e9c22d5de2b93b71e4c4f951cb80bf31036373
ORCID 0000-0001-5378-4089
0000-0003-4601-8890
PQID 2400899574
PQPubID 1016395
PageCount 12
ParticipantIDs proquest_journals_2400899574
crossref_primary_10_1002_mame_202000018
wiley_primary_10_1002_mame_202000018_MAME202000018
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular materials and engineering
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 5
2015; 15
2018; 28
2010; 31
2015; 6
2015; 17
2017; 2
2015; 5
2015; 4
2019; 31
2019; 11
2017; 24
2010; 463
2018; 407
2017; 29
2002
2013; 9
2016; 11
2018; 6
2018; 9
2015; 25
2015; 27
2013; 14
2014; 2
2017; 38
2019; 43
2013; 95
2000; 33
2015; 66
2017; 56
2016; 353
2018; 30
2016; 213
2018; 12
2016; 28
2012; 7
2014; 8
2018; 10
2012; 116
2012; 22
2019; 150
2014; 6
2016; 8
2014; 247
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Han L. (e_1_2_6_11_1) 2018; 28
e_1_2_6_14_1
Wang Z. F. (e_1_2_6_34_1) 2018; 28
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Wang Z. F. (e_1_2_6_3_1) 2018; 28
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 24
  start-page: 4433
  year: 2017
  publication-title: Cellulose
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 1258
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 8037
  year: 2016
  publication-title: Adv. Mater.
– volume: 14
  start-page: 3331
  year: 2013
  publication-title: Org. Electron.
– volume: 28
  start-page: 4501
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 7451
  year: 2015
  publication-title: Adv. Mater.
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 25
  start-page: 1219
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 2832
  year: 2013
  publication-title: Soft Matter
– volume: 95
  start-page: 72
  year: 2013
  publication-title: Carbohydr. Polym.
– volume: 29
  start-page: 8932
  year: 2017
  publication-title: Chem. Mater.
– volume: 2
  start-page: 6086
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1584
  year: 2017
  publication-title: ACS Sens.
– volume: 15
  start-page: 6276
  year: 2015
  publication-title: Nano Lett.
– volume: 7
  start-page: 825
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 8956
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 5792
  year: 2015
  publication-title: Sci. Rep.
– volume: 6
  start-page: 9671
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 31
  start-page: 4553
  year: 2019
  publication-title: Chem. Mater.
– volume: 6
  start-page: 6395
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 407
  start-page: 105
  year: 2018
  publication-title: J. Power Sources
– volume: 247
  start-page: 660
  year: 2014
  publication-title: J. Power Sources
– volume: 6
  year: 2015
  publication-title: Nat. Commun.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 43
  start-page: 7502
  year: 2019
  publication-title: New J. Chem.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 22
  start-page: 2691
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 66
  start-page: 513
  year: 2015
  publication-title: Eur. Polym. J.
– volume: 28
  start-page: 9501
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 5561
  year: 2018
  publication-title: Chem. Mater.
– volume: 213
  start-page: 115
  year: 2016
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 2786
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 353
  start-page: 682
  year: 2016
  publication-title: Science.
– volume: 8
  start-page: 9917
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 33
  start-page: 1232
  year: 2000
  publication-title: Macromolecules
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 463
  start-page: 339
  year: 2010
  publication-title: Nature
– volume: 38
  year: 2017
  publication-title: Macromol. Rapid Commun.
– year: 2002
– volume: 150
  start-page: 101
  year: 2019
  publication-title: Carbon
– volume: 56
  start-page: 9141
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 738
  year: 2016
  publication-title: Nano Today
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 2701
  year: 2010
  publication-title: Biomaterials
– ident: e_1_2_6_28_1
  doi: 10.1039/c2sm27253a
– ident: e_1_2_6_14_1
  doi: 10.1021/acssensors.7b00648
– ident: e_1_2_6_19_1
  doi: 10.1002/adma.201605099
– ident: e_1_2_6_2_1
  doi: 10.1039/C4TA00484A
– ident: e_1_2_6_12_1
  doi: 10.1021/acs.chemmater.8b01446
– ident: e_1_2_6_43_1
  doi: 10.1016/j.biomaterials.2009.12.052
– ident: e_1_2_6_5_1
  doi: 10.1038/ncomms10310
– ident: e_1_2_6_39_1
  doi: 10.1039/C9NJ00116F
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.201602126
– volume: 28
  start-page: 4501
  year: 2018
  ident: e_1_2_6_34_1
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Wang Z. F.
– ident: e_1_2_6_26_1
  doi: 10.1039/C5RA06064H
– ident: e_1_2_6_52_1
  doi: 10.1016/j.jpowsour.2013.09.014
– ident: e_1_2_6_21_1
  doi: 10.1021/acs.chemmater.9b01239
– ident: e_1_2_6_42_1
  doi: 10.1021/acsami.7b17118
– volume: 28
  start-page: 4501
  year: 2018
  ident: e_1_2_6_3_1
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Wang Z. F.
