Metal Organic Framework Nanorod Doped Solid Polymer Electrolyte with Decreased Crystallinity for High‐Performance All‐Solid‐State Lithium Batteries

Poly(ethylene oxide) (PEO), an important solid polymer electrolyte (SPE) for solid‐state lithium batteries, suffers from low ionic conductivity and poor electrochemical stability; many inorganic solid compounds have been explored as fillers to address these issues. Herein, we report that Al‐metal or...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 7; no. 5; pp. 1125 - 1134
Main Authors Zhang, Zheng, You, Jin‐Hai, Zhang, Shao‐Jian, Wang, Chuan‐Wei, Zhou, Yao, Li, Jun‐Tao, Huang, Ling, Sun, Shi‐Gang
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 02.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Poly(ethylene oxide) (PEO), an important solid polymer electrolyte (SPE) for solid‐state lithium batteries, suffers from low ionic conductivity and poor electrochemical stability; many inorganic solid compounds have been explored as fillers to address these issues. Herein, we report that Al‐metal organic framework (MOF) nanorods could work as efficient solid fillers to boost the electrochemical performance of PEO‐based SPEs. The addition of MOF nanorods was found to inhibit the crystallization of PEO and effectively weaken the interactions among the PEO chains, resulting in evidently enhanced ionic conductivity and improved electrochemical stability; moreover, when embedded in PEO, such Al‐MOF nanorods are microporous and micrometer long, which are expected to favor the transportation of Li+ over the significantly more bulky anions TFSI−. Compared with pure PEO SPE, our optimal sample PEO‐MOF5% SPE has higher ion conductivity (2.09×10−5 S/cm at 30 °C and 7.11×10−4 S/cm 60 °C), a larger lithium‐ion transference number (0.46) and an enlarged electrochemical window (4.7 V versus Li/Li+). Accordingly, the cell of LiFePO4/PEO‐MOF5%/Li shows excellent cycle performance and rate performance. Our work proved the advantages of MOF particles as solid fillers towards high‐performance PEO‐based SPE, and we also put emphasis on the shape effect of the solid fillers on the lithium‐ion transference number and, thus, the electrochemical performance of the resulting SPE. Stable cycling: The incorporation of microporous metal‐organic framework (MOF) nanorods in poly(ethylene oxide) (PEO)‐based solid polymer electrolyte leads to decreased polymeric crystallinity, improved ionic conductivity and enhanced lithium‐ion transference number, which enables better cycling stability and rate performance for the relevant all‐solid‐state battery LiFePO4/PEO‐MOF5%/Li.
AbstractList Poly(ethylene oxide) (PEO), an important solid polymer electrolyte (SPE) for solid‐state lithium batteries, suffers from low ionic conductivity and poor electrochemical stability; many inorganic solid compounds have been explored as fillers to address these issues. Herein, we report that Al‐metal organic framework (MOF) nanorods could work as efficient solid fillers to boost the electrochemical performance of PEO‐based SPEs. The addition of MOF nanorods was found to inhibit the crystallization of PEO and effectively weaken the interactions among the PEO chains, resulting in evidently enhanced ionic conductivity and improved electrochemical stability; moreover, when embedded in PEO, such Al‐MOF nanorods are microporous and micrometer long, which are expected to favor the transportation of Li+ over the significantly more bulky anions TFSI−. Compared with pure PEO SPE, our optimal sample PEO‐MOF5% SPE has higher ion conductivity (2.09×10−5 S/cm at 30 °C and 7.11×10−4 S/cm 60 °C), a larger lithium‐ion transference number (0.46) and an enlarged electrochemical window (4.7 V versus Li/Li+). Accordingly, the cell of LiFePO4/PEO‐MOF5%/Li shows excellent cycle performance and rate performance. Our work proved the advantages of MOF particles as solid fillers towards high‐performance PEO‐based SPE, and we also put emphasis on the shape effect of the solid fillers on the lithium‐ion transference number and, thus, the electrochemical performance of the resulting SPE. Stable cycling: The incorporation of microporous metal‐organic framework (MOF) nanorods in poly(ethylene oxide) (PEO)‐based solid polymer electrolyte leads to decreased polymeric crystallinity, improved ionic conductivity and enhanced lithium‐ion transference number, which enables better cycling stability and rate performance for the relevant all‐solid‐state battery LiFePO4/PEO‐MOF5%/Li.
