Metal Organic Framework Nanorod Doped Solid Polymer Electrolyte with Decreased Crystallinity for High‐Performance All‐Solid‐State Lithium Batteries
Poly(ethylene oxide) (PEO), an important solid polymer electrolyte (SPE) for solid‐state lithium batteries, suffers from low ionic conductivity and poor electrochemical stability; many inorganic solid compounds have been explored as fillers to address these issues. Herein, we report that Al‐metal or...
Saved in:
Published in | ChemElectroChem Vol. 7; no. 5; pp. 1125 - 1134 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
02.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Poly(ethylene oxide) (PEO), an important solid polymer electrolyte (SPE) for solid‐state lithium batteries, suffers from low ionic conductivity and poor electrochemical stability; many inorganic solid compounds have been explored as fillers to address these issues. Herein, we report that Al‐metal organic framework (MOF) nanorods could work as efficient solid fillers to boost the electrochemical performance of PEO‐based SPEs. The addition of MOF nanorods was found to inhibit the crystallization of PEO and effectively weaken the interactions among the PEO chains, resulting in evidently enhanced ionic conductivity and improved electrochemical stability; moreover, when embedded in PEO, such Al‐MOF nanorods are microporous and micrometer long, which are expected to favor the transportation of Li+ over the significantly more bulky anions TFSI−. Compared with pure PEO SPE, our optimal sample PEO‐MOF5% SPE has higher ion conductivity (2.09×10−5 S/cm at 30 °C and 7.11×10−4 S/cm 60 °C), a larger lithium‐ion transference number (0.46) and an enlarged electrochemical window (4.7 V versus Li/Li+). Accordingly, the cell of LiFePO4/PEO‐MOF5%/Li shows excellent cycle performance and rate performance. Our work proved the advantages of MOF particles as solid fillers towards high‐performance PEO‐based SPE, and we also put emphasis on the shape effect of the solid fillers on the lithium‐ion transference number and, thus, the electrochemical performance of the resulting SPE.
Stable cycling: The incorporation of microporous metal‐organic framework (MOF) nanorods in poly(ethylene oxide) (PEO)‐based solid polymer electrolyte leads to decreased polymeric crystallinity, improved ionic conductivity and enhanced lithium‐ion transference number, which enables better cycling stability and rate performance for the relevant all‐solid‐state battery LiFePO4/PEO‐MOF5%/Li. |
---|---|
AbstractList | Poly(ethylene oxide) (PEO), an important solid polymer electrolyte (SPE) for solid‐state lithium batteries, suffers from low ionic conductivity and poor electrochemical stability; many inorganic solid compounds have been explored as fillers to address these issues. Herein, we report that Al‐metal organic framework (MOF) nanorods could work as efficient solid fillers to boost the electrochemical performance of PEO‐based SPEs. The addition of MOF nanorods was found to inhibit the crystallization of PEO and effectively weaken the interactions among the PEO chains, resulting in evidently enhanced ionic conductivity and improved electrochemical stability; moreover, when embedded in PEO, such Al‐MOF nanorods are microporous and micrometer long, which are expected to favor the transportation of Li+ over the significantly more bulky anions TFSI−. Compared with pure PEO SPE, our optimal sample PEO‐MOF5% SPE has higher ion conductivity (2.09×10−5 S/cm at 30 °C and 7.11×10−4 S/cm 60 °C), a larger lithium‐ion transference number (0.46) and an enlarged electrochemical window (4.7 V versus Li/Li+). Accordingly, the cell of LiFePO4/PEO‐MOF5%/Li shows excellent cycle performance and rate performance. Our work proved the advantages of MOF particles as solid fillers towards high‐performance PEO‐based SPE, and we also put emphasis on the shape effect of the solid fillers on the lithium‐ion transference number and, thus, the electrochemical performance of the resulting SPE.