– ident: e_1_2_6_16_1
  doi: 10.1002/adfm.201290075
– ident: e_1_2_6_47_1
  doi: 10.1016/j.eurpolymj.2015.03.020
– ident: e_1_2_6_36_1
  doi: 10.1039/C5CP02476E
– ident: e_1_2_6_44_1
  doi: 10.1039/C7TA08152A
– ident: e_1_2_6_30_1
  doi: 10.1016/j.jpowsour.2018.10.064
– ident: e_1_2_6_29_1
  doi: 10.1016/j.carbpol.2013.02.071
– ident: e_1_2_6_40_1
  doi: 10.1021/acsami.8b09656
– ident: e_1_2_6_9_1
  doi: 10.1002/anie.201707239
– ident: e_1_2_6_45_1
  doi: 10.1021/acsami.6b00510
– ident: e_1_2_6_54_1
  doi: 10.1021/am502077p
– ident: e_1_2_6_1_1
  doi: 10.1002/adma.201503543
– ident: e_1_2_6_7_1
  doi: 10.1126/science.aaf8810
– ident: e_1_2_6_51_1
  doi: 10.1016/j.orgel.2013.09.042
– ident: e_1_2_6_4_1
  doi: 10.1016/j.nantod.2016.10.002
– ident: e_1_2_6_46_1
  doi: 10.1002/adfm.201404247
– ident: e_1_2_6_48_1
  doi: 10.1002/anie.201708614
– ident: e_1_2_6_49_1
  doi: 10.1039/C4TA03332A
– ident: e_1_2_6_32_1
  doi: 10.1021/acs.nanolett.5b03069
– ident: e_1_2_6_27_1
  doi: 10.1021/acsnano.8b04609
– ident: e_1_2_6_8_1
  doi: 10.1002/anie.201705212
– ident: e_1_2_6_25_1
  doi: 10.1038/srep05792
– ident: e_1_2_6_37_1
  doi: 10.1016/j.electacta.2016.06.165
– ident: e_1_2_6_31_1
  doi: 10.1021/nn502704g
– ident: e_1_2_6_35_1
  doi: 10.1007/s10570-017-1409-4
– ident: e_1_2_6_13_1
  doi: 10.1021/acs.chemmater.7b02895
– ident: e_1_2_6_22_1
  doi: 10.1038/nnano.2012.192
– ident: e_1_2_6_6_1
  doi: 10.1038/nature08693
– volume: 28
  start-page: 9501
  year: 2018
  ident: e_1_2_6_11_1
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Han L.
– ident: e_1_2_6_38_1
  doi: 10.1016/j.carbon.2019.05.011
– ident: e_1_2_6_50_1
  doi: 10.1021/jp301099r
– ident: e_1_2_6_41_1
  doi: 10.1021/bk-2002-0833
– ident: e_1_2_6_23_1
  doi: 10.1038/s41467-018-05238-w
– ident: e_1_2_6_20_1
  doi: 10.1021/acssuschemeng.8b00193
– ident: e_1_2_6_24_1
  doi: 10.1021/acsami.9b00274
– ident: e_1_2_6_10_1
  doi: 10.1021/acsami.6b00912
– ident: e_1_2_6_53_1
  doi: 10.1039/C4NR03322A
– ident: e_1_2_6_17_1
  doi: 10.1021/ma990923i
– ident: e_1_2_6_18_1
  doi: 10.1002/marc.201700018
– ident: e_1_2_6_33_1
  doi: 10.1021/acsami.9b04871
SSID ssj0017893
Score 2.5193107
Snippet Conductive hydrogels as potential soft materials have attracted tremendous attention in wearable electronic devices. Nonetheless, manufacturing intelligent...