Poly(ethylene oxide) (PEO), an important solid polymer electrolyte (SPE) for solid‐state lithium batteries, suffers from low ionic conductivity and poor electrochemical stability; many inorganic solid compounds have been explored as fillers to address these issues. Herein, we report that Al‐metal organic framework (MOF) nanorods could work as efficient solid fillers to boost the electrochemical performance of PEO‐based SPEs. The addition of MOF nanorods was found to inhibit the crystallization of PEO and effectively weaken the interactions among the PEO chains, resulting in evidently enhanced ionic conductivity and improved electrochemical stability; moreover, when embedded in PEO, such Al‐MOF nanorods are microporous and micrometer long, which are expected to favor the transportation of Li + over the significantly more bulky anions TFSI − . Compared with pure PEO SPE, our optimal sample PEO‐MOF 5% SPE has higher ion conductivity (2.09×10 −5  S/cm at 30 °C and 7.11×10 −4  S/cm 60 °C), a larger lithium‐ion transference number (0.46) and an enlarged electrochemical window (4.7 V versus Li/Li + ). Accordingly, the cell of LiFePO 4 /PEO‐MOF 5% /Li shows excellent cycle performance and rate performance. Our work proved the advantages of MOF particles as solid fillers towards high‐performance PEO‐based SPE, and we also put emphasis on the shape effect of the solid fillers on the lithium‐ion transference number and, thus, the electrochemical performance of the resulting SPE.
Poly(ethylene oxide) (PEO), an important solid polymer electrolyte (SPE) for solid‐state lithium batteries, suffers from low ionic conductivity and poor electrochemical stability; many inorganic solid compounds have been explored as fillers to address these issues. Herein, we report that Al‐metal organic framework (MOF) nanorods could work as efficient solid fillers to boost the electrochemical performance of PEO‐based SPEs. The addition of MOF nanorods was found to inhibit the crystallization of PEO and effectively weaken the interactions among the PEO chains, resulting in evidently enhanced ionic conductivity and improved electrochemical stability; moreover, when embedded in PEO, such Al‐MOF nanorods are microporous and micrometer long, which are expected to favor the transportation of Li+ over the significantly more bulky anions TFSI−. Compared with pure PEO SPE, our optimal sample PEO‐MOF5% SPE has higher ion conductivity (2.09×10−5 S/cm at 30 °C and 7.11×10−4 S/cm 60 °C), a larger lithium‐ion transference number (0.46) and an enlarged electrochemical window (4.7 V versus Li/Li+). Accordingly, the cell of LiFePO4/PEO‐MOF5%/Li shows excellent cycle performance and rate performance. Our work proved the advantages of MOF particles as solid fillers towards high‐performance PEO‐based SPE, and we also put emphasis on the shape effect of the solid fillers on the lithium‐ion transference number and, thus, the electrochemical performance of the resulting SPE.
Author Zhou, Yao
Zhang, Zheng
Wang, Chuan‐Wei
Zhang, Shao‐Jian
Li, Jun‐Tao
Huang, Ling
Sun, Shi‐Gang
You, Jin‐Hai
Author_xml – sequence: 1
  givenname: Zheng
  surname: Zhang
  fullname: Zhang, Zheng
  organization: Xiamen University
– sequence: 2
  givenname: Jin‐Hai
  surname: You
  fullname: You, Jin‐Hai
  organization: Xiamen University
– sequence: 3
  givenname: Shao‐Jian
  surname: Zhang
  fullname: Zhang, Shao‐Jian
  organization: Xiamen University
– sequence: 4
  givenname: Chuan‐Wei
  surname: Wang
  fullname: Wang, Chuan‐Wei
  organization: Xiamen University
– sequence: 5
  givenname: Yao
