Cryogel‐Based Electronic–Tissue Interfaces with Soft, Highly Compressible, and Tunable Mechanics
Electrically conductive materials with soft, tough, and tunable mechanics have utility in a wide range of applications including neuroprosthetics. Such materials can serve as interfaces between electrical components and tissues, providing mechanical matches with and better conformations to soft, irr...
Saved in:
Published in | Macromolecular materials and engineering Vol. 304; no. 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1438-7492 1439-2054 |
DOI | 10.1002/mame.201900367 |
Cover
Loading…
Abstract | Electrically conductive materials with soft, tough, and tunable mechanics have utility in a wide range of applications including neuroprosthetics. Such materials can serve as interfaces between electrical components and tissues, providing mechanical matches with and better conformations to soft, irregularly shaped surfaces. Hydrogels can potentially provide these attributes while remaining hydrated for long periods of time—providing a long‐term and stable electronic–tissue interface. Additionally, in applications that demand implantation, hydrogels can be formulated to locally deliver enhancing therapeutics. Here, hydrogels are developed by entrapping a conducting polymer within a crosslinked poly(acrylic acid) (pAAc) network. Critically, these hydrogels are cast under freezing conditions which produces cryogels that exhibit macroporous, soft, and highly tunable mechanics (0.2–20 kPa, by varying pAAc and crosslinker concentrations). Additionally, these cryogels are tough enough to survive over 90% compression, which enables survival after being passed through 16‐gauge needles. Cryogels also exhibit electrical conductivities that are sufficient to record alpha waves from the scalp of human subjects. Growth of fibroblasts cultures in the presence of these cryogels produce statistically similar viabilities compared to controls and do not disrupt fibroblast cell cycles. Finally, cryogels are capable of being loaded with and delivering proteins that can potentially combat inflammation.
Poly(3‐4, ethylenedioxythiophene) (PEDOT)‐integrated cryogels exhibit porous, soft, and highly compressible mechanics and can electrically transmit neural signals. PEDOT cryogels exhibit macroporous structures that enhance softness and compressibility which enables injection through a 16‐guage needle. Cryogel conductivity is sufficient to record EEG signals at levels similar to traditional conductive pastes. |
---|---|
AbstractList | Electrically conductive materials with soft, tough, and tunable mechanics have utility in a wide range of applications including neuroprosthetics. Such materials can serve as interfaces between electrical components and tissues, providing mechanical matches with and better conformations to soft, irregularly shaped surfaces. Hydrogels can potentially provide these attributes while remaining hydrated for long periods of time—providing a long‐term and stable electronic–tissue interface. Additionally, in applications that demand implantation, hydrogels can be formulated to locally deliver enhancing therapeutics. Here, hydrogels are developed by entrapping a conducting polymer within a crosslinked poly(acrylic acid) (pAAc) network. Critically, these hydrogels are cast under freezing conditions which produces cryogels that exhibit macroporous, soft, and highly tunable mechanics (0.2–20 kPa, by varying pAAc and crosslinker concentrations). Additionally, these cryogels are tough enough to survive over 90% compression, which enables survival after being passed through 16‐gauge needles. Cryogels also exhibit electrical conductivities that are sufficient to record alpha waves from the scalp of human subjects. Growth of fibroblasts cultures in the presence of these cryogels produce statistically similar viabilities compared to controls and do not disrupt fibroblast cell cycles. Finally, cryogels are capable of being loaded with and delivering proteins that can potentially combat inflammation.
Poly(3‐4, ethylenedioxythiophene) (PEDOT)‐integrated cryogels exhibit porous, soft, and highly compressible mechanics and can electrically transmit neural signals. PEDOT cryogels exhibit macroporous structures that enhance softness and compressibility which enables injection through a 16‐guage needle. Cryogel conductivity is sufficient to record EEG signals at levels similar to traditional conductive pastes. Electrically conductive materials with soft, tough, and tunable mechanics have utility in a wide range of applications including neuroprosthetics. Such materials can serve as interfaces between electrical components and tissues, providing mechanical matches with and better conformations to soft, irregularly shaped surfaces. Hydrogels can potentially provide these attributes while remaining hydrated for long periods of time—providing a long‐term and stable electronic–tissue interface. Additionally, in applications that demand implantation, hydrogels can be formulated to locally deliver enhancing therapeutics. Here, hydrogels are developed by entrapping a conducting polymer within a crosslinked poly(acrylic acid) (pAAc) network. Critically, these hydrogels are cast under freezing conditions which produces cryogels that exhibit macroporous, soft, and highly tunable mechanics (0.2–20 kPa, by varying pAAc and crosslinker concentrations). Additionally, these cryogels are tough enough to survive over 90% compression, which enables survival after being passed through 16‐gauge needles. Cryogels also exhibit electrical conductivities that are sufficient to record alpha waves from the scalp of human subjects. Growth of fibroblasts cultures in the presence of these cryogels produce statistically similar viabilities compared to controls and do not disrupt fibroblast cell cycles. Finally, cryogels are capable of being loaded with and delivering proteins that can potentially combat inflammation. |
Author | Fijalkowski, Jennifer Hayes, Justin Besio, Walter Alsasa, Abdulrahman Tolouei, Anita Ghatee, Rosa Kennedy, Stephen |
Author_xml | – sequence: 1 givenname: Rosa surname: Ghatee fullname: Ghatee, Rosa organization: University of Rhode Island – sequence: 2 givenname: Anita surname: Tolouei fullname: Tolouei, Anita organization: University of Rhode Island – sequence: 3 givenname: Jennifer surname: Fijalkowski fullname: Fijalkowski, Jennifer organization: University of Rhode Island – sequence: 4 givenname: Abdulrahman surname: Alsasa fullname: Alsasa, Abdulrahman organization: University of Rhode Island – sequence: 5 givenname: Justin surname: Hayes fullname: Hayes, Justin organization: University of Rhode Island – sequence: 6 givenname: Walter surname: Besio fullname: Besio, Walter organization: University of Rhode Island – sequence: 7 givenname: Stephen orcidid: 0000-0002-7106-2458 surname: Kennedy fullname: Kennedy, Stephen email: smkennedy@uri.edu organization: University of Rhode Island |
BookMark | eNqFkF9LAkEUxYcwSK3Xngd6dW3-7b9HWywFpYfseRnHOzqy7tjMSuybHyHoG_pJWjMKgujp3gvndy7ndFCrtCUgdE1JnxLCbjdyA31GaEoIj-Iz1KaCpwEjoWh97kkQi5RdoI73a0JonKS8jRaZq-0SisP-7U56WOBhAapytjTqsH-fGe93gMdlBU5LBR6_mmqFn6yuenhklquixpndbB14b-YF9LAsF3i2K2Vz4CmolWyM_CU617LwcPU1u-j5fjjLRsHk8WGcDSaB4qGIgwRIk0NprgAixpOUEQWMJSCiSGlgVC10LCgPpY650BJEQhmNo0jOWQpJyLvo5uS7dfZlB77K13bnyuZlzjijEachSxqVOKmUs9470LkylayMLSsnTZFTkh_7zI995t99Nlj_F7Z1ZiNd_TeQnoBXU0D9jzqfDqbDH_YDLFOMsQ |
CitedBy_id | crossref_primary_10_1002_aelm_202400763 crossref_primary_10_1016_j_neuint_2021_105012 crossref_primary_10_1002_adhm_202202629 crossref_primary_10_1016_j_cherd_2021_12_044 crossref_primary_10_1016_j_cej_2021_131005 crossref_primary_10_3390_pharmaceutics15071836 crossref_primary_10_1021_acsnano_2c10462 |
Cites_doi | 10.1021/nn502704g 10.3389/neuro.16.018.2009 10.1021/cm5020543 10.1007/s10856-008-3376-7 10.1073/pnas.1202636109 10.1002/adhm.201300260 10.1039/c3py01634j 10.1016/j.carbpol.2018.03.099 10.1016/j.biomaterials.2015.01.079 10.1038/nmat3758 10.1016/j.clinph.2004.10.001 10.1021/la800333g 10.1039/c3ee40997j 10.1016/j.cell.2006.06.044 10.1002/adhm.201400095 10.1016/j.polymer.2009.09.025 10.1038/nrn2196 10.1002/adma.201304496 10.1039/c3nr00214d 10.1089/ten.tea.2011.0663 10.1016/j.synthmet.2010.01.024 10.1021/ja1062357 10.1002/adhm.201400209 10.1016/S0165-0270(98)00031-4 10.1021/mz500498y 10.4065/mcp.2011.0045 10.1039/C5RA19467A 10.1016/j.biomaterials.2014.10.017 10.1002/adma.200501726 10.1021/cm301666w 10.3389/fneng.2014.00015 10.1109/86.750552 10.1002/term.383 10.1172/JCI68341 10.1039/C5TB00390C 10.1073/pnas.1211516109 10.1016/j.actbio.2013.12.032 10.1016/j.synthmet.2010.02.034 10.1002/app.32693 10.1002/adfm.200801473 10.1038/nprot.2010.135 10.1016/j.biomaterials.2014.02.012 10.1016/j.actbio.2014.02.015 10.1109/TNSRE.2014.2304559 10.1039/C4CP04426F 10.1016/j.biomaterials.2007.11.022 10.1038/nature11409 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1002/mame.201900367 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1439-2054 |
EndPage | n/a |
ExternalDocumentID | 10_1002_mame_201900367 MAME201900367 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: 1539068 – fundername: 3M Company funderid: 32976949 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJCF ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AVUZU AZBYB AZFZN AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BNHUX BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HCIFZ HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KB. KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PDBOC PTHSS Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX ADMLS AGQPQ CITATION PHGZM PHGZT 1OB 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3547-8e0002cf3cee6238920ce228e466cfe21cdf74135af734fae48121766ab29e853 |
IEDL.DBID | DR2 |
ISSN | 1438-7492 |
IngestDate | Wed Aug 13 08:16:21 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Tue Jul 01 02:25:53 EDT 2025 Wed Jan 22 16:39:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3547-8e0002cf3cee6238920ce228e466cfe21cdf74135af734fae48121766ab29e853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7106-2458 |
PQID | 2321631528 |
PQPubID | 1016395 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2321631528 crossref_citationtrail_10_1002_mame_201900367 crossref_primary_10_1002_mame_201900367 wiley_primary_10_1002_mame_201900367_MAME201900367 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Macromolecular materials and engineering |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2015; 37 2015; 17 2015; 5 2015; 3 2008; 19 2015; 52 2005; 116 2013; 123 2014; 26 2006; 18 2006 2012; 18 2003 1998; 82 2010; 160 1999; 7 2012; 489 2015; 9 2013; 5 2013; 6 2011; 5 2014; 22 2012; 109 2018; 193 2014; 5 2014; 3 2010; 118 2009; 50 2013; 12 2008; 29 2011; 86 2007; 8 2010; 132 2008; 24 2014; 35 2010; 2 2012; 24 2009; 19 2014; 8 2006; 126 2014; 7 2010; 5 2014; 10 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 Cellot G. (e_1_2_5_44_1) 2015; 9 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 WHO (e_1_2_5_1_1) 2006 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 Dee K. C. (e_1_2_5_12_1) 2003 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_50_1 |
References_xml | – volume: 7 start-page: 56 year: 1999 publication-title: IEEE Trans. Rehabil. Eng. – volume: 19 start-page: 573 year: 2009 publication-title: Adv. Funct. Mater. – volume: 123 start-page: 4546 year: 2013 publication-title: J. Clin. Invest. – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1919 year: 2014 publication-title: Adv. Healthcare Mater. – volume: 5 start-page: 6034 year: 2013 publication-title: Nanoscale – volume: 26 start-page: 5860 year: 2014 publication-title: Chem. Mater. – volume: 3 start-page: 500 year: 2014 publication-title: Adv. Healthcare Mater. – volume: 489 start-page: 133 year: 2012 publication-title: Nature – volume: 22 start-page: 411 year: 2014 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 160 start-page: 1101 year: 2010 publication-title: Synth. Met. – volume: 86 start-page: 662 year: 2011 publication-title: Mayo Clin. Proc. – volume: 6 start-page: 2856 year: 2013 publication-title: Energy Environ. Sci. – volume: 18 start-page: 2000 year: 2012 publication-title: Tissue Eng., Part A – volume: 29 start-page: 1273 year: 2008 publication-title: Biomaterials – volume: 18 start-page: 405 year: 2006 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 5 year: 2011 publication-title: J. Tissue Eng. Regener. Med. – volume: 17 start-page: 5115 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 1004 year: 2013 publication-title: Nat. Mater. – year: 2003 – volume: 37 start-page: 194 year: 2015 publication-title: Biomaterials – volume: 126 start-page: 677 year: 2006 publication-title: Cell – volume: 3 start-page: 1145 year: 2014 publication-title: ACS Macro Lett. – volume: 10 start-page: 1216 year: 2014 publication-title: Acta Biomater. – volume: 35 start-page: 4477 year: 2014 publication-title: Biomaterials – volume: 109 year: 2012 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: 2880 year: 2014 publication-title: Polym. Chem. – volume: 8 start-page: 623 year: 2007 publication-title: Nat. Rev. Neurosci. – volume: 3 start-page: 5040 year: 2015 publication-title: J. Mater. Chem. B – volume: 9 start-page: 521 year: 2015 publication-title: Front. Neurosci. – volume: 109 start-page: 9287 year: 2012 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 year: 2014 publication-title: ACS Nano – volume: 50 start-page: 5236 year: 2009 publication-title: Polymer – volume: 3 start-page: 1869 year: 2014 publication-title: Adv. Healthcare Mater. – volume: 7 start-page: 15 year: 2014 publication-title: Front. Neuroeng. – volume: 118 start-page: 2981 year: 2010 publication-title: J. Appl. Polym. Sci. – volume: 193 start-page: 307 year: 2018 publication-title: Carbohydr. Polym. – volume: 116 start-page: 799 year: 2005 publication-title: Clin. Neurophysiol. – year: 2006 – volume: 10 start-page: 2341 year: 2014 publication-title: Acta Biomater. – volume: 24 start-page: 3425 year: 2012 publication-title: Chem. Mater. – volume: 2 start-page: 18 year: 2010 publication-title: Front. Neuroeng. – volume: 26 start-page: 1846 year: 2014 publication-title: Adv. Mater. – volume: 19 start-page: 1625 year: 2008 publication-title: J. Mater. Sci.: Mater. Med. – volume: 52 start-page: 71 year: 2015 publication-title: Biomaterials – volume: 82 start-page: 1 year: 1998 publication-title: J. Neurosci. Methods – volume: 24 start-page: 8071 year: 2008 publication-title: Langmuir – volume: 5 start-page: 1737 year: 2010 publication-title: Nat. Protoc. – volume: 160 start-page: 791 year: 2010 publication-title: Synth. Met. – ident: e_1_2_5_18_1 doi: 10.1021/nn502704g – ident: e_1_2_5_2_1 doi: 10.3389/neuro.16.018.2009 – ident: e_1_2_5_26_1 doi: 10.1021/cm5020543 – ident: e_1_2_5_7_1 doi: 10.1007/s10856-008-3376-7 – ident: e_1_2_5_10_1 doi: 10.1073/pnas.1202636109 – ident: e_1_2_5_30_1 doi: 10.1002/adhm.201300260 – ident: e_1_2_5_39_1 doi: 10.1039/c3py01634j – volume: 9 start-page: 521 year: 2015 ident: e_1_2_5_44_1 publication-title: Front. Neurosci. – ident: e_1_2_5_14_1 doi: 10.1016/j.carbpol.2018.03.099 – ident: e_1_2_5_47_1 doi: 10.1016/j.biomaterials.2015.01.079 – ident: e_1_2_5_11_1 doi: 10.1038/nmat3758 – ident: e_1_2_5_33_1 doi: 10.1016/j.clinph.2004.10.001 – ident: e_1_2_5_43_1 doi: 10.1021/la800333g – ident: e_1_2_5_19_1 doi: 10.1039/c3ee40997j – ident: e_1_2_5_31_1 doi: 10.1016/j.cell.2006.06.044 – ident: e_1_2_5_32_1 doi: 10.1002/adhm.201400095 – ident: e_1_2_5_35_1 doi: 10.1016/j.polymer.2009.09.025 – ident: e_1_2_5_5_1 doi: 10.1038/nrn2196 – ident: e_1_2_5_16_1 doi: 10.1002/adma.201304496 – ident: e_1_2_5_23_1 doi: 10.1039/c3nr00214d – ident: e_1_2_5_27_1 doi: 10.1089/ten.tea.2011.0663 – ident: e_1_2_5_36_1 doi: 10.1016/j.synthmet.2010.01.024 – ident: e_1_2_5_24_1 doi: 10.1021/ja1062357 – ident: e_1_2_5_48_1 doi: 10.1002/adhm.201400209 – ident: e_1_2_5_9_1 doi: 10.1016/S0165-0270(98)00031-4 – ident: e_1_2_5_40_1 doi: 10.1021/mz500498y – ident: e_1_2_5_4_1 doi: 10.4065/mcp.2011.0045 – ident: e_1_2_5_38_1 doi: 10.1039/C5RA19467A – ident: e_1_2_5_46_1 doi: 10.1016/j.biomaterials.2014.10.017 – ident: e_1_2_5_21_1 doi: 10.1002/adma.200501726 – ident: e_1_2_5_13_1 doi: 10.1021/cm301666w – ident: e_1_2_5_17_1 doi: 10.3389/fneng.2014.00015 – ident: e_1_2_5_8_1 doi: 10.1109/86.750552 – ident: e_1_2_5_42_1 doi: 10.1002/term.383 – volume-title: An Introduction to Tissue‐Biomaterial Interactions year: 2003 ident: e_1_2_5_12_1 – volume-title: Neurological Disorder: Public Health Challenges year: 2006 ident: e_1_2_5_1_1 – ident: e_1_2_5_3_1 doi: 10.1172/JCI68341 – ident: e_1_2_5_50_1 doi: 10.1039/C5TB00390C – ident: e_1_2_5_28_1 doi: 10.1073/pnas.1211516109 – ident: e_1_2_5_20_1 doi: 10.1016/j.actbio.2013.12.032 – ident: e_1_2_5_37_1 doi: 10.1016/j.synthmet.2010.02.034 – ident: e_1_2_5_49_1 doi: 10.1002/app.32693 – ident: e_1_2_5_15_1 doi: 10.1002/adfm.200801473 – ident: e_1_2_5_29_1 doi: 10.1038/nprot.2010.135 – ident: e_1_2_5_45_1 doi: 10.1016/j.biomaterials.2014.02.012 – ident: e_1_2_5_41_1 doi: 10.1016/j.actbio.2014.02.015 – ident: e_1_2_5_6_1 doi: 10.1109/TNSRE.2014.2304559 – ident: e_1_2_5_25_1 doi: 10.1039/C4CP04426F – ident: e_1_2_5_22_1 doi: 10.1016/j.biomaterials.2007.11.022 – ident: e_1_2_5_34_1 doi: 10.1038/nature11409 |
SSID | ssj0017893 |
Score | 2.289998 |
Snippet | Electrically conductive materials with soft, tough, and tunable mechanics have utility in a wide range of applications including neuroprosthetics. Such... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Compressibility Conducting polymers conductive polymers Crosslinking Electric components Electrical resistivity electrodes Fibroblasts Freezing Hydrogels Implantation Mechanics Mechanics (physics) Needles Neural prostheses neuroprosthetics Polyacrylic acid |
Title | Cryogel‐Based Electronic–Tissue Interfaces with Soft, Highly Compressible, and Tunable Mechanics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmame.201900367 https://www.proquest.com/docview/2321631528 |
Volume | 304 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YLurBB2pE0ezBxAuFsl36OCKBEBM8KCTcmu12aoxQDI8DnvgJJv5Dfok7W1rAxJjorU12m3Znd-br5JtvCLlxHJODiVScKjCDRzVueGByw7UdsK0g5JaLtcOdB7vd4_f9Wn-jij_Rh8gSbngytL_GAy6CSWUtGjoUQ5S5rGIqzsZyciRsISp6zPSjqo6rVXexxbfhcI-lqo0mq2xP345Ka6i5CVh1xGkdEpG-a0I0eS3PpkFZvn-TcfzPxxyRgxUcpfVk_xyTHYjzZLeRdoHLk_0NwcITEjbG89EzDJaLjzsV_kLazLroLBefXW1EqpOMEVK9KGZ56ZPy9CWKhJLBnKL_0dTbYAAlKuKQdme6fIt2AIuQX-TklPRazW6jbaz6NBjSqnEV5AD9qowsFXAVmnI9ZkpgzAVu2zICVpVhpICLVRORY_FIAFeoAoUpRcA8UHjhjOTiUQznhHJTuBIsCBE2qOgqTMnVH2DkqaFCbaQCMVI7-XIlYo69NAZ-Ir_MfFxJP1vJArnNxr8l8h0_jiymZvdXx3jiK7ip8KqCOG6BMG2_X57id-qdZnZ38ZdJl2QPrxPKTJHkpuMZXCngMw2u9eb-AuN9-tM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsNAEB1xFECBIIAI5xZINFg4642PMkRB4TANNkI0lrMeIyQnIEgKOj4BiT_kS5jxFSgQEqWttYuZ3XnP45k3AAeOYyo0uRSnhdJQaVsZHprKcG0HbWuQKMvl3mH_yu6H6vy2XVUTci9MoQ9RJ9z4ZOTxmg84J6SPp6qhw3jIOpctzsXZzizMM7WhTT7fuQnvwvpXguPmyrs85ttwlCcr5UZTHv98w09kmtLN76Q1R53TFVgu6aLoFP5dhRkcNWChW01pa8DSN0HBNUi6z6-P95h9vr2fEDwloldPufl8-whyI4s8CZhyKZbgLKy4pkh8JLjgI3sVHB_y0thBhkciHiUimOTtVcJHbhJ-0C_rEJ72gm7fKOcoGNpqKwIh5LinU4sAkdiO60lTo5QuKtvWKcqWTlIiFlY7Th1LpTEqQn0WjowH0kPC8w2YGz2OcBOEMmNXo4UJwzqhX2xqRV9oqUdLY3J0E4zKhpEuRcZ51kUWFfLIMmKbR7XNm3BYr38q5DV-XblTuSQqj9lLRHSQ-CRRELcJMnfTH2-J_I7fq6-2_vPQPiz0A_8yujy7utiGRb5flLfswNz4eYK7RFLGg71yG34B80je1g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSCwHdkRZfUDiQiB13CxHKK3YihAUiVvkOGOEKAVBe4ATn4DEH_IleJwmFCSEBMdEtpV4xjPPo5k3AOtB4Ap0KRWnjNwRuiKcCF3hhH6Avpekwgupdrhx4u9fiMPLymVfFX_GD1EE3OhkWHtNB_w-1dufpKG38pZoLssUivODQRgWvhvS9WvvrCCQKgehpd2lHt9OICKe0za6fPvr_K9u6RNr9iNW63LqkyDzj80yTW62up1kSz1_43H8z99MwUQPj7KdTIGmYQDbMzBazdvAzcB4H2PhLKTVh6e7K2y9v7zuGv-XslrRRuf95a1ppchslFFTrhejMC87N6Z-k1FGSeuJkQGyubdJCzeZbKes2bX1W6yBVIV8rR7n4KJea1b3nV6jBkd5FWG8HJJhVdozHtfAqTDirkLOQxS-rzTyskq1QS5eRerAE1qiMLCCmCllwiM0gGEehtp3bVwAJlwZKvQwJdxg3Kt0lTBXQB2ZodJoUgmcXE6x6rGYUzONVpzxL_OYdjIudrIEG8X4-4y_48eRy7nY4945fowN3jSA1WCcsATcyu-XVeLGTqNWPC3-ZdIajJzu1ePjg5OjJRij11n6zDIMdR66uGJAUCdZtXr-Aaim_aQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryogel%E2%80%90Based+Electronic%E2%80%93Tissue+Interfaces+with+Soft%2C+Highly+Compressible%2C+and+Tunable+Mechanics&rft.jtitle=Macromolecular+materials+and+engineering&rft.au=Ghatee%2C+Rosa&rft.au=Tolouei%2C+Anita&rft.au=Fijalkowski%2C+Jennifer&rft.au=Alsasa%2C+Abdulrahman&rft.date=2019-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1438-7492&rft.eissn=1439-2054&rft.volume=304&rft.issue=12&rft_id=info:doi/10.1002%2Fmame.201900367&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-7492&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-7492&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-7492&client=summon |