Abstract Conductive hydrogels as potential soft materials have attracted tremendous attention in wearable electronic devices. Nonetheless, manufacturing...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Biosensors
Borax
conductive hydrogels
Conductivity
Electrochemical analysis
Electrodes
Electronic devices
Healing
Hydrogels
Hydrogen bonding
Moisture content
Motion sensors
multifunction
Nanotubes
poly(vinyl alcohol)
polypyrrole
Polypyrroles
Polyvinyl alcohol
Smart materials
Stretchability
Supercapacitors
Title Highly Stretchable, Fast Self‐Healing, Responsive Conductive Hydrogels for Supercapacitor Electrode and Motion Sensor
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmame.202000018
https://www.proquest.com/docview/2400899574
Volume 305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YLurBB2pE0ezBxAuFst2y5UgIhJjgASTh1uzTg1BIAQ2e_An-Rn-JOy3l4cVEb9uku2l3njs78w1Cd0pXdZUY5rgKQjdWAVqR0oHDOafcakrPSIh3dB9rnQF9GPrDrSr-FB9iHXADyUj0NQg4F7PKBjR0zMcAc0mS-DRU-wKaHnhFvTV-VJUFCeoutPh2GK2TDLXRJZXd6btWaeNqbjusicVpHyOefWuaaPJSXsxFWb7_gHH8z8-coKOVO4obKf-coj0d5dF-M-sCl0eHW4CFZ-gN0kJGSwx32ZbcUHZVwm0-m-O-Hpmvj0-oarJvlnBvlXv7qnFzEgGoLAw7SxVPnq05xtZXxv3FVMfSWmtp1UqMW2lHHqUxjxTuJu2F7LrRbBKfo0G79dTsOKvWDY707BnI8WpSCl9wFvg-k8ACgYYbTiVqui4JUb7SRNQ9waqaSmqsnydF4AoDbc9qHvMuUC6aRPoSYSpkEChf-kRTyoQRriEet-ewunSlCUwB3WekC6cpQkeYYjGTELY1XG9rARUzyoYrSZ2FkENrz5w-owVEEhL9skrYbXRb66erv0y6RgcwTvMmiyg3jxf6xvo2c3Gb8O83kY_ydg
link.rule.ids 315,786,790,1382,27955,27956,46327,46751,50847,50956
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7xOFAOhfIQobTsAYkLBme9m90cUZooUMyBh8TN2mcPDQ5yEhA99Sf0N_aXsGPHAXpBKjfb8q7snZ3nznwDsGdd0zWpF1FsMXQTBGBgKScjpRRTQVIm3mC8Iz1v9a_Z6Q2vswmxFqbCh5gF3JAzSnmNDI4B6aNn1NBbdYs4l7QMUMt5WAw8z5E3v13MEKSaQpa4u9jkOxKsTWvcxpgevR7_Wi89G5svTdZS5_RWQNdfW6Wa_DycjPWh-fUPkOO7fmcVPk4tUnJcbaFPMOfyNVjq1I3g1mD5BWbhOjxgZsjgkeBxdqA4Vl4dkJ4ajcmlG_i_v_9gYVN484BcTNNv7x3pDHPElcXL_qMthj-CRibBXCaXkztXmKCwTZAsBelWTXmsIyq3JC07DIV589Gw2IDrXveq04-m3RsikwQ3KEpaxmiulZCcC4O7QDo85LS65dqGUsuto7qdaNF0zDAfTD2jZaw9dj5rJSLZhIV8mLstIEwbKS03nDrGhPY69jRRwRVrm9h46RuwX9Muu6tAOrIKjplmuKzZbFkbsFOTNpsy6yjDNNrgdnLBGkBLGr0xS5Yep93Z3fb_DNqFpf5VepadnZx__wwf8HmVRrkDC-Ni4r4EU2esv5ab-QnKH_aW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5BK5VyQFCoCATYA1Ivseqs19nNMQqJwk8qRJsq4mLtL5fEiZy0KDcegWfkSZixnTQ9IXGzLXsOO56Zb2ZnvwF473zbt3mQUeyodIMOEE3Kq0hrLTR6yiRYqneMLzqjifg0Tad7p_grfohdwY0so_TXZOBLF87vSEPnek40l7ysT6uHcIhQQ2D6ddi7nnyf7HYSpCqJd2nKdyRFl2-JG2N-fl_C_cB0hzb3MWsZdIZP4UmNFlmvUu8zeODzE3jU3w5pO4HHe3yCz-EndW3MNoy2mlEbdCqqxYZ6tWaXfhb-_PpNh47wzRb7VrfG3nrWX-TE-UqXo40rFj8wWjKEsuzyZukLi8HUotUXbFANzHGe6dyxcTn9B-Xmq0XxAibDwVV_FNWTFSKbYIoSJR1rTWq0VGkqLWlIedqAdKbju5ZzlzrPTTcxsu2FFQFhmDUqNoGmknUSmZzCQb7I_UtgwlilXGpT7oWQJpg48ERjmtS1sQ0qNOBsu6zZsiLQyCqqZJ6RArKdAhrQ3K56VhvSKqMWV0wJUykawEtN_ENKNu6NB7u7V__z0Ts4-vphmH35ePH5NRzT46rDsQkH6-LGv0EUsjZv6x_tL41q1bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Stretchable%2C+Fast+Self%E2%80%90Healing%2C+Responsive+Conductive+Hydrogels+for+Supercapacitor+Electrode+and+Motion+Sensor&rft.jtitle=Macromolecular+materials+and+engineering&rft.au=Wei%2C+Duanli&rft.au=Wang%2C+Haonan&rft.au=Zhu%2C+Jiaqing&rft.au=Luo%2C+Licheng&rft.date=2020-05-01&rft.issn=1438-7492&rft.eissn=1439-2054&rft.volume=305&rft.issue=5&rft_id=info:doi/10.1002%2Fmame.202000018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mame_202000018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-7492&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-7492&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-7492&client=summon