Stable cycling: The incorporation of microporous metal‐organic framework (MOF) nanorods in poly(ethylene oxide) (PEO)‐based solid polymer electrolyte leads to decreased polymeric crystallinity, improved ionic conductivity and enhanced lithium‐ion transference number, which enables better cycling stability and rate performance for the relevant all‐solid‐state battery LiFePO4/PEO‐MOF5%/Li. Poly(ethylene oxide) (PEO), an important solid polymer electrolyte (SPE) for solid‐state lithium batteries, suffers from low ionic conductivity and poor electrochemical stability; many inorganic solid compounds have been explored as fillers to address these issues. Herein, we report that Al‐metal organic framework (MOF) nanorods could work as efficient solid fillers to boost the electrochemical performance of PEO‐based SPEs. The addition of MOF nanorods was found to inhibit the crystallization of PEO and effectively weaken the interactions among the PEO chains, resulting in evidently enhanced ionic conductivity and improved electrochemical stability; moreover, when embedded in PEO, such Al‐MOF nanorods are microporous and micrometer long, which are expected to favor the transportation of Li + over the significantly more bulky anions TFSI − . Compared with pure PEO SPE, our optimal sample PEO‐MOF 5% SPE has higher ion conductivity (2.09×10 −5 S/cm at 30 °C and 7.11×10 −4 S/cm 60 °C), a larger lithium‐ion transference number (0.46) and an enlarged electrochemical window (4.7 V versus Li/Li + ). Accordingly, the cell of LiFePO 4 /PEO‐MOF 5% /Li shows excellent cycle performance and rate performance. Our work proved the advantages of MOF particles as solid fillers towards high‐performance PEO‐based SPE, and we also put emphasis on the shape effect of the solid fillers on the lithium‐ion transference number and, thus, the electrochemical performance of the resulting SPE. Poly(ethylene oxide) (PEO), an important solid polymer electrolyte (SPE) for solid‐state lithium batteries, suffers from low ionic conductivity and poor electrochemical stability; many inorganic solid compounds have been explored as fillers to address these issues. Herein, we report that Al‐metal organic framework (MOF) nanorods could work as efficient solid fillers to boost the electrochemical performance of PEO‐based SPEs. The addition of MOF nanorods was found to inhibit the crystallization of PEO and effectively weaken the interactions among the PEO chains, resulting in evidently enhanced ionic conductivity and improved electrochemical stability; moreover, when embedded in PEO, such Al‐MOF nanorods are microporous and micrometer long, which are expected to favor the transportation of Li+ over the significantly more bulky anions TFSI−. Compared with pure PEO SPE, our optimal sample PEO‐MOF5% SPE has higher ion conductivity (2.09×10−5 S/cm at 30 °C and 7.11×10−4 S/cm 60 °C), a larger lithium‐ion transference number (0.46) and an enlarged electrochemical window (4.7 V versus Li/Li+). Accordingly, the cell of LiFePO4/PEO‐MOF5%/Li shows excellent cycle performance and rate performance. Our work proved the advantages of MOF particles as solid fillers towards high‐performance PEO‐based SPE, and we also put emphasis on the shape effect of the solid fillers on the lithium‐ion transference number and, thus, the electrochemical performance of the resulting SPE. |
Author | Zhou, Yao Zhang, Zheng Wang, Chuan‐Wei Zhang, Shao‐Jian Li, Jun‐Tao Huang, Ling Sun, Shi‐Gang You, Jin‐Hai |
Author_xml | – sequence: 1 givenname: Zheng surname: Zhang fullname: Zhang, Zheng organization: Xiamen University – sequence: 2 givenname: Jin‐Hai surname: You fullname: You, Jin‐Hai organization: Xiamen University – sequence: 3 givenname: Shao‐Jian surname: Zhang fullname: Zhang, Shao‐Jian organization: Xiamen University – sequence: 4 givenname: Chuan‐Wei surname: Wang fullname: Wang, Chuan‐Wei organization: Xiamen University – sequence: 5 givenname: Yao surname: Zhou fullname: Zhou, Yao email: zhouy@xmu.edu.cn organization: Xiamen University – sequence: 6 givenname: Jun‐Tao surname: Li fullname: Li, Jun‐Tao organization: Xiamen University – sequence: 7 givenname: Ling surname: Huang fullname: Huang, Ling organization: Xiamen University – sequence: 8 givenname: Shi‐Gang surname: Sun fullname: Sun, Shi‐Gang organization: Xiamen University |
BookMark | eNqFkc9q3DAQxkVJoGmSa8-CnncrWbbXPqbO5g9sm0DbsxlL40SpbG1HWhbf-gi99vXyJNFmS1sKpTAwM-L7fiP4XrGD0Y_I2Gsp5lKI7K1Gp-eZkHWqavGCHWWyLmcik-XBH_NLdhrCgxBCSlGoqjxiP95jBMdv6A5Gq_kFwYBbT1_4Bxg9ecPP_RoN_-idNfzWu2lA4kuHOlJaIvKtjff8HDUhhCRsaAoJ6Oxo48R7T_zK3t0_fvt-i5S2AUaN_My59PLM3PUIibNKHLsZ-DuIEcliOGGHPbiApz_7Mft8sfzUXM1WN5fXzdlqplWRL2ayLGSfF51GqDGXBsBUvVZ9LlTZ9QBK5l1RmspI02nQBpSSmahAS5V1Sit1zN7suWvyXzcYYvvgNzSmk22mFossL4qiTqp8r9LkQyDsW23Tv60fI4F1rRTtLod2l0P7K4dkm_9lW5MdgKZ_G-q9YWsdTv9Rt81y1fz2PgFaEKPH |
CitedBy_id | crossref_primary_10_3390_ma14143840 crossref_primary_10_1002_smll_202206355 crossref_primary_10_1016_j_jpowsour_2025_236720 crossref_primary_10_1021_acs_jpcc_4c05094 crossref_primary_10_1016_j_cej_2024_150455 crossref_primary_10_1002_celc_202101277 crossref_primary_10_1016_j_apmate_2023_100154 crossref_primary_10_1016_j_cej_2022_138532 crossref_primary_10_1039_D2CE00663D crossref_primary_10_1016_j_memsci_2023_121552 crossref_primary_10_1016_j_cej_2025_160988 crossref_primary_10_1016_j_jpowsour_2023_233404 crossref_primary_10_1002_sstr_202300301 crossref_primary_10_1007_s40820_024_01498_y crossref_primary_10_1016_j_ensm_2022_06_051 crossref_primary_10_1021_acssuschemeng_3c03017 crossref_primary_10_1016_j_est_2024_113360 crossref_primary_10_1002_smll_202300066 crossref_primary_10_1016_j_jallcom_2024_177881 crossref_primary_10_1016_j_cjche_2023_01_011 crossref_primary_10_1088_2399_1984_abb09d crossref_primary_10_1016_j_apsusc_2024_159979 crossref_primary_10_1016_j_jcis_2022_09_142 crossref_primary_10_1142_S1793604723400088 crossref_primary_10_1002_adfm_202421670 crossref_primary_10_1002_tcr_202300044 crossref_primary_10_1016_j_jcis_2023_12_003 crossref_primary_10_3390_polym12061324 crossref_primary_10_1007_s11581_022_04815_w crossref_primary_10_1016_j_enchem_2022_100073 crossref_primary_10_1002_ente_202000444 crossref_primary_10_1039_D0QM00936A crossref_primary_10_1039_D1TA05201B crossref_primary_10_1039_D2SE00958G crossref_primary_10_1021_acsami_4c07428 crossref_primary_10_1016_j_jechem_2022_03_010 crossref_primary_10_1002_smll_202204163 crossref_primary_10_1016_j_ensm_2024_103759 crossref_primary_10_1016_j_est_2023_109578 crossref_primary_10_1002_app_53337 crossref_primary_10_1021_acsmaterialslett_0c00293 crossref_primary_10_1002_ange_202401576 crossref_primary_10_1016_j_mtsust_2022_100224 crossref_primary_10_1039_D3EE02705H crossref_primary_10_1016_j_ceramint_2022_10_303 crossref_primary_10_1002_pat_6603 crossref_primary_10_1007_s40820_024_01479_1 crossref_primary_10_1016_j_jechem_2021_01_013 crossref_primary_10_1039_D4CC01340A crossref_primary_10_1002_idm2_12108 crossref_primary_10_1021_acs_inorgchem_4c00937 crossref_primary_10_1016_j_cej_2023_145683 crossref_primary_10_1016_j_compositesb_2022_109729 crossref_primary_10_1016_j_ssi_2021_115606 crossref_primary_10_1007_s43207_024_00445_2 crossref_primary_10_1016_j_nanoen_2023_108221 crossref_primary_10_1002_app_56780 crossref_primary_10_1016_j_jcis_2022_03_148 crossref_primary_10_1016_j_nanoen_2024_109571 crossref_primary_10_1002_bkcs_12767 crossref_primary_10_1039_D1MA00244A crossref_primary_10_1007_s12598_023_02521_8 crossref_primary_10_1021_acsami_4c13525 crossref_primary_10_1016_j_mtener_2024_101574 crossref_primary_10_1149_1945_7111_ac2685 crossref_primary_10_1002_anie_202401576 crossref_primary_10_1016_j_memsci_2022_121095 crossref_primary_10_1016_j_ensm_2022_08_019 crossref_primary_10_1007_s11581_022_04580_w |
Cites_doi | 10.1007/s10008-007-0499-6 10.1016/j.jpowsour.2013.05.030 10.1016/j.nanoen.2017.01.028 10.1002/anie.200601878 10.1038/451652a 10.1016/j.nanoso.2015.12.002 10.1016/S0378-7753(00)00665-0 10.1038/28818 10.1021/jacs.7b06364 10.1039/C4TA00214H 10.1016/j.jpowsour.2009.11.048 10.3390/polym10111237 10.1016/j.joule.2018.06.021 10.1007/s41918-018-0011-2 10.1021/acs.nanolett.5b04117 10.1016/j.electacta.2019.06.157 10.1016/j.jpowsour.2010.01.076 10.1039/C6MH00218H 10.1016/j.nanoen.2018.01.028 10.1038/35104644 10.1016/j.ssi.2003.11.017 10.1039/C4RA06208F 10.3390/ma8085245 10.1021/cm901452z 10.1021/cr200324t 10.1039/C6CS00491A 10.1039/b208454f 10.1021/acs.chemrev.5b00563 10.1016/j.electacta.2018.08.012 10.1016/j.memsci.2019.05.066 10.1021/acs.nanolett.8b00659 10.1039/C8TA05642K 10.1016/0167-2738(82)90072-8 10.1039/C4TA01856G 10.1021/ja802589u 10.1016/j.jpowsour.2015.09.111 10.1016/j.nanoso.2018.03.004 10.1016/0032-3861(87)90394-6 10.1021/ja029326t 10.1146/annurev-matsci-071312-121705 10.1039/b807080f 10.1016/j.jiec.2016.03.042 10.1016/j.polymer.2006.05.069 10.1021/jp5128699 10.1039/C6TA10066J 10.1038/nmat4369 10.1002/pol.1984.180220715 10.1021/acs.nanolett.5b00600 10.1002/tcr.20054 10.1016/j.nanoen.2016.09.002 10.1016/j.jpowsour.2005.10.104 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1002/celc.201901987 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | 1134 |
ExternalDocumentID | 10_1002_celc_201901987 CELC201901987 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 20180821; 21703182 – fundername: Fundamental Research Funds for the Central Universities funderid: 20720180080 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJNI ADMLS CITATION 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3547-1651f45bcea9e41daad8fc3f4036bfaa314b56d8d1dbcacda331208ac132b3c33 |