  surname: Zhou
  fullname: Zhou, Yao
  email: zhouy@xmu.edu.cn
  organization: Xiamen University
– sequence: 6
  givenname: Jun‐Tao
  surname: Li
  fullname: Li, Jun‐Tao
  organization: Xiamen University
– sequence: 7
  givenname: Ling
  surname: Huang
  fullname: Huang, Ling
  organization: Xiamen University
– sequence: 8
  givenname: Shi‐Gang
  surname: Sun
  fullname: Sun, Shi‐Gang
  organization: Xiamen University
BookMark eNqFkc9q3DAQxkVJoGmSa8-CnncrWbbXPqbO5g9sm0DbsxlL40SpbG1HWhbf-gi99vXyJNFmS1sKpTAwM-L7fiP4XrGD0Y_I2Gsp5lKI7K1Gp-eZkHWqavGCHWWyLmcik-XBH_NLdhrCgxBCSlGoqjxiP95jBMdv6A5Gq_kFwYBbT1_4Bxg9ecPP_RoN_-idNfzWu2lA4kuHOlJaIvKtjff8HDUhhCRsaAoJ6Oxo48R7T_zK3t0_fvt-i5S2AUaN_My59PLM3PUIibNKHLsZ-DuIEcliOGGHPbiApz_7Mft8sfzUXM1WN5fXzdlqplWRL2ayLGSfF51GqDGXBsBUvVZ9LlTZ9QBK5l1RmspI02nQBpSSmahAS5V1Sit1zN7suWvyXzcYYvvgNzSmk22mFossL4qiTqp8r9LkQyDsW23Tv60fI4F1rRTtLod2l0P7K4dkm_9lW5MdgKZ_G-q9YWsdTv9Rt81y1fz2PgFaEKPH
CitedBy_id crossref_primary_10_3390_ma14143840
crossref_primary_10_1002_smll_202206355
crossref_primary_10_1016_j_jpowsour_2025_236720
crossref_primary_10_1021_acs_jpcc_4c05094
crossref_primary_10_1016_j_cej_2024_150455
crossref_primary_10_1002_celc_202101277
crossref_primary_10_1016_j_apmate_2023_100154
crossref_primary_10_1016_j_cej_2022_138532
crossref_primary_10_1039_D2CE00663D
crossref_primary_10_1016_j_memsci_2023_121552
crossref_primary_10_1016_j_cej_2025_160988
crossref_primary_10_1016_j_jpowsour_2023_233404
crossref_primary_10_1002_sstr_202300301
crossref_primary_10_1007_s40820_024_01498_y
crossref_primary_10_1016_j_ensm_2022_06_051
crossref_primary_10_1021_acssuschemeng_3c03017
crossref_primary_10_1016_j_est_2024_113360
crossref_primary_10_1002_smll_202300066
crossref_primary_10_1016_j_jallcom_2024_177881
crossref_primary_10_1016_j_cjche_2023_01_011
crossref_primary_10_1088_2399_1984_abb09d
crossref_primary_10_1016_j_apsusc_2024_159979
crossref_primary_10_1016_j_jcis_2022_09_142
crossref_primary_10_1142_S1793604723400088
crossref_primary_10_1002_adfm_202421670
crossref_primary_10_1002_tcr_202300044
crossref_primary_10_1016_j_jcis_2023_12_003
crossref_primary_10_3390_polym12061324
crossref_primary_10_1007_s11581_022_04815_w
crossref_primary_10_1016_j_enchem_2022_100073
crossref_primary_10_1002_ente_202000444
crossref_primary_10_1039_D0QM00936A
crossref_primary_10_1039_D1TA05201B
crossref_primary_10_1039_D2SE00958G
crossref_primary_10_1021_acsami_4c07428
crossref_primary_10_1016_j_jechem_2022_03_010
crossref_primary_10_1002_smll_202204163
crossref_primary_10_1016_j_ensm_2024_103759
crossref_primary_10_1016_j_est_2023_109578
crossref_primary_10_1002_app_53337
crossref_primary_10_1021_acsmaterialslett_0c00293
crossref_primary_10_1002_ange_202401576
crossref_primary_10_1016_j_mtsust_2022_100224
crossref_primary_10_1039_D3EE02705H
crossref_primary_10_1016_j_ceramint_2022_10_303
crossref_primary_10_1002_pat_6603
crossref_primary_10_1007_s40820_024_01479_1
crossref_primary_10_1016_j_jechem_2021_01_013
crossref_primary_10_1039_D4CC01340A
crossref_primary_10_1002_idm2_12108
crossref_primary_10_1021_acs_inorgchem_4c00937
crossref_primary_10_1016_j_cej_2023_145683
crossref_primary_10_1016_j_compositesb_2022_109729
crossref_primary_10_1016_j_ssi_2021_115606
crossref_primary_10_1007_s43207_024_00445_2
crossref_primary_10_1016_j_nanoen_2023_108221
crossref_primary_10_1002_app_56780
crossref_primary_10_1016_j_jcis_2022_03_148
crossref_primary_10_1016_j_nanoen_2024_109571
crossref_primary_10_1002_bkcs_12767
crossref_primary_10_1039_D1MA00244A
crossref_primary_10_1007_s12598_023_02521_8
crossref_primary_10_1021_acsami_4c13525
crossref_primary_10_1016_j_mtener_2024_101574
crossref_primary_10_1149_1945_7111_ac2685
crossref_primary_10_1002_anie_202401576
crossref_primary_10_1016_j_memsci_2022_121095
crossref_primary_10_1016_j_ensm_2022_08_019
crossref_primary_10_1007_s11581_022_04580_w
Cites_doi 10.1007/s10008-007-0499-6
10.1016/j.jpowsour.2013.05.030
10.1016/j.nanoen.2017.01.028
10.1002/anie.200601878
10.1038/451652a
10.1016/j.nanoso.2015.12.002
10.1016/S0378-7753(00)00665-0
10.1038/28818
10.1021/jacs.7b06364
10.1039/C4TA00214H
10.1016/j.jpowsour.2009.11.048
10.3390/polym10111237
10.1016/j.joule.2018.06.021
10.1007/s41918-018-0011-2
10.1021/acs.nanolett.5b04117
10.1016/j.electacta.2019.06.157
10.1016/j.jpowsour.2010.01.076
10.1039/C6MH00218H
10.1016/j.nanoen.2018.01.028
10.1038/35104644
10.1016/j.ssi.2003.11.017
10.1039/C4RA06208F
10.3390/ma8085245
10.1021/cm901452z
10.1021/cr200324t
10.1039/C6CS00491A
10.1039/b208454f
10.1021/acs.chemrev.5b00563
10.1016/j.electacta.2018.08.012
10.1016/j.memsci.2019.05.066
10.1021/acs.nanolett.8b00659
10.1039/C8TA05642K
10.1016/0167-2738(82)90072-8
10.1039/C4TA01856G
10.1021/ja802589u
10.1016/j.jpowsour.2015.09.111
10.1016/j.nanoso.2018.03.004
10.1016/0032-3861(87)90394-6
10.1021/ja029326t
10.1146/annurev-matsci-071312-121705
10.1039/b807080f
10.1016/j.jiec.2016.03.042
10.1016/j.polymer.2006.05.069
10.1021/jp5128699
10.1039/C6TA10066J
10.1038/nmat4369
10.1002/pol.1984.180220715
10.1021/acs.nanolett.5b00600
10.1002/tcr.20054
10.1016/j.nanoen.2016.09.002
10.1016/j.jpowsour.2005.10.104
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/celc.201901987
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage 1134
ExternalDocumentID 10_1002_celc_201901987
CELC201901987
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 20180821; 21703182
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 20720180080
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJNI
ADMLS
CITATION
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3547-1651f45bcea9e41daad8fc3f4036bfaa314b56d8d1dbcacda331208ac132b3c33
ISSN 2196-0216
IngestDate Fri Jul 25 11:54:21 EDT 2025
Thu Apr 24 23:04:13 EDT 2025
Tue Jul 01 00:45:07 EDT 2025
Sat Aug 24 01:10:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3547-1651f45bcea9e41daad8fc3f4036bfaa314b56d8d1dbcacda331208ac132b3c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2377245559
PQPubID 2034587
PageCount 10
ParticipantIDs proquest_journals_2377245559
crossref_citationtrail_10_1002_celc_201901987
crossref_primary_10_1002_celc_201901987
wiley_primary_10_1002_celc_201901987_CELC201901987
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2, 2020
PublicationDateYYYYMMDD 2020-03-02
PublicationDate_xml – month: 03
  year: 2020
  text: March 2, 2020
  day: 02
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 285
2017; 5
2004; 166
1984; 22
2017; 46
2013; 240
2016; 301
2018; 45
2016; 37
1998; 394
2010; 22
2018; 6
2018; 2
2014; 4
2014; 2
2018; 1
2019; 319
2017; 33
1982; 7
2003; 5
2018; 30
2010; 195
2016; 116
2003; 125
2001; 96
2001; 414
2015; 15
2015; 14
2015; 16
2013; 43
2008; 12
2019; 586
2006; 159
2015; 8
2017; 139
2016; 5
2018; 18
2012; 112
2016; 3
2006; 45
2006; 47
2005; 5
2015; 119
2016; 28
2008; 451
2018; 10
2009; 38
2008; 130
1987; 28
2018; 15
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
Wang Z. (e_1_2_6_43_1) 2018; 30
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 5
  start-page: 4940
  year: 2017
  end-page: 4948
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 113
  year: 2018
  end-page: 138
  publication-title: Electrochem. Energy Rev.
– volume: 47
  start-page: 5952
  year: 2006
  end-page: 5964
  publication-title: Polymer
– volume: 96
  start-page: 337
  year: 2001
  end-page: 342
  publication-title: J. Power Sources
– volume: 394
  start-page: 456
  year: 1998
  publication-title: Nature
– volume: 301
  start-page: 47
  year: 2016
  end-page: 53
  publication-title: J. Power Sources
– volume: 15
  start-page: 2740
  year: 2015
  end-page: 2745
  publication-title: Nano Lett.
– volume: 2
  start-page: 9948
  year: 2014
  end-page: 9954
  publication-title: J. Mater. Chem. A
– volume: 195
  start-page: 2419
  year: 2010
  end-page: 2430
  publication-title: J. Power Sources
– volume: 7
  start-page: 75
  year: 1982
  end-page: 79
  publication-title: Solid State Ionics
– volume: 18
  start-page: 3104
  year: 2018
  end-page: 3112
  publication-title: Nano Lett.
– volume: 10
  start-page: 1237
  year: 2018
  end-page: 1249
  publication-title: Polymer
– volume: 33
  start-page: 363
  year: 2017
  end-page: 386
  publication-title: Nano Energy
– volume: 2
  start-page: 1674
  year: 2018
  end-page: 1689
  publication-title: Joule
– volume: 12
  start-page: 353
  year: 2008
  end-page: 361
  publication-title: J. Solid State Electrochem.
– volume: 586
  start-page: 122
  year: 2019
  end-page: 129
  publication-title: J. Membr. Sci.
– volume: 22
  start-page: 1331
  year: 1984
  end-page: 1342
  publication-title: J. Polym. Sci. Polym. Phys. Ed.
– volume: 285
  start-page: 355
  year: 2018
  end-page: 364
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 447
  year: 2016
  end-page: 454
  publication-title: Nano Energy
– volume: 139
  start-page: 13779
  year: 2017
  end-page: 13785
  publication-title: J. Am. Chem. Soc.
– volume: 240
  start-page: 653
  year: 2013
  end-page: 658
  publication-title: J. Power Sources
– volume: 28
  start-page: 2324
  year: 1987
  end-page: 2328
  publication-title: Polymer
– volume: 3
  start-page: 487
  year: 2016
  end-page: 516
  publication-title: Mater. Horiz.
– volume: 119
  start-page: 4655
  year: 2015
  end-page: 4665
  publication-title: J. Phys. Chem. C
– volume: 166
  start-page: 275
  year: 2004
  end-page: 293
  publication-title: Solid State Ionics
– volume: 22
  start-page: 587
  year: 2010
  end-page: 603
  publication-title: Chem. Mater.
– volume: 45
  start-page: 5974
  year: 2006
  end-page: 5978
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 5
  start-page: 720
  year: 2003
  end-page: 725
  publication-title: Phys. Chem. Chem. Phys.
– volume: 45
  start-page: 413
  year: 2018
  end-page: 419
  publication-title: Nano Energy
– volume: 5
  start-page: 1
  year: 2016
  end-page: 6
  publication-title: Nano-Struct. Nano-Objects
– volume: 14
  start-page: 1026
  year: 2015
  end-page: 1031
  publication-title: Nat. Mater.
– volume: 4
  start-page: 42278
  year: 2014
  end-page: 42284
  publication-title: RSC Adv.
– volume: 125
  start-page: 4619
  year: 2003
  end-page: 4626
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 503
  year: 2013
  end-page: 525
  publication-title: Annu. Rev. Mater. Res.
– volume: 37
  start-page: 347
  year: 2016
  end-page: 353
  publication-title: J. Ind. Eng. Chem.
– volume: 8
  start-page: 5336
  year: 2015
  end-page: 5347
  publication-title: Materials
– volume: 116
  start-page: 140
  year: 2016
  end-page: 162
  publication-title: Chem. Rev.
– volume: 159
  start-page: 690
  year: 2006
  end-page: 701
  publication-title: J. Power Sources
– volume: 195
  start-page: 4554
  year: 2010
  end-page: 4569
  publication-title: J. Power Sources
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 16
  start-page: 459
  year: 2015
  end-page: 465
  publication-title: Nano Lett.
– volume: 414
  start-page: 359
  year: 2001
  end-page: 368
  publication-title: Nature
– volume: 46
  start-page: 797
  year: 2017
  end-page: 815
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 1450
  year: 2009
  end-page: 1459
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 48
  year: 2018
  end-page: 53
  publication-title: Nano-Struct. Nano-Objects
– volume: 130
  start-page: 13664
  year: 2008
  end-page: 13672
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 7256
  year: 2014
  end-page: 7264
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 286
  year: 2005
  end-page: 297
  publication-title: Chem. Rec.
– volume: 6
  start-page: 17227
  year: 2018
  end-page: 17234
  publication-title: J. Mater. Chem. A
– volume: 319
  start-page: 189
  year: 2019
  end-page: 200
  publication-title: Electrochim. Acta
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 112
  start-page: 1105
  year: 2012
  end-page: 1125
  publication-title: Chem. Rev.
– ident: e_1_2_6_31_1
  doi: 10.1007/s10008-007-0499-6
– ident: e_1_2_6_32_1
  doi: 10.1016/j.jpowsour.2013.05.030
– ident: e_1_2_6_9_1
  doi: 10.1016/j.nanoen.2017.01.028
– ident: e_1_2_6_27_1
  doi: 10.1002/anie.200601878
– ident: e_1_2_6_4_1
  doi: 10.1038/451652a
– ident: e_1_2_6_29_1
  doi: 10.1016/j.nanoso.2015.12.002
– ident: e_1_2_6_42_1
  doi: 10.1016/S0378-7753(00)00665-0
– ident: e_1_2_6_45_1
  doi: 10.1038/28818
– ident: e_1_2_6_50_1
  doi: 10.1021/jacs.7b06364
– ident: e_1_2_6_51_1
  doi: 10.1039/C4TA00214H
– ident: e_1_2_6_5_1
  doi: 10.1016/j.jpowsour.2009.11.048
– ident: e_1_2_6_16_1
  doi: 10.3390/polym10111237
– ident: e_1_2_6_3_1
  doi: 10.1016/j.joule.2018.06.021
– ident: e_1_2_6_17_1
  doi: 10.1007/s41918-018-0011-2
– ident: e_1_2_6_18_1
  doi: 10.1021/acs.nanolett.5b04117
– ident: e_1_2_6_37_1
  doi: 10.1016/j.electacta.2019.06.157
– ident: e_1_2_6_11_1
  doi: 10.1016/j.jpowsour.2010.01.076
– ident: e_1_2_6_7_1
  doi: 10.1039/C6MH00218H
– ident: e_1_2_6_44_1
  doi: 10.1016/j.nanoen.2018.01.028
– ident: e_1_2_6_1_1
  doi: 10.1038/35104644
– ident: e_1_2_6_46_1
  doi: 10.1016/j.ssi.2003.11.017
– ident: e_1_2_6_33_1
  doi: 10.1039/C4RA06208F
– ident: e_1_2_6_38_1
  doi: 10.3390/ma8085245
– volume: 30
  year: 2018
  ident: e_1_2_6_43_1
  publication-title: Adv. Mater.
– ident: e_1_2_6_2_1
  doi: 10.1021/cm901452z
– ident: e_1_2_6_28_1
  doi: 10.1021/cr200324t
– ident: e_1_2_6_10_1
  doi: 10.1039/C6CS00491A
– ident: e_1_2_6_20_1
  doi: 10.1039/b208454f
– ident: e_1_2_6_8_1
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_6_36_1
  doi: 10.1016/j.electacta.2018.08.012
– ident: e_1_2_6_48_1
  doi: 10.1016/j.memsci.2019.05.066
– ident: e_1_2_6_40_1
  doi: 10.1021/acs.nanolett.8b00659
– ident: e_1_2_6_34_1
  doi: 10.1039/C8TA05642K
– ident: e_1_2_6_21_1
  doi: 10.1016/0167-2738(82)90072-8
– ident: e_1_2_6_35_1
  doi: 10.1039/C4TA01856G
– ident: e_1_2_6_47_1
  doi: 10.1021/ja802589u
– ident: e_1_2_6_25_1
  doi: 10.1016/j.jpowsour.2015.09.111
– ident: e_1_2_6_30_1
  doi: 10.1016/j.nanoso.2018.03.004
– ident: e_1_2_6_52_1
  doi: 10.1016/0032-3861(87)90394-6
– ident: e_1_2_6_14_1
  doi: 10.1021/ja029326t
– ident: e_1_2_6_13_1
  doi: 10.1146/annurev-matsci-071312-121705
– ident: e_1_2_6_26_1
  doi: 10.1039/b807080f
– ident: e_1_2_6_19_1
  doi: 10.1016/j.jiec.2016.03.042
– ident: e_1_2_6_12_1
  doi: 10.1016/j.polymer.2006.05.069
– ident: e_1_2_6_41_1
  doi: 10.1021/jp5128699
– ident: e_1_2_6_49_1
  doi: 10.1039/C6TA10066J
– ident: e_1_2_6_6_1
  doi: 10.1038/nmat4369
– ident: e_1_2_6_39_1
  doi: 10.1002/pol.1984.180220715
– ident: e_1_2_6_24_1
  doi: 10.1021/acs.nanolett.5b00600
– ident: e_1_2_6_15_1
  doi: 10.1002/tcr.20054
– ident: e_1_2_6_23_1
  doi: 10.1016/j.nanoen.2016.09.002
– ident: e_1_2_6_22_1
  doi: 10.1016/j.jpowsour.2005.10.104
SSID ssj0001105386
Score 2.4468038
Snippet Poly(ethylene oxide) (PEO), an important solid polymer electrolyte (SPE) for solid‐state lithium batteries, suffers from low ionic conductivity and poor...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1125
SubjectTerms Aluminum
Crystallization
Electrochemical analysis
Electrolytes
Ethylene oxide
Fillers
Ion currents
ionic conductivity
Ions
Lithium
Lithium batteries
Metal-organic frameworks
Nanorods
Polyethylene oxide
Polymers
Shape effects
solid polymer electrolyte
solid-state lithium batteries
Stability
Title Metal Organic Framework Nanorod Doped Solid Polymer Electrolyte with Decreased Crystallinity for High‐Performance All‐Solid‐State Lithium Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201901987
https://www.proquest.com/docview/2377245559
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbK7gEuiF9RWJAPSByqQBM7f8eq21W1ahckWu2KS2Q7jhopbVe77aGceASuvBNPwZMwkzhOql1-L2nipKOq82X8jfXNmJDXQrlcBGHf4TC9OlgKCe9czJ2IS8-Leai8GOudp2fBeM5PL_yLTud7S7W03ci36vOtdSX_41UYA79ilew_eNYahQE4B__CETwMx7_y8VRjKWNVTqmQg1Y6KwyZawiMwI4vkU-uizxFodtuiYqOat-bYrfR1SLscUkcr3Gl92oHXBGbdOdGx4kqECuH-NCqMRgUhR0v7TdXyF6xF8ci3y57VfvOWqhYd0RY6KX5GXh6Y-3600Kb-RSlPfnK2h6LvAfhya4KLcTa3jvFSFWaaBQLW9F891znvfP6rlnmgJwWdV5NUnyLjqgtFtVlxIToi4rqqnizDu9hC8V-K1QD0fRb077rVouqN6aUqkWt0gU2vET6FBuGsNe7--x9cjKfTJLZ6GJ2hxx6kLRA1D0cHE8nH5s1PyCzLArq3qF9792-2X1u1CQ87bSp5D2zB-S-SVjooELfQ9LRq0fk7rDeJ_Ax-VaikBoUUotCalBISxTSEiXUoJC2UEgRhdSikO6hkALiKKLwx5evLfxRwB-MlDbxEzFHDeaoxdwTMj8ZzYZjx2z44Sjm89BxA9_NuC-VFrHmbipEGmWKZRxolsyEYC6XfpBGqZtKJVQqGHO9fgTxhnmSKcaekoPVeqWfERqmkFowHuhQZhxsxWk_BTqq3EhmTHiyS5z6r06U6YaPm7IUSdXH20vQNYl1TZe8sc9fVn1gfvnkUe25xMSK68RjAAjuQ_reJV7pzT9YSYajydBePf-9zRfkXvPKHJGDzdVWvwSuvJGvDAR_ApvGwaU
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTttQEL1CsKCbCvpQ0wK9C6quLHIffi1YRE6iUBKEVFKhbtz7soRkYpQEoez4BLZ8Br_ElzDjR1IWFVIlVpat65Ht8cw9M5o5Q8i-MkyqIGx7ErZXD1shweZi6UVScx7L0PAY-51HJ8FgLH-c--dr5KHphan4IZYJN7SM0l-jgWNC-mDFGmpcjhyEuKNB4FzXVR67xQ1EbbPDoy6o-Bvn_d5ZMvDqwQKeEb4MPRb4LJO-Nk7FTjKrlI0yIzIJ7lxnSgkmtR_YyDKrjTJWCcF4O4L3ElwLgzlQ8PobCKXAkDY6v8a_x6vEDiAWUU6YBGeABb4saMgi2_zg-UM_3wxXCPdvnFxudP0t8rZGqLRT_VLbZM1N3pHNpBkM957cjxwgdlp1cRrab8q7KHjqAvwx7RZXztKfRX5h6WmRLy7dlPaqcTv5Yu4o5n5pt8SrM1iYTBcAUZEbHCICCiCaYvHJ4-3d6aqpgXbyHK6UMvGIEJkOQc7F9SWtOEIh5P9Axq-iiI9kfVJM3CdCQwtYUsjAhTqTICu2bQv4w7BIZ0Jx3SJe86lTU9Of4xSOPK2Im3mKqkmXqmmR78v1VxXxxz9X7jSaS2sHMEu5gLBF-hCvtQgvtfmClDTpDZPl2ef_uekr2RycjYbp8Ojk-At5wzEzgNVyfIesz6fXbhfg01zv1T8sJX9e20aeAIa6LME
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LattQEB2CA203pW1S6jRt76IhKxHdh16LLoxskzROMCQuIRv1vgQBxTK2Q_Gun9Bt_6Lf1C_pXD3sZlEChayExNVF0mhmzgwzZwA-Sk2FDCPfE-hePdcKiTqXCC8WirFERJolrt_57Dw8nojPV8HVFvxqe2Fqfoh1ws1pRmWvnYLPTH60IQ3VtnAUhM6hYdzclFWe2tU3DNoWn076KOEDxoaDy_TYa-YKeJoHIvJoGNBcBEpbmVhBjZQmzjXPBVpzlUvJqVBBaGJDjdJSG8k5ZX6Mr8WZ4tqlQNHobwfoCv0ObPe-TK4nm7wOAhZeDZhEW-Dqe2nYckX67Oj-Q9_3hRuA-zdMrvzc8AU8bwAq6dV_1EvYstNX8DRt58LtwM8zi4Cd1E2cmgzb6i6ChrpEc0z65cwaclEWN4aMy2J1a-dkUE_bKVZLS1zql_QruLrAhel8hQjVUYNjQEAQQxNXe_L7-4_xpqeB9IoCr1R7uqNDyGSE-9zc3ZKaIhQj_l2YPIogXkNnWk7tGyCRQSjJRWgjlQvcKzG-QfihaaxyLpnqgtd-6kw37OduCEeR1bzNLHOiydai6cLhev2s5v3458r9VnJZo_-LjHGMWkSA4VoXWCXNB3bJ0sEoXZ_t_c9NH-DJuD_MRifnp2_hGXN5AVcrx_ahs5zf2XcInpbqffO_Evj62CryB1DJK-E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+Organic+Framework+Nanorod+Doped+Solid+Polymer+Electrolyte+with+Decreased+Crystallinity+for+High%E2%80%90Performance+All%E2%80%90Solid%E2%80%90State+Lithium+Batteries&rft.jtitle=ChemElectroChem&rft.au=Zhang%2C+Zheng&rft.au=Jin%E2%80%90Hai+You&rft.au=Shao%E2%80%90Jian+Zhang&rft.au=Chuan%E2%80%90Wei+Wang&rft.date=2020-03-02&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=7&rft.issue=5&rft.spage=1125&rft.epage=1134&rft_id=info:doi/10.1002%2Fcelc.201901987&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon