Cryogel‐Based Electronic–Tissue Interfaces with Soft, Highly Compressible, and Tunable Mechanics

Electrically conductive materials with soft, tough, and tunable mechanics have utility in a wide range of applications including neuroprosthetics. Such materials can serve as interfaces between electrical components and tissues, providing mechanical matches with and better conformations to soft, irr...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular materials and engineering Vol. 304; no. 12
Main Authors Ghatee, Rosa, Tolouei, Anita, Fijalkowski, Jennifer, Alsasa, Abdulrahman, Hayes, Justin, Besio, Walter, Kennedy, Stephen
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.12.2019
Subjects
Online AccessGet full text
ISSN1438-7492
1439-2054
DOI10.1002/mame.201900367

Cover

Loading…
Abstract Electrically conductive materials with soft, tough, and tunable mechanics have utility in a wide range of applications including neuroprosthetics. Such materials can serve as interfaces between electrical components and tissues, providing mechanical matches with and better conformations to soft, irregularly shaped surfaces. Hydrogels can potentially provide these attributes while remaining hydrated for long periods of time—providing a long‐term and stable electronic–tissue interface. Additionally, in applications that demand implantation, hydrogels can be formulated to locally deliver enhancing therapeutics. Here, hydrogels are developed by entrapping a conducting polymer within a crosslinked poly(acrylic acid) (pAAc) network. Critically, these hydrogels are cast under freezing conditions which produces cryogels that exhibit macroporous, soft, and highly tunable mechanics (0.2–20 kPa, by varying pAAc and crosslinker concentrations). Additionally, these cryogels are tough enough to survive over 90% compression, which enables survival after being passed through 16‐gauge needles. Cryogels also exhibit electrical conductivities that are sufficient to record alpha waves from the scalp of human subjects. Growth of fibroblasts cultures in the presence of these cryogels produce statistically similar viabilities compared to controls and do not disrupt fibroblast cell cycles. Finally, cryogels are capable of being loaded with and delivering proteins that can potentially combat inflammation. Poly(3‐4, ethylenedioxythiophene) (PEDOT)‐integrated cryogels exhibit porous, soft, and highly compressible mechanics and can electrically transmit neural signals. PEDOT cryogels exhibit macroporous structures that enhance softness and compressibility which enables injection through a 16‐guage needle. Cryogel conductivity is sufficient to record EEG signals at levels similar to traditional conductive pastes.
AbstractList Electrically conductive materials with soft, tough, and tunable mechanics have utility in a wide range of applications including neuroprosthetics. Such materials can serve as interfaces between electrical components and tissues, providing mechanical matches with and better conformations to soft, irregularly shaped surfaces. Hydrogels can potentially provide these attributes while remaining hydrated for long periods of time—providing a long‐term and stable electronic–tissue interface. Additionally, in applications that demand implantation, hydrogels can be formulated to locally deliver enhancing therapeutics. Here, hydrogels are developed by entrapping a conducting polymer within a crosslinked poly(acrylic acid) (pAAc) network. Critically, these hydrogels are cast under freezing conditions which produces cryogels that exhibit macroporous, soft, and highly tunable mechanics (0.2–20 kPa, by varying pAAc and crosslinker concentrations). Additionally, these cryogels are tough enough to survive over 90% compression, which enables survival after being passed through 16‐gauge needles. Cryogels also exhibit electrical conductivities that are sufficient to record alpha waves from the scalp of human subjects. Growth of fibroblasts cultures in the presence of these cryogels produce statistically similar viabilities compared to controls and do not disrupt fibroblast cell cycles. Finally, cryogels are capable of being loaded with and delivering proteins that can potentially combat inflammation. Poly(3‐4, ethylenedioxythiophene) (PEDOT)‐integrated cryogels exhibit porous, soft, and highly compressible mechanics and can electrically transmit neural signals. PEDOT cryogels exhibit macroporous structures that enhance softness and compressibility which enables injection through a 16‐guage needle. Cryogel conductivity is sufficient to record EEG signals at levels similar to traditional conductive pastes.
Electrically conductive materials with soft, tough, and tunable mechanics have utility in a wide range of applications including neuroprosthetics. Such materials can serve as interfaces between electrical components and tissues, providing mechanical matches with and better conformations to soft, irregularly shaped surfaces. Hydrogels can potentially provide these attributes while remaining hydrated for long periods of time—providing a long‐term and stable electronic–tissue interface. Additionally, in applications that demand implantation, hydrogels can be formulated to locally deliver enhancing therapeutics. Here, hydrogels are developed by entrapping a conducting polymer within a crosslinked poly(acrylic acid) (pAAc) network. Critically, these hydrogels are cast under freezing conditions which produces cryogels that exhibit macroporous, soft, and highly tunable mechanics (0.2–20 kPa, by varying pAAc and crosslinker concentrations). Additionally, these cryogels are tough enough to survive over 90% compression, which enables survival after being passed through 16‐gauge needles. Cryogels also exhibit electrical conductivities that are sufficient to record alpha waves from the scalp of human subjects. Growth of fibroblasts cultures in the presence of these cryogels produce statistically similar viabilities compared to controls and do not disrupt fibroblast cell cycles. Finally, cryogels are capable of being loaded with and delivering proteins that can potentially combat inflammation.
Author Fijalkowski, Jennifer
Hayes, Justin
Besio, Walter
Alsasa, Abdulrahman
Tolouei, Anita
Ghatee, Rosa
Kennedy, Stephen
Author_xml – sequence: 1
  givenname: Rosa
  surname: Ghatee
  fullname: Ghatee, Rosa
  organization: University of Rhode Island
– sequence: 2
  givenname: Anita
  surname: Tolouei
  fullname: Tolouei, Anita
  organization: University of Rhode Island
– sequence: 3
  givenname: Jennifer
  surname: Fijalkowski
  fullname: Fijalkowski, Jennifer
  organization: University of Rhode Island
– sequence: 4
  givenname: Abdulrahman
  surname: Alsasa
  fullname: Alsasa, Abdulrahman
  organization: University of Rhode Island
– sequence: 5
  givenname: Justin
  surname: Hayes
  fullname: Hayes, Justin
  organization: University of Rhode Island
– sequence: 6
  givenname: Walter
  surname: Besio
  fullname: Besio, Walter
  organization: University of Rhode Island
– sequence: 7
  givenname: Stephen
  orcidid: 0000-0002-7106-2458
  surname: Kennedy
  fullname: Kennedy, Stephen
  email: smkennedy@uri.edu
  organization: University of Rhode Island
BookMark eNqFkF9LAkEUxYcwSK3Xngd6dW3-7b9HWywFpYfseRnHOzqy7tjMSuybHyHoG_pJWjMKgujp3gvndy7ndFCrtCUgdE1JnxLCbjdyA31GaEoIj-Iz1KaCpwEjoWh97kkQi5RdoI73a0JonKS8jRaZq-0SisP-7U56WOBhAapytjTqsH-fGe93gMdlBU5LBR6_mmqFn6yuenhklquixpndbB14b-YF9LAsF3i2K2Vz4CmolWyM_CU617LwcPU1u-j5fjjLRsHk8WGcDSaB4qGIgwRIk0NprgAixpOUEQWMJSCiSGlgVC10LCgPpY650BJEQhmNo0jOWQpJyLvo5uS7dfZlB77K13bnyuZlzjijEachSxqVOKmUs9470LkylayMLSsnTZFTkh_7zI995t99Nlj_F7Z1ZiNd_TeQnoBXU0D9jzqfDqbDH_YDLFOMsQ
CitedBy_id crossref_primary_10_1002_aelm_202400763
crossref_primary_10_1016_j_neuint_2021_105012
crossref_primary_10_1002_adhm_202202629
crossref_primary_10_1016_j_cherd_2021_12_044
crossref_primary_10_1016_j_cej_2021_131005
crossref_primary_10_3390_pharmaceutics15071836
crossref_primary_10_1021_acsnano_2c10462
Cites_doi 10.1021/nn502704g
10.3389/neuro.16.018.2009
10.1021/cm5020543
10.1007/s10856-008-3376-7
10.1073/pnas.1202636109
10.1002/adhm.201300260
10.1039/c3py01634j
10.1016/j.carbpol.2018.03.099
10.1016/j.biomaterials.2015.01.079
10.1038/nmat3758
10.1016/j.clinph.2004.10.001
10.1021/la800333g
10.1039/c3ee40997j
10.1016/j.cell.2006.06.044
10.1002/adhm.201400095
10.1016/j.polymer.2009.09.025
10.1038/nrn2196
10.1002/adma.201304496
10.1039/c3nr00214d
10.1089/ten.tea.2011.0663
10.1016/j.synthmet.2010.01.024
10.1021/ja1062357
10.1002/adhm.201400209
10.1016/S0165-0270(98)00031-4
10.1021/mz500498y
10.4065/mcp.2011.0045
10.1039/C5RA19467A
10.1016/j.biomaterials.2014.10.017
10.1002/adma.200501726
10.1021/cm301666w
10.3389/fneng.2014.00015
10.1109/86.750552
10.1002/term.383
10.1172/JCI68341
10.1039/C5TB00390C
10.1073/pnas.1211516109
10.1016/j.actbio.2013.12.032
10.1016/j.synthmet.2010.02.034
10.1002/app.32693
10.1002/adfm.200801473
10.1038/nprot.2010.135
10.1016/j.biomaterials.2014.02.012
10.1016/j.actbio.2014.02.015
10.1109/TNSRE.2014.2304559
10.1039/C4CP04426F
10.1016/j.biomaterials.2007.11.022
10.1038/nature11409
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/mame.201900367
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1439-2054
EndPage n/a
ExternalDocumentID 10_1002_mame_201900367
MAME201900367
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1539068
– fundername: 3M Company
  funderid: 32976949
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AVUZU
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HCIFZ
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KB.
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PDBOC
PTHSS
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
ADMLS
AGQPQ
CITATION
PHGZM
PHGZT
1OB
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3547-8e0002cf3cee6238920ce228e466cfe21cdf74135af734fae48121766ab29e853
IEDL.DBID DR2
ISSN 1438-7492
IngestDate Wed Aug 13 08:16:21 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
Tue Jul 01 02:25:53 EDT 2025
Wed Jan 22 16:39:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3547-8e0002cf3cee6238920ce228e466cfe21cdf74135af734fae48121766ab29e853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7106-2458
PQID 2321631528
PQPubID 1016395
PageCount 10
ParticipantIDs proquest_journals_2321631528
crossref_citationtrail_10_1002_mame_201900367
crossref_primary_10_1002_mame_201900367
wiley_primary_10_1002_mame_201900367_MAME201900367
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular materials and engineering
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 37
2015; 17
2015; 5
2015; 3
2008; 19
2015; 52
2005; 116
2013; 123
2014; 26
2006; 18
2006
2012; 18
2003
1998; 82
2010; 160
1999; 7
2012; 489
2015; 9
2013; 5
2013; 6
2011; 5
2014; 22
2012; 109
2018; 193
2014; 5
2014; 3
2010; 118
2009; 50
2013; 12
2008; 29
2011; 86
2007; 8
2010; 132
2008; 24
2014; 35
2010; 2
2012; 24
2009; 19
2014; 8
2006; 126
2014; 7
2010; 5
2014; 10
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
Cellot G. (e_1_2_5_44_1) 2015; 9
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
WHO (e_1_2_5_1_1) 2006
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
Dee K. C. (e_1_2_5_12_1) 2003
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_50_1
References_xml – volume: 7
  start-page: 56
  year: 1999
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 19
  start-page: 573
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 123
  start-page: 4546
  year: 2013
  publication-title: J. Clin. Invest.
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1919
  year: 2014
  publication-title: Adv. Healthcare Mater.
– volume: 5
  start-page: 6034
  year: 2013
  publication-title: Nanoscale
– volume: 26
  start-page: 5860
  year: 2014
  publication-title: Chem. Mater.
– volume: 3
  start-page: 500
  year: 2014
  publication-title: Adv. Healthcare Mater.
– volume: 489
  start-page: 133
  year: 2012
  publication-title: Nature
– volume: 22
  start-page: 411
  year: 2014
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 160
  start-page: 1101
  year: 2010
  publication-title: Synth. Met.
– volume: 86
  start-page: 662
  year: 2011
  publication-title: Mayo Clin. Proc.
– volume: 6
  start-page: 2856
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 18
  start-page: 2000
  year: 2012
  publication-title: Tissue Eng., Part A
– volume: 29
  start-page: 1273
  year: 2008
  publication-title: Biomaterials
– volume: 18
  start-page: 405
  year: 2006
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 5
  year: 2011
  publication-title: J. Tissue Eng. Regener. Med.
– volume: 17
  start-page: 5115
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 1004
  year: 2013
  publication-title: Nat. Mater.
– year: 2003
– volume: 37
  start-page: 194
  year: 2015
  publication-title: Biomaterials
– volume: 126
  start-page: 677
  year: 2006
  publication-title: Cell
– volume: 3
  start-page: 1145
  year: 2014
  publication-title: ACS Macro Lett.
– volume: 10
  start-page: 1216
  year: 2014
  publication-title: Acta Biomater.
– volume: 35
  start-page: 4477
  year: 2014
  publication-title: Biomaterials
– volume: 109
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  start-page: 2880
  year: 2014
  publication-title: Polym. Chem.
– volume: 8
  start-page: 623
  year: 2007
  publication-title: Nat. Rev. Neurosci.
– volume: 3
  start-page: 5040
  year: 2015
  publication-title: J. Mater. Chem. B
– volume: 9
  start-page: 521
  year: 2015
  publication-title: Front. Neurosci.
– volume: 109
  start-page: 9287
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 50
  start-page: 5236
  year: 2009
  publication-title: Polymer
– volume: 3
  start-page: 1869
  year: 2014
  publication-title: Adv. Healthcare Mater.
– volume: 7
  start-page: 15
  year: 2014
  publication-title: Front. Neuroeng.
– volume: 118
  start-page: 2981
  year: 2010
  publication-title: J. Appl. Polym. Sci.
– volume: 193
  start-page: 307
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 116
  start-page: 799
  year: 2005
  publication-title: Clin. Neurophysiol.
– year: 2006
– volume: 10
  start-page: 2341
  year: 2014
  publication-title: Acta Biomater.
– volume: 24
  start-page: 3425
  year: 2012
  publication-title: Chem. Mater.
– volume: 2
  start-page: 18
  year: 2010
  publication-title: Front. Neuroeng.
– volume: 26
  start-page: 1846
  year: 2014
  publication-title: Adv. Mater.
– volume: 19
  start-page: 1625
  year: 2008
  publication-title: J. Mater. Sci.: Mater. Med.
– volume: 52
  start-page: 71
  year: 2015
  publication-title: Biomaterials
– volume: 82
  start-page: 1
  year: 1998
  publication-title: J. Neurosci. Methods
– volume: 24
  start-page: 8071
  year: 2008
  publication-title: Langmuir
– volume: 5
  start-page: 1737
  year: 2010
  publication-title: Nat. Protoc.
– volume: 160
  start-page: 791
  year: 2010
  publication-title: Synth. Met.
– ident: e_1_2_5_18_1
  doi: 10.1021/nn502704g
– ident: e_1_2_5_2_1
  doi: 10.3389/neuro.16.018.2009
– ident: e_1_2_5_26_1
  doi: 10.1021/cm5020543
– ident: e_1_2_5_7_1
  doi: 10.1007/s10856-008-3376-7
– ident: e_1_2_5_10_1
  doi: 10.1073/pnas.1202636109
– ident: e_1_2_5_30_1
  doi: 10.1002/adhm.201300260
– ident: e_1_2_5_39_1
  doi: 10.1039/c3py01634j
– volume: 9
  start-page: 521
  year: 2015
  ident: e_1_2_5_44_1
  publication-title: Front. Neurosci.
– ident: e_1_2_5_14_1
  doi: 10.1016/j.carbpol.2018.03.099
– ident: e_1_2_5_47_1
  doi: 10.1016/j.biomaterials.2015.01.079
– ident: e_1_2_5_11_1
  doi: 10.1038/nmat3758
– ident: e_1_2_5_33_1
  doi: 10.1016/j.clinph.2004.10.001
– ident: e_1_2_5_43_1
  doi: 10.1021/la800333g
– ident: e_1_2_5_19_1
  doi: 10.1039/c3ee40997j
– ident: e_1_2_5_31_1
  doi: 10.1016/j.cell.2006.06.044
– ident: e_1_2_5_32_1
  doi: 10.1002/adhm.201400095
– ident: e_1_2_5_35_1
  doi: 10.1016/j.polymer.2009.09.025
– ident: e_1_2_5_5_1
  doi: 10.1038/nrn2196
– ident: e_1_2_5_16_1
  doi: 10.1002/adma.201304496
– ident: e_1_2_5_23_1
  doi: 10.1039/c3nr00214d
– ident: e_1_2_5_27_1
  doi: 10.1089/ten.tea.2011.0663
– ident: e_1_2_5_36_1
  doi: 10.1016/j.synthmet.2010.01.024
– ident: e_1_2_5_24_1
  doi: 10.1021/ja1062357
– ident: e_1_2_5_48_1
  doi: 10.1002/adhm.201400209
– ident: e_1_2_5_9_1
  doi: 10.1016/S0165-0270(98)00031-4
– ident: e_1_2_5_40_1
  doi: 10.1021/mz500498y
– ident: e_1_2_5_4_1
  doi: 10.4065/mcp.2011.0045
– ident: e_1_2_5_38_1
  doi: 10.1039/C5RA19467A
– ident: e_1_2_5_46_1
  doi: 10.1016/j.biomaterials.2014.10.017
– ident: e_1_2_5_21_1
  doi: 10.1002/adma.200501726
– ident: e_1_2_5_13_1
  doi: 10.1021/cm301666w
– ident: e_1_2_5_17_1
  doi: 10.3389/fneng.2014.00015
– ident: e_1_2_5_8_1
  doi: 10.1109/86.750552
– ident: e_1_2_5_42_1
  doi: 10.1002/term.383
– volume-title: An Introduction to Tissue‐Biomaterial Interactions
  year: 2003
  ident: e_1_2_5_12_1
– volume-title: Neurological Disorder: Public Health Challenges
  year: 2006
  ident: e_1_2_5_1_1
– ident: e_1_2_5_3_1
  doi: 10.1172/JCI68341
– ident: e_1_2_5_50_1
  doi: 10.1039/C5TB00390C
– ident: e_1_2_5_28_1
  doi: 10.1073/pnas.1211516109
– ident: e_1_2_5_20_1
  doi: 10.1016/j.actbio.2013.12.032
– ident: e_1_2_5_37_1
  doi: 10.1016/j.synthmet.2010.02.034
– ident: e_1_2_5_49_1
  doi: 10.1002/app.32693
– ident: e_1_2_5_15_1
  doi: 10.1002/adfm.200801473
– ident: e_1_2_5_29_1
  doi: 10.1038/nprot.2010.135
– ident: e_1_2_5_45_1
  doi: 10.1016/j.biomaterials.2014.02.012
– ident: e_1_2_5_41_1
  doi: 10.1016/j.actbio.2014.02.015
– ident: e_1_2_5_6_1
  doi: 10.1109/TNSRE.2014.2304559
– ident: e_1_2_5_25_1
  doi: 10.1039/C4CP04426F
– ident: e_1_2_5_22_1
  doi: 10.1016/j.biomaterials.2007.11.022
– ident: e_1_2_5_34_1
  doi: 10.1038/nature11409
SSID ssj0017893
Score 2.289998
Snippet Electrically conductive materials with soft, tough, and tunable mechanics have utility in a wide range of applications including neuroprosthetics. Such...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Compressibility
Conducting polymers
conductive polymers
Crosslinking
Electric components
Electrical resistivity
electrodes
Fibroblasts
Freezing
Hydrogels
Implantation
Mechanics
Mechanics (physics)
Needles
Neural prostheses
neuroprosthetics
Polyacrylic acid
Title Cryogel‐Based Electronic–Tissue Interfaces with Soft, Highly Compressible, and Tunable Mechanics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmame.201900367
https://www.proquest.com/docview/2321631528
Volume 304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YLurBB2pE0ezBxAuFsl36OCKBEBM8KCTcmu12aoxQDI8DnvgJJv5Dfok7W1rAxJjorU12m3Znd-br5JtvCLlxHJODiVScKjCDRzVueGByw7UdsK0g5JaLtcOdB7vd4_f9Wn-jij_Rh8gSbngytL_GAy6CSWUtGjoUQ5S5rGIqzsZyciRsISp6zPSjqo6rVXexxbfhcI-lqo0mq2xP345Ka6i5CVh1xGkdEpG-a0I0eS3PpkFZvn-TcfzPxxyRgxUcpfVk_xyTHYjzZLeRdoHLk_0NwcITEjbG89EzDJaLjzsV_kLazLroLBefXW1EqpOMEVK9KGZ56ZPy9CWKhJLBnKL_0dTbYAAlKuKQdme6fIt2AIuQX-TklPRazW6jbaz6NBjSqnEV5AD9qowsFXAVmnI9ZkpgzAVu2zICVpVhpICLVRORY_FIAFeoAoUpRcA8UHjhjOTiUQznhHJTuBIsCBE2qOgqTMnVH2DkqaFCbaQCMVI7-XIlYo69NAZ-Ir_MfFxJP1vJArnNxr8l8h0_jiymZvdXx3jiK7ip8KqCOG6BMG2_X57id-qdZnZ38ZdJl2QPrxPKTJHkpuMZXCngMw2u9eb-AuN9-tM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsNAEB1xFECBIIAI5xZINFg4642PMkRB4TANNkI0lrMeIyQnIEgKOj4BiT_kS5jxFSgQEqWttYuZ3XnP45k3AAeOYyo0uRSnhdJQaVsZHprKcG0HbWuQKMvl3mH_yu6H6vy2XVUTci9MoQ9RJ9z4ZOTxmg84J6SPp6qhw3jIOpctzsXZzizMM7WhTT7fuQnvwvpXguPmyrs85ttwlCcr5UZTHv98w09kmtLN76Q1R53TFVgu6aLoFP5dhRkcNWChW01pa8DSN0HBNUi6z6-P95h9vr2fEDwloldPufl8-whyI4s8CZhyKZbgLKy4pkh8JLjgI3sVHB_y0thBhkciHiUimOTtVcJHbhJ-0C_rEJ72gm7fKOcoGNpqKwIh5LinU4sAkdiO60lTo5QuKtvWKcqWTlIiFlY7Th1LpTEqQn0WjowH0kPC8w2YGz2OcBOEMmNXo4UJwzqhX2xqRV9oqUdLY3J0E4zKhpEuRcZ51kUWFfLIMmKbR7XNm3BYr38q5DV-XblTuSQqj9lLRHSQ-CRRELcJMnfTH2-J_I7fq6-2_vPQPiz0A_8yujy7utiGRb5flLfswNz4eYK7RFLGg71yG34B80je1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSCwHdkRZfUDiQiB13CxHKK3YihAUiVvkOGOEKAVBe4ATn4DEH_IleJwmFCSEBMdEtpV4xjPPo5k3AOtB4Ap0KRWnjNwRuiKcCF3hhH6Avpekwgupdrhx4u9fiMPLymVfFX_GD1EE3OhkWHtNB_w-1dufpKG38pZoLssUivODQRgWvhvS9WvvrCCQKgehpd2lHt9OICKe0za6fPvr_K9u6RNr9iNW63LqkyDzj80yTW62up1kSz1_43H8z99MwUQPj7KdTIGmYQDbMzBazdvAzcB4H2PhLKTVh6e7K2y9v7zuGv-XslrRRuf95a1ppchslFFTrhejMC87N6Z-k1FGSeuJkQGyubdJCzeZbKes2bX1W6yBVIV8rR7n4KJea1b3nV6jBkd5FWG8HJJhVdozHtfAqTDirkLOQxS-rzTyskq1QS5eRerAE1qiMLCCmCllwiM0gGEehtp3bVwAJlwZKvQwJdxg3Kt0lTBXQB2ZodJoUgmcXE6x6rGYUzONVpzxL_OYdjIudrIEG8X4-4y_48eRy7nY4945fowN3jSA1WCcsATcyu-XVeLGTqNWPC3-ZdIajJzu1ePjg5OjJRij11n6zDIMdR66uGJAUCdZtXr-Aaim_aQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryogel%E2%80%90Based+Electronic%E2%80%93Tissue+Interfaces+with+Soft%2C+Highly+Compressible%2C+and+Tunable+Mechanics&rft.jtitle=Macromolecular+materials+and+engineering&rft.au=Ghatee%2C+Rosa&rft.au=Tolouei%2C+Anita&rft.au=Fijalkowski%2C+Jennifer&rft.au=Alsasa%2C+Abdulrahman&rft.date=2019-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1438-7492&rft.eissn=1439-2054&rft.volume=304&rft.issue=12&rft_id=info:doi/10.1002%2Fmame.201900367&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-7492&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-7492&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-7492&client=summon