ISSN | 2196-0216 |
IngestDate | Fri Jul 25 11:54:21 EDT 2025 Thu Apr 24 23:04:13 EDT 2025 Tue Jul 01 00:45:07 EDT 2025 Sat Aug 24 01:10:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3547-1651f45bcea9e41daad8fc3f4036bfaa314b56d8d1dbcacda331208ac132b3c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2377245559 |
PQPubID | 2034587 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2377245559 crossref_citationtrail_10_1002_celc_201901987 crossref_primary_10_1002_celc_201901987 wiley_primary_10_1002_celc_201901987_CELC201901987 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2, 2020 |
PublicationDateYYYYMMDD | 2020-03-02 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2, 2020 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2018; 285 2017; 5 2004; 166 1984; 22 2017; 46 2013; 240 2016; 301 2018; 45 2016; 37 1998; 394 2010; 22 2018; 6 2018; 2 2014; 4 2014; 2 2018; 1 2019; 319 2017; 33 1982; 7 2003; 5 2018; 30 2010; 195 2016; 116 2003; 125 2001; 96 2001; 414 2015; 15 2015; 14 2015; 16 2013; 43 2008; 12 2019; 586 2006; 159 2015; 8 2017; 139 2016; 5 2018; 18 2012; 112 2016; 3 2006; 45 2006; 47 2005; 5 2015; 119 2016; 28 2008; 451 2018; 10 2009; 38 2008; 130 1987; 28 2018; 15 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 Wang Z. (e_1_2_6_43_1) 2018; 30 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 5 start-page: 4940 year: 2017 end-page: 4948 publication-title: J. Mater. Chem. A – volume: 1 start-page: 113 year: 2018 end-page: 138 publication-title: Electrochem. Energy Rev. – volume: 47 start-page: 5952 year: 2006 end-page: 5964 publication-title: Polymer – volume: 96 start-page: 337 year: 2001 end-page: 342 publication-title: J. Power Sources – volume: 394 start-page: 456 year: 1998 publication-title: Nature – volume: 301 start-page: 47 year: 2016 end-page: 53 publication-title: J. Power Sources – volume: 15 start-page: 2740 year: 2015 end-page: 2745 publication-title: Nano Lett. – volume: 2 start-page: 9948 year: 2014 end-page: 9954 publication-title: J. Mater. Chem. A – volume: 195 start-page: 2419 year: 2010 end-page: 2430 publication-title: J. Power Sources – volume: 7 start-page: 75 year: 1982 end-page: 79 publication-title: Solid State Ionics – volume: 18 start-page: 3104 year: 2018 end-page: 3112 publication-title: Nano Lett. – volume: 10 start-page: 1237 year: 2018 end-page: 1249 publication-title: Polymer – volume: 33 start-page: 363 year: 2017 end-page: 386 publication-title: Nano Energy – volume: 2 start-page: 1674 year: 2018 end-page: 1689 publication-title: Joule – volume: 12 start-page: 353 year: 2008 end-page: 361 publication-title: J. Solid State Electrochem. – volume: 586 start-page: 122 year: 2019 end-page: 129 publication-title: J. Membr. Sci. – volume: 22 start-page: 1331 year: 1984 end-page: 1342 publication-title: J. Polym. Sci. Polym. Phys. Ed. – volume: 285 start-page: 355 year: 2018 end-page: 364 publication-title: Electrochim. Acta – volume: 28 start-page: 447 year: 2016 end-page: 454 publication-title: Nano Energy – volume: 139 start-page: 13779 year: 2017 end-page: 13785 publication-title: J. Am. Chem. Soc. – volume: 240 start-page: 653 year: 2013 end-page: 658 publication-title: J. Power Sources – volume: 28 start-page: 2324 year: 1987 end-page: 2328 publication-title: Polymer – volume: 3 start-page: 487 year: 2016 end-page: 516 publication-title: Mater. Horiz. – volume: 119 start-page: 4655 year: 2015 end-page: 4665 publication-title: J. Phys. Chem. C – volume: 166 start-page: 275 year: 2004 end-page: 293 publication-title: Solid State Ionics – volume: 22 start-page: 587 year: 2010 end-page: 603 publication-title: Chem. Mater. – volume: 45 start-page: 5974 year: 2006 end-page: 5978 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 5 start-page: 720 year: 2003 end-page: 725 publication-title: Phys. Chem. Chem. Phys. – volume: 45 start-page: 413 year: 2018 end-page: 419 publication-title: Nano Energy – volume: 5 start-page: 1 year: 2016 end-page: 6 publication-title: Nano-Struct. Nano-Objects – volume: 14 start-page: 1026 year: 2015 end-page: 1031 publication-title: Nat. Mater. – volume: 4 start-page: 42278 year: 2014 end-page: 42284 publication-title: RSC Adv. – volume: 125 start-page: 4619 year: 2003 end-page: 4626 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 503 year: 2013 end-page: 525 publication-title: Annu. Rev. Mater. Res. – volume: 37 start-page: 347 year: 2016 end-page: 353 publication-title: J. Ind. Eng. Chem. – volume: 8 start-page: 5336 year: 2015 end-page: 5347 publication-title: Materials – volume: 116 start-page: 140 year: 2016 end-page: 162 publication-title: Chem. Rev. – volume: 159 start-page: 690 year: 2006 end-page: 701 publication-title: J. Power Sources – volume: 195 start-page: 4554 year: 2010 end-page: 4569 publication-title: J. Power Sources – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 16 start-page: 459 year: 2015 end-page: 465 publication-title: Nano Lett. – volume: 414 start-page: 359 year: 2001 end-page: 368 publication-title: Nature – volume: 46 start-page: 797 year: 2017 end-page: 815 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 1450 year: 2009 end-page: 1459 publication-title: Chem. Soc. Rev. – volume: 15 start-page: 48 year: 2018 end-page: 53 publication-title: Nano-Struct. Nano-Objects – volume: 130 start-page: 13664 year: 2008 end-page: 13672 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 7256 year: 2014 end-page: 7264 publication-title: J. Mater. Chem. A – volume: 5 start-page: 286 year: 2005 end-page: 297 publication-title: Chem. Rec. – volume: 6 start-page: 17227 year: 2018 end-page: 17234 publication-title: J. Mater. Chem. A – volume: 319 start-page: 189 year: 2019 end-page: 200 publication-title: Electrochim. Acta – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 112 start-page: 1105 year: 2012 end-page: 1125 publication-title: Chem. Rev. – ident: e_1_2_6_31_1 doi: 10.1007/s10008-007-0499-6 – ident: e_1_2_6_32_1 doi: 10.1016/j.jpowsour.2013.05.030 – ident: e_1_2_6_9_1 doi: 10.1016/j.nanoen.2017.01.028 – ident: e_1_2_6_27_1 doi: 10.1002/anie.200601878 – ident: e_1_2_6_4_1 doi: 10.1038/451652a – ident: e_1_2_6_29_1 doi: 10.1016/j.nanoso.2015.12.002 – ident: e_1_2_6_42_1 doi: 10.1016/S0378-7753(00)00665-0 – ident: e_1_2_6_45_1 doi: 10.1038/28818 – ident: e_1_2_6_50_1 doi: 10.1021/jacs.7b06364 – ident: e_1_2_6_51_1 doi: 10.1039/C4TA00214H – ident: e_1_2_6_5_1 doi: 10.1016/j.jpowsour.2009.11.048 – ident: e_1_2_6_16_1 doi: 10.3390/polym10111237 – ident: e_1_2_6_3_1 doi: 10.1016/j.joule.2018.06.021 – ident: e_1_2_6_17_1 doi: 10.1007/s41918-018-0011-2 – ident: e_1_2_6_18_1 doi: 10.1021/acs.nanolett.5b04117 – ident: e_1_2_6_37_1 doi: 10.1016/j.electacta.2019.06.157 – ident: e_1_2_6_11_1 doi: 10.1016/j.jpowsour.2010.01.076 – ident: e_1_2_6_7_1 doi: 10.1039/C6MH00218H – ident: e_1_2_6_44_1 doi: 10.1016/j.nanoen.2018.01.028 – ident: e_1_2_6_1_1 doi: 10.1038/35104644 – ident: e_1_2_6_46_1 doi: 10.1016/j.ssi.2003.11.017 – ident: e_1_2_6_33_1 doi: 10.1039/C4RA06208F – ident: e_1_2_6_38_1 doi: 10.3390/ma8085245 – volume: 30 year: 2018 ident: e_1_2_6_43_1 publication-title: Adv. Mater. – ident: e_1_2_6_2_1 doi: 10.1021/cm901452z – ident: e_1_2_6_28_1 doi: 10.1021/cr200324t – ident: e_1_2_6_10_1 doi: 10.1039/C6CS00491A – ident: e_1_2_6_20_1 doi: 10.1039/b208454f – ident: e_1_2_6_8_1 doi: 10.1021/acs.chemrev.5b00563 – ident: e_1_2_6_36_1 doi: 10.1016/j.electacta.2018.08.012 – ident: e_1_2_6_48_1 doi: 10.1016/j.memsci.2019.05.066 – ident: e_1_2_6_40_1 doi: 10.1021/acs.nanolett.8b00659 – ident: e_1_2_6_34_1 doi: 10.1039/C8TA05642K – ident: e_1_2_6_21_1 doi: 10.1016/0167-2738(82)90072-8 – ident: e_1_2_6_35_1 doi: 10.1039/C4TA01856G – ident: e_1_2_6_47_1 doi: 10.1021/ja802589u – ident: e_1_2_6_25_1 doi: 10.1016/j.jpowsour.2015.09.111 – ident: e_1_2_6_30_1 doi: 10.1016/j.nanoso.2018.03.004 – ident: e_1_2_6_52_1 doi: 10.1016/0032-3861(87)90394-6 – ident: e_1_2_6_14_1 doi: 10.1021/ja029326t – ident: e_1_2_6_13_1 doi: 10.1146/annurev-matsci-071312-121705 – ident: e_1_2_6_26_1 doi: 10.1039/b807080f – ident: e_1_2_6_19_1 doi: 10.1016/j.jiec.2016.03.042 – ident: e_1_2_6_12_1 doi: 10.1016/j.polymer.2006.05.069 – ident: e_1_2_6_41_1 doi: 10.1021/jp5128699 – ident: e_1_2_6_49_1 doi: 10.1039/C6TA10066J – ident: e_1_2_6_6_1 doi: 10.1038/nmat4369 – ident: e_1_2_6_39_1 doi: 10.1002/pol.1984.180220715 – ident: e_1_2_6_24_1 doi: 10.1021/acs.nanolett.5b00600 – ident: e_1_2_6_15_1 doi: 10.1002/tcr.20054 – ident: e_1_2_6_23_1 doi: 10.1016/j.nanoen.2016.09.002 – ident: e_1_2_6_22_1 doi: 10.1016/j.jpowsour.2005.10.104 |
SSID | ssj0001105386 |
Score | 2.4468038 |
Snippet | Poly(ethylene oxide) (PEO), an important solid polymer electrolyte (SPE) for solid‐state lithium batteries, suffers from low ionic conductivity and poor... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1125 |
SubjectTerms | Aluminum Crystallization Electrochemical analysis Electrolytes Ethylene oxide Fillers Ion currents ionic conductivity Ions Lithium Lithium batteries Metal-organic frameworks Nanorods Polyethylene oxide Polymers Shape effects solid polymer electrolyte solid-state lithium batteries Stability |
Title | Metal Organic Framework Nanorod Doped Solid Polymer Electrolyte with Decreased Crystallinity for High‐Performance All‐Solid‐State Lithium Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201901987 https://www.proquest.com/docview/2377245559 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbK7gEuiF9RWJAPSByqQBM7f8eq21W1ahckWu2KS2Q7jhopbVe77aGceASuvBNPwZMwkzhOql1-L2nipKOq82X8jfXNmJDXQrlcBGHf4TC9OlgKCe9czJ2IS8-Leai8GOudp2fBeM5PL_yLTud7S7W03ci36vOtdSX_41UYA79ilew_eNYahQE4B__CETwMx7_y8VRjKWNVTqmQg1Y6KwyZawiMwI4vkU-uizxFodtuiYqOat-bYrfR1SLscUkcr3Gl92oHXBGbdOdGx4kqECuH-NCqMRgUhR0v7TdXyF6xF8ci3y57VfvOWqhYd0RY6KX5GXh6Y-3600Kb-RSlPfnK2h6LvAfhya4KLcTa3jvFSFWaaBQLW9F891znvfP6rlnmgJwWdV5NUnyLjqgtFtVlxIToi4rqqnizDu9hC8V-K1QD0fRb077rVouqN6aUqkWt0gU2vET6FBuGsNe7--x9cjKfTJLZ6GJ2hxx6kLRA1D0cHE8nH5s1PyCzLArq3qF9792-2X1u1CQ87bSp5D2zB-S-SVjooELfQ9LRq0fk7rDeJ_Ax-VaikBoUUotCalBISxTSEiXUoJC2UEgRhdSikO6hkALiKKLwx5evLfxRwB-MlDbxEzFHDeaoxdwTMj8ZzYZjx2z44Sjm89BxA9_NuC-VFrHmbipEGmWKZRxolsyEYC6XfpBGqZtKJVQqGHO9fgTxhnmSKcaekoPVeqWfERqmkFowHuhQZhxsxWk_BTqq3EhmTHiyS5z6r06U6YaPm7IUSdXH20vQNYl1TZe8sc9fVn1gfvnkUe25xMSK68RjAAjuQ_reJV7pzT9YSYajydBePf-9zRfkXvPKHJGDzdVWvwSuvJGvDAR_ApvGwaU |
linkProvider | EBSCOhost |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTttQEL1CsKCbCvpQ0wK9C6quLHIffi1YRE6iUBKEVFKhbtz7soRkYpQEoez4BLZ8Br_ElzDjR1IWFVIlVpat65Ht8cw9M5o5Q8i-MkyqIGx7ErZXD1shweZi6UVScx7L0PAY-51HJ8FgLH-c--dr5KHphan4IZYJN7SM0l-jgWNC-mDFGmpcjhyEuKNB4FzXVR67xQ1EbbPDoy6o-Bvn_d5ZMvDqwQKeEb4MPRb4LJO-Nk7FTjKrlI0yIzIJ7lxnSgkmtR_YyDKrjTJWCcF4O4L3ElwLgzlQ8PobCKXAkDY6v8a_x6vEDiAWUU6YBGeABb4saMgi2_zg-UM_3wxXCPdvnFxudP0t8rZGqLRT_VLbZM1N3pHNpBkM957cjxwgdlp1cRrab8q7KHjqAvwx7RZXztKfRX5h6WmRLy7dlPaqcTv5Yu4o5n5pt8SrM1iYTBcAUZEbHCICCiCaYvHJ4-3d6aqpgXbyHK6UMvGIEJkOQc7F9SWtOEIh5P9Axq-iiI9kfVJM3CdCQwtYUsjAhTqTICu2bQv4w7BIZ0Jx3SJe86lTU9Of4xSOPK2Im3mKqkmXqmmR78v1VxXxxz9X7jSaS2sHMEu5gLBF-hCvtQgvtfmClDTpDZPl2ef_uekr2RycjYbp8Ojk-At5wzEzgNVyfIesz6fXbhfg01zv1T8sJX9e20aeAIa6LME |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LattQEB2CA203pW1S6jRt76IhKxHdh16LLoxskzROMCQuIRv1vgQBxTK2Q_Gun9Bt_6Lf1C_pXD3sZlEChayExNVF0mhmzgwzZwA-Sk2FDCPfE-hePdcKiTqXCC8WirFERJolrt_57Dw8nojPV8HVFvxqe2Fqfoh1ws1pRmWvnYLPTH60IQ3VtnAUhM6hYdzclFWe2tU3DNoWn076KOEDxoaDy_TYa-YKeJoHIvJoGNBcBEpbmVhBjZQmzjXPBVpzlUvJqVBBaGJDjdJSG8k5ZX6Mr8WZ4tqlQNHobwfoCv0ObPe-TK4nm7wOAhZeDZhEW-Dqe2nYckX67Oj-Q9_3hRuA-zdMrvzc8AU8bwAq6dV_1EvYstNX8DRt58LtwM8zi4Cd1E2cmgzb6i6ChrpEc0z65cwaclEWN4aMy2J1a-dkUE_bKVZLS1zql_QruLrAhel8hQjVUYNjQEAQQxNXe_L7-4_xpqeB9IoCr1R7uqNDyGSE-9zc3ZKaIhQj_l2YPIogXkNnWk7tGyCRQSjJRWgjlQvcKzG-QfihaaxyLpnqgtd-6kw37OduCEeR1bzNLHOiydai6cLhev2s5v3458r9VnJZo_-LjHGMWkSA4VoXWCXNB3bJ0sEoXZ_t_c9NH-DJuD_MRifnp2_hGXN5AVcrx_ahs5zf2XcInpbqffO_Evj62CryB1DJK-E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+Organic+Framework+Nanorod+Doped+Solid+Polymer+Electrolyte+with+Decreased+Crystallinity+for+High%E2%80%90Performance+All%E2%80%90Solid%E2%80%90State+Lithium+Batteries&rft.jtitle=ChemElectroChem&rft.au=Zhang%2C+Zheng&rft.au=Jin%E2%80%90Hai+You&rft.au=Shao%E2%80%90Jian+Zhang&rft.au=Chuan%E2%80%90Wei+Wang&rft.date=2020-03-02&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=7&rft.issue=5&rft.spage=1125&rft.epage=1134&rft_id=info:doi/10.1002%2Fcelc.201901987&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |