Injection of ROS‐Responsive Hydrogel Loaded with Basic Fibroblast Growth Factor into the Pericardial Cavity for Heart Repair

Myocardial infarction, among other ischemic heart diseases, is the major cause of mortality and morbidity for patients who have heart diseases. Timely reperfusion of the ischemic myocardium is the most effective way to treat myocardial infarction. However, blood reperfusion to the ischemic tissues l...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 15
Main Authors Li, Zhenhua, Zhu, Dashuai, Hui, Qi, Bi, Jianing, Yu, Bingjie, Huang, Zhen, Hu, Shiqi, Wang, Zhenzhen, Caranasos, Thomas, Rossi, Joseph, Li, Xiaokun, Cheng, Ke, Wang, Xiaojie
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Myocardial infarction, among other ischemic heart diseases, is the major cause of mortality and morbidity for patients who have heart diseases. Timely reperfusion of the ischemic myocardium is the most effective way to treat myocardial infarction. However, blood reperfusion to the ischemic tissues leads to an overproduction of toxic reactive oxygen species (ROS), which can further exacerbate myocardial damage on top of ischemic injury. ROS has been used as a diagnostic marker and therapeutic target for ischemia‐reperfusion (I/R) injury and as an environmental stimulus to trigger drug release. In this study, a ROS‐sensitive cross‐linked poly(vinyl alcohol) (PVA) hydrogel is synthesized to deliver basic fibroblast growth factor (bFGF) for myocardial repair. The therapeutic gel is injected into the pericardial cavity. Upon delivery, the hydrogel spread on the surface of the heart and form an epicardiac patch in situ. In a rat model of I/R injury, bFGF released from the gel could penetrate the myocardium. Such intervention protects cardiac function and reduces fibrosis in the post‐I/R heart, with enhanced angiomyogenesis. Furthermore, the safety and feasibility of minimally invasive injection and access into the pericardial cavity in both pigs and human patients are demonstrated. Fibroblast growth factor (FGF)‐based therapeutics have been widely studied and are currently under investigation in several clinical trials. However, delivery of FGF to the heart is challenging. Moreover, controlled release by injury biomarkers is desirable. Here, a FGF‐loaded and reactive oxygen species‐responsive hydrogel for intrapericardial delivery is fabricated. Furthermore, safety and feasibility of minimally invasive intrapericardial injection (access) in pigs and a human patient are tested.
AbstractList Myocardial infarction, among other ischemic heart diseases, is the major cause of mortality and morbidity for patients who have heart diseases. Timely reperfusion of the ischemic myocardium is the most effective way to treat myocardial infarction. However, blood reperfusion to the ischemic tissues leads to an overproduction of toxic reactive oxygen species (ROS), which can further exacerbate myocardial damage on top of ischemic injury. ROS has been used as a diagnostic marker and therapeutic target for ischemia‐reperfusion (I/R) injury and as an environmental stimulus to trigger drug release. In this study, a ROS‐sensitive cross‐linked poly(vinyl alcohol) (PVA) hydrogel is synthesized to deliver basic fibroblast growth factor (bFGF) for myocardial repair. The therapeutic gel is injected into the pericardial cavity. Upon delivery, the hydrogel spread on the surface of the heart and form an epicardiac patch in situ. In a rat model of I/R injury, bFGF released from the gel could penetrate the myocardium. Such intervention protects cardiac function and reduces fibrosis in the post‐I/R heart, with enhanced angiomyogenesis. Furthermore, the safety and feasibility of minimally invasive injection and access into the pericardial cavity in both pigs and human patients are demonstrated.
Myocardial infarction, among other ischemic heart diseases, is the major cause of mortality and morbidity for patients who have heart diseases. Timely reperfusion of the ischemic myocardium is the most effective way to treat myocardial infarction. However, blood reperfusion to the ischemic tissues leads to an overproduction of toxic reactive oxygen species (ROS), which can further exacerbate myocardial damage on top of ischemic injury. ROS has been used as a diagnostic marker and therapeutic target for ischemia‐reperfusion (I/R) injury and as an environmental stimulus to trigger drug release. In this study, a ROS‐sensitive cross‐linked poly(vinyl alcohol) (PVA) hydrogel is synthesized to deliver basic fibroblast growth factor (bFGF) for myocardial repair. The therapeutic gel is injected into the pericardial cavity. Upon delivery, the hydrogel spread on the surface of the heart and form an epicardiac patch in situ. In a rat model of I/R injury, bFGF released from the gel could penetrate the myocardium. Such intervention protects cardiac function and reduces fibrosis in the post‐I/R heart, with enhanced angiomyogenesis. Furthermore, the safety and feasibility of minimally invasive injection and access into the pericardial cavity in both pigs and human patients are demonstrated. Fibroblast growth factor (FGF)‐based therapeutics have been widely studied and are currently under investigation in several clinical trials. However, delivery of FGF to the heart is challenging. Moreover, controlled release by injury biomarkers is desirable. Here, a FGF‐loaded and reactive oxygen species‐responsive hydrogel for intrapericardial delivery is fabricated. Furthermore, safety and feasibility of minimally invasive intrapericardial injection (access) in pigs and a human patient are tested.
Author Caranasos, Thomas
Cheng, Ke
Hui, Qi
Huang, Zhen
Rossi, Joseph
Hu, Shiqi
Li, Zhenhua
Yu, Bingjie
Wang, Zhenzhen
Zhu, Dashuai
Bi, Jianing
Li, Xiaokun
Wang, Xiaojie
Author_xml – sequence: 1
  givenname: Zhenhua
  orcidid: 0000-0001-9751-0864
  surname: Li
  fullname: Li, Zhenhua
  organization: University of North Carolina at Chapel Hill and North Carolina State University
– sequence: 2
  givenname: Dashuai
  surname: Zhu
  fullname: Zhu, Dashuai
  organization: University of North Carolina at Chapel Hill and North Carolina State University
– sequence: 3
  givenname: Qi
  surname: Hui
  fullname: Hui, Qi
  organization: Wenzhou Medical University
– sequence: 4
  givenname: Jianing
  surname: Bi
  fullname: Bi, Jianing
  organization: Wenzhou Medical University
– sequence: 5
  givenname: Bingjie
  surname: Yu
  fullname: Yu, Bingjie
  organization: Wenzhou Medical University
– sequence: 6
  givenname: Zhen
  surname: Huang
  fullname: Huang, Zhen
  organization: Wenzhou Medical University
– sequence: 7
  givenname: Shiqi
  surname: Hu
  fullname: Hu, Shiqi
  organization: University of North Carolina at Chapel Hill and North Carolina State University
– sequence: 8
  givenname: Zhenzhen
  surname: Wang
  fullname: Wang, Zhenzhen
  organization: University of North Carolina at Chapel Hill and North Carolina State University
– sequence: 9
  givenname: Thomas
  surname: Caranasos
  fullname: Caranasos, Thomas
  organization: University of North Carolina at Chapel Hill
– sequence: 10
  givenname: Joseph
  surname: Rossi
  fullname: Rossi, Joseph
  organization: University of North Carolina at Chapel Hill
– sequence: 11
  givenname: Xiaokun
  surname: Li
  fullname: Li, Xiaokun
  organization: Wenzhou Medical University
– sequence: 12
  givenname: Ke
  orcidid: 0000-0001-7082-6893
  surname: Cheng
  fullname: Cheng, Ke
  email: ke_cheng@ncsu.edu
  organization: University of North Carolina at Chapel Hill and North Carolina State University
– sequence: 13
  givenname: Xiaojie
  surname: Wang
  fullname: Wang, Xiaojie
  email: susanwang1214@wmu.edu.cn
  organization: Wenzhou Medical University
BookMark eNqFkE1LI0EQhhtxYf3Y654bPCf2x_R05qjRGCGiRIW9DTU91abDOB27W0Mu4k_wN_pLnJAlC8LiqYqqeuqFZ5_str5FQn5z1ueMiWOo7WNfMMFYJrXeIXs853lPMjHY3fb8z0-yH-OcMa61zPbI62U7R5Ocb6m3dHp9-_H2PsW48G10L0jHqzr4B2zoxEONNV26NKOnEJ2hI1cFXzUQE70IftnNR2CSD9S1ydM0Q3qDwRkItYOGDuHFpRW13X6MEBKd4gJcOCQ_LDQRf_2tB-R-dH43HPcm1xeXw5NJz0iV6V41kEpUleZW5jyDCgpd5FwKWwgOTBnDUWBdiUxbi0oYBbzKGTCpJNOAuTwgR5u_i-CfnjGmcu6fQ9tFlkKxQmk10Kq76m-uTPAxBrTlIrhHCKuSs3LtuFw7LreOOyD7AhiXYG0zBXDN_7Figy1dg6tvQsqTs9HVP_YTXQOU9g
CitedBy_id crossref_primary_10_1021_acsami_3c03874
crossref_primary_10_1039_D2TB00609J
crossref_primary_10_1049_bsb2_12050
crossref_primary_10_3389_fphar_2022_881320
crossref_primary_10_1039_D3BM01352A
crossref_primary_10_1002_adtp_202200066
crossref_primary_10_1016_j_cej_2023_145941
crossref_primary_10_1002_mba2_23
crossref_primary_10_1021_acsanm_3c02125
crossref_primary_10_1002_adhm_202401103
crossref_primary_10_1007_s12265_024_10553_3
crossref_primary_10_1021_acsnano_2c03060
crossref_primary_10_1007_s12274_022_4809_1
crossref_primary_10_1002_adhm_202302940
crossref_primary_10_1021_acsanm_3c02956
crossref_primary_10_1002_adfm_202205038
crossref_primary_10_1002_adma_202406758
crossref_primary_10_1016_j_bioactmat_2021_07_011
crossref_primary_10_1021_acsnano_4c11414
crossref_primary_10_1016_j_mtbio_2021_100186
crossref_primary_10_1002_smll_202200291
crossref_primary_10_2174_0115672018278641231221051359
crossref_primary_10_1089_ten_teb_2024_0158
crossref_primary_10_1002_adma_202404264
crossref_primary_10_1039_D2TB01591A
crossref_primary_10_1016_j_tiv_2024_105924
crossref_primary_10_3389_fbioe_2021_821288
crossref_primary_10_1038_s41467_021_21682_7
crossref_primary_10_1002_adma_202210707
crossref_primary_10_1021_acs_biomac_4c01481
crossref_primary_10_1002_adhm_202403734
crossref_primary_10_1002_adma_202201971
crossref_primary_10_1002_smll_202401241
crossref_primary_10_1016_j_cej_2021_131581
crossref_primary_10_1002_adhm_202302475
crossref_primary_10_3389_fbioe_2021_681705
crossref_primary_10_1007_s12274_022_4553_6
crossref_primary_10_3389_fbioe_2024_1469393
crossref_primary_10_1186_s40779_024_00576_x
crossref_primary_10_1002_mabi_202400049
crossref_primary_10_1021_acs_chemrev_2c00179
crossref_primary_10_2147_IJN_S386763
crossref_primary_10_1002_adma_202302686
crossref_primary_10_3389_fphar_2023_1279516
crossref_primary_10_1016_j_ijbiomac_2023_125896
crossref_primary_10_1039_D4TB01126K
crossref_primary_10_1039_D4MH00289J
crossref_primary_10_1021_acsomega_3c00067
crossref_primary_10_1016_j_cej_2024_150550
crossref_primary_10_3389_fbioe_2023_1174075
crossref_primary_10_3390_jfb15120378
crossref_primary_10_3390_gels8070423
crossref_primary_10_1080_09205063_2024_2411095
crossref_primary_10_1002_adtp_202400383
crossref_primary_10_3389_fphys_2021_705256
crossref_primary_10_3390_pharmaceutics14081718
crossref_primary_10_1016_j_cej_2021_131846
crossref_primary_10_1021_acsami_1c08880
crossref_primary_10_1021_acsnano_1c00628
crossref_primary_10_1002_anie_202305576
crossref_primary_10_1002_adma_202105348
crossref_primary_10_1002_advs_202302123
crossref_primary_10_1002_adhm_202101855
crossref_primary_10_1360_SSC_2023_0010
crossref_primary_10_1021_acs_molpharmaceut_2c00650
crossref_primary_10_1039_D4BM00939H
crossref_primary_10_3390_cells10030641
crossref_primary_10_1089_ars_2021_0134
crossref_primary_10_3390_ijms252010966
crossref_primary_10_3389_fcvm_2021_742315
crossref_primary_10_3390_ijms25010485
crossref_primary_10_1002_admi_202100942
crossref_primary_10_1002_mabi_202300339
crossref_primary_10_1186_s12951_023_02053_4
crossref_primary_10_1016_j_addr_2023_115028
crossref_primary_10_1161_JAHA_120_020402
crossref_primary_10_1002_adhm_202404372
crossref_primary_10_3390_molecules30030686
crossref_primary_10_1021_acsami_3c14109
crossref_primary_10_1021_acsnano_3c08734
crossref_primary_10_1161_CIRCRESAHA_122_321384
crossref_primary_10_1002_adfm_202209406
crossref_primary_10_1016_j_bioadv_2024_213917
crossref_primary_10_1002_ange_202305576
Cites_doi 10.1111/j.1582-4934.2011.01512.x
10.1007/s12265-010-9253-z
10.1016/j.biomaterials.2016.07.002
10.3390/jfb6030526
10.1634/stemcells.2005-0201
10.1038/ncomms13724
10.1148/radiol.14131424
10.1016/j.biomaterials.2011.12.040
10.1002/adfm.201803567
10.1007/s12015-019-09926-y
10.1039/C5CC09239F
10.1089/ten.tec.2016.0492
10.3390/ijms19071875
10.1021/acsnano.8b05892
10.1038/nmat2859
10.1016/j.addr.2014.08.006
10.2353/ajpath.2007.070003
10.1016/j.cjca.2012.09.003
10.1161/hc0802.104407
10.1016/j.jacc.2011.10.858
10.1126/sciadv.aat9365
10.1002/btpr.391
10.1021/acs.nanolett.8b04970
10.1002/adhm.201200423
10.1021/acsnano.7b08152
10.1126/scitranslmed.aat9683
10.1161/01.CIR.0000061911.47710.8A
10.1002/ccd.10378
10.1016/j.pharmthera.2018.01.001
10.1038/nrcardio.2011.64
10.1038/s41551-017-0182-x
10.1161/CIRCRESAHA.109.208991
10.1161/CIR.0000000000000659
10.1155/2013/547902
10.1002/adhm.201900840
10.1016/B978-0-12-394309-5.00006-7
10.1002/adma.201806957
10.7150/thno.4419
10.1016/j.jconrel.2014.04.054
10.1021/acs.nanolett.9b00584
10.1126/sciadv.aay0589
10.1039/C9BM01336A
10.1021/ja303372u
10.1002/sctm.17-0196
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202004377
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202004377
ADFM202004377
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3547-b8352bb71f3614aba9796132f921a05cc1e2edb247ffe52c5a1b60a035307ae63
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 05:45:16 EDT 2025
Tue Jul 01 04:12:24 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Wed Jan 22 16:29:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3547-b8352bb71f3614aba9796132f921a05cc1e2edb247ffe52c5a1b60a035307ae63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9751-0864
0000-0001-7082-6893
PQID 2509575875
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2509575875
crossref_primary_10_1002_adfm_202004377
crossref_citationtrail_10_1002_adfm_202004377
wiley_primary_10_1002_adfm_202004377_ADFM202004377
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 186
2019; 8
2013; 29
2019; 7
2017; 8
2015; 6
2013; 2
2019; 31
2010; 106
2017; 23
2000; 292
2003; 58
2020; 16
2019; 19
2016; 52
2020; 12
2014; 272
2016; 104
2012; 16
2012; 59
2011; 4
2012; 33
2011; 8
2018; 7
2018; 19
2020; 6
2012; 2
2003; 107
2018; 2
2012; 298
2010; 26
2012; 134
2018; 4
2013; 2013
2006; 24
2015; 84
2007; 171
2002; 105
2019; 29
2019; 139
2018; 12
2014; 186
2010; 9
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
Laham R. J. (e_1_2_6_18_1) 2000; 292
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 186
  start-page: 73
  year: 2018
  publication-title: Pharmacol. Ther.
– volume: 2
  start-page: 908
  year: 2013
  publication-title: Adv. Healthcare Mater.
– volume: 105
  start-page: 788
  year: 2002
  publication-title: Circulation
– volume: 272
  start-page: 427
  year: 2014
  publication-title: Radiology
– volume: 104
  start-page: 1
  year: 2016
  publication-title: Biomaterials
– volume: 33
  start-page: 2872
  year: 2012
  publication-title: Biomaterials
– volume: 19
  start-page: 1875
  year: 2018
  publication-title: Int. J. Mol. Sci.
– volume: 2013
  year: 2013
  publication-title: Biomed. Res. Int.
– volume: 12
  start-page: 2466
  year: 2018
  publication-title: ACS Nano
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 7
  start-page: 5438
  year: 2019
  publication-title: Biomater. Sci.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 23
  start-page: 146
  year: 2017
  publication-title: Tissue Eng., Part C
– volume: 9
  start-page: 923
  year: 2010
  publication-title: Nat. Mater.
– volume: 7
  start-page: 354
  year: 2018
  publication-title: Stem Cells Transl. Med.
– volume: 2
  start-page: 17
  year: 2018
  publication-title: Nat. Biomed. Eng.
– volume: 19
  start-page: 4879
  year: 2019
  publication-title: Nano Lett.
– volume: 26
  start-page: 838
  year: 2010
  publication-title: Biotechnol. Prog.
– volume: 6
  start-page: 526
  year: 2015
  publication-title: J. Funct. Biomater.
– volume: 59
  start-page: 256
  year: 2012
  publication-title: J. Am. Coll. Cardiol.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 292
  start-page: 795
  year: 2000
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 12
  year: 2020
  publication-title: Sci. Transl. Med.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 801
  year: 2012
  publication-title: Theranostics
– volume: 107
  start-page: 1359
  year: 2003
  publication-title: Circulation
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 16
  start-page: 2112
  year: 2012
  publication-title: J. Cell. Mol. Med.
– volume: 24
  start-page: 333
  year: 2006
  publication-title: Stem Cells
– volume: 8
  year: 2019
  publication-title: Adv. Healthcare Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 84
  start-page: 85
  year: 2015
  publication-title: Adv. Drug Delivery Rev.
– volume: 298
  start-page: 229
  year: 2012
  publication-title: Int. Rev. Cell. Mol. Biol.
– volume: 186
  start-page: 22
  year: 2014
  publication-title: J. Controlled Release
– volume: 58
  start-page: 375
  year: 2003
  publication-title: Catheter. Cardiovasc. Intervention
– volume: 106
  start-page: 479
  year: 2010
  publication-title: Circ. Res.
– volume: 8
  start-page: 393
  year: 2011
  publication-title: Nat. Rev. Cardiol.
– volume: 29
  year: 2013
  publication-title: Can. J. Cardiol.
– volume: 52
  start-page: 2839
  year: 2016
  publication-title: Chem. Commun.
– volume: 16
  start-page: 612
  year: 2020
  publication-title: Stem Cell Rev. Rep.
– volume: 4
  start-page: 177
  year: 2011
  publication-title: J. Cardiovasc. Transl. Res.
– volume: 139
  year: 2019
  publication-title: Circulation
– volume: 171
  start-page: 1431
  year: 2007
  publication-title: Am. J. Pathol.
– volume: 19
  start-page: 1883
  year: 2019
  publication-title: Nano Lett.
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1582-4934.2011.01512.x
– ident: e_1_2_6_23_1
  doi: 10.1007/s12265-010-9253-z
– ident: e_1_2_6_27_1
  doi: 10.1016/j.biomaterials.2016.07.002
– ident: e_1_2_6_38_1
  doi: 10.3390/jfb6030526
– ident: e_1_2_6_45_1
  doi: 10.1634/stemcells.2005-0201
– ident: e_1_2_6_11_1
  doi: 10.1038/ncomms13724
– ident: e_1_2_6_20_1
  doi: 10.1148/radiol.14131424
– ident: e_1_2_6_35_1
  doi: 10.1016/j.biomaterials.2011.12.040
– ident: e_1_2_6_40_1
  doi: 10.1002/adfm.201803567
– ident: e_1_2_6_21_1
  doi: 10.1007/s12015-019-09926-y
– ident: e_1_2_6_29_1
  doi: 10.1039/C5CC09239F
– ident: e_1_2_6_37_1
  doi: 10.1089/ten.tec.2016.0492
– ident: e_1_2_6_4_1
  doi: 10.3390/ijms19071875
– ident: e_1_2_6_14_1
  doi: 10.1021/acsnano.8b05892
– ident: e_1_2_6_25_1
  doi: 10.1038/nmat2859
– ident: e_1_2_6_7_1
  doi: 10.1016/j.addr.2014.08.006
– ident: e_1_2_6_3_1
  doi: 10.2353/ajpath.2007.070003
– ident: e_1_2_6_17_1
  doi: 10.1016/j.cjca.2012.09.003
– ident: e_1_2_6_6_1
  doi: 10.1161/hc0802.104407
– ident: e_1_2_6_39_1
  doi: 10.1016/j.jacc.2011.10.858
– ident: e_1_2_6_9_1
  doi: 10.1126/sciadv.aat9365
– ident: e_1_2_6_36_1
  doi: 10.1002/btpr.391
– ident: e_1_2_6_15_1
  doi: 10.1021/acs.nanolett.8b04970
– ident: e_1_2_6_26_1
  doi: 10.1002/adhm.201200423
– ident: e_1_2_6_31_1
  doi: 10.1021/acsnano.7b08152
– volume: 292
  start-page: 795
  year: 2000
  ident: e_1_2_6_18_1
  publication-title: J. Pharmacol. Exp. Ther.
– ident: e_1_2_6_10_1
  doi: 10.1126/scitranslmed.aat9683
– ident: e_1_2_6_5_1
  doi: 10.1161/01.CIR.0000061911.47710.8A
– ident: e_1_2_6_19_1
  doi: 10.1002/ccd.10378
– ident: e_1_2_6_8_1
  doi: 10.1016/j.pharmthera.2018.01.001
– ident: e_1_2_6_12_1
  doi: 10.1038/nrcardio.2011.64
– ident: e_1_2_6_16_1
  doi: 10.1038/s41551-017-0182-x
– ident: e_1_2_6_44_1
  doi: 10.1161/CIRCRESAHA.109.208991
– ident: e_1_2_6_1_1
  doi: 10.1161/CIR.0000000000000659
– ident: e_1_2_6_13_1
  doi: 10.1155/2013/547902
– ident: e_1_2_6_34_1
  doi: 10.1002/adhm.201900840
– ident: e_1_2_6_22_1
  doi: 10.1016/B978-0-12-394309-5.00006-7
– ident: e_1_2_6_30_1
  doi: 10.1002/adma.201806957
– ident: e_1_2_6_2_1
  doi: 10.7150/thno.4419
– ident: e_1_2_6_42_1
  doi: 10.1016/j.jconrel.2014.04.054
– ident: e_1_2_6_24_1
  doi: 10.1021/acs.nanolett.9b00584
– ident: e_1_2_6_41_1
  doi: 10.1126/sciadv.aay0589
– ident: e_1_2_6_43_1
  doi: 10.1039/C9BM01336A
– ident: e_1_2_6_28_1
  doi: 10.1021/ja303372u
– ident: e_1_2_6_33_1
  doi: 10.1002/sctm.17-0196
SSID ssj0017734
Score 2.642641
Snippet Myocardial infarction, among other ischemic heart diseases, is the major cause of mortality and morbidity for patients who have heart diseases. Timely...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms bFGF
Fibroblasts
Fibrosis
Growth factors
Heart attacks
Heart diseases
heart repair
Hydrogels
Injuries
intrapericardial delivery
Ischemia
Materials science
Myocardial infarction
Myocardium
pericardial cavity
Polyvinyl alcohol
ROS responsive hydrogels
Title Injection of ROS‐Responsive Hydrogel Loaded with Basic Fibroblast Growth Factor into the Pericardial Cavity for Heart Repair
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202004377
https://www.proquest.com/docview/2509575875
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUquLQHCm0RWyiaQyVOgdjOR3NcoGFbsbRaQNpb5E8ErJJqCUhwQP0J_Y39JR072bBUQpXoMZEdOfaM_cZ-fkPIRykyLaJMBkoYHkRG0UBargLKDQYHOv0UKXeiOzxKBqfR13E8nrvF3-hDdBtuzjP8fO0cXMirnQfRUKGtu0nOvDqPu07uCFsOFY06_Siaps2xckIdwYuOZ6qNIdt5XP3xqvQANecBq19x8tdEzNraEE0ut69rua3u_pJx_J-fWSZLLRyFfmM_K-SFKd-QV3MihW_J_ZfywvO1SqgsjL4d__75a9Qya28MDG71tDozEzishDYa3MYu7AocfMixSZVEeF7DAUb7-D732X3gvKwrQOQJ3_1xkbPRCewJl8YCEETDAN2vBowNxPn0HTnNP5_sDYI2a0OgeBylgXSYTsqUWo5Lv0BjSDPEDMxmjIowVooaZrRkUWqtiZmKBZVJKEIe43QjTMJXyUJZlWaNAFexDlUcckXdRCMyRGs2DA21OuOJSnokmI1aoVpJc5dZY1I0YsyscP1adP3aI1td-R-NmMeTJTdmRlC0Tn1VIFrMEN1ihNcjzI_mP75S9PfzYff0_jmV1slL5lg0niu0QRbq6bX5gDColptksb8_PDze9Cb_B-KhAdo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxUxFD5RXCgLwVe4gtiFiauBaTsPZ4nAOOi9aK6QsJv0aYCbGXMdTHRB_An8Rn4Jp50HYGJMdDmTdtJpz2m_0379DsArKTItokwGShgeREbRQFquAsoNBgc6fRMpd6I72U-Kw-j9UdyzCd1dmFYfYthwc57h52vn4G5DevNaNVRo666SMy_Pk96Fey6tt4-qpoOCFE3T9mA5oY7iRY963caQbd6uf3tdugabNyGrX3PyJZB9a1uqyenGWSM31M_fhBz_63eW4WGHSMlWa0KP4I6pHsPiDZ3CJ3C-V514ylZFakumHz9f_rqYduTa74YUP_S8_mJmZFwLbTRxe7vkrcDxJzm2qZaI0BvyDgN-fJ_7BD_kuGpqguCTfPInRs5MZ2RbuEwWBHE0KdADG4LhgTieP4XDfPdguwi6xA2B4nGUBtLBOilTajmu_gLtIc0QNjCbMSrCWClqmNGSRam1JmYqFlQmoQh5jDOOMAl_BgtVXZkVIFzFOlRxyBV1c43IELDZMDTU6ownKhlB0A9bqTpVc5dcY1a2esysdP1aDv06gtdD-a-tnscfS671VlB2fv2tRMCYIcDFIG8EzA_nX75Sbu3kk-Hp-b9Uegn3i4PJuBzv7X9YhQfMkWo8dWgNFpr5mXmBqKiR697urwDeRwRh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOlAIVSwudAxKntH7k0RxLl7ClD6qFSnuL_ESFVVItKRI9IH4Cv7G_hLGTTbeVEBIcE9mRY8_jG3v8DSEvlcyNjHMVaWlFFFvNIuWEjpiwGByYbDvW_kT38CgdncTvJslk4RZ_yw_Rb7h5zQj22iv4mXFbV6Sh0jh_k5wHdp7sNrkTp3Tby_Vw3BNIsSxrz5VT5jO82GRO20j51vX-193SFdZcRKzB5RTLRM4H22aafNk8b9SmvrjB4_g_f_OQPOjwKOy0ArRCbtnqEbm_wFL4mPzYqz6HhK0Kagfj9x8uf_4ad6m13yyMvptZ_clO4aCWxhrwO7vwWuLqQ4FDqhXi8wbeYriP74tQ3gdOq6YGhJ5wHM6LvJBOYVf6OhaAKBpGqH8NYHAgT2dPyEnx5uPuKOrKNkRaJHEWKQ_qlMqYE-j7JUpDliNo4C7nTNJEa2a5NYrHmXM24TqRTKVUUpGgvZE2Fatkqaor-5SA0ImhOqFCM29pZI5wzVFqmTO5SHU6INF81UrdcZr70hrTsmVj5qWf17Kf1wF51bc_a9k8_thyfS4EZafVX0uEiznCWwzxBoSH1fzLV8qdYXHYPz37l04b5O7xsCgP9o7218g97jNqQt7QOllqZuf2OUKiRr0IUv8b5NEDGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Injection+of+ROS%E2%80%90Responsive+Hydrogel+Loaded+with+Basic+Fibroblast+Growth+Factor+into+the+Pericardial+Cavity+for+Heart+Repair&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Zhenhua&rft.au=Zhu%2C+Dashuai&rft.au=Qi%2C+Hui&rft.au=Bi%2C+Jianing&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=15&rft_id=info:doi/10.1002%2Fadfm.202004377&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon