On the Mechanism of Base‐Catalyzed Glycerol Polymerization and Copolymerization

Based on the herein experimental results and literature data, this article proposes a general mechanism of self‐condensation of glycerol to polyglycerol in the presence of alkaline catalysts. The mechanism involves the in situ formation of glycidol and oligo‐glycerols with terminal epoxy groups by i...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of lipid science and technology Vol. 120; no. 6
Main Authors Ionescu, Mihail, Petrović, Zoran S.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Based on the herein experimental results and literature data, this article proposes a general mechanism of self‐condensation of glycerol to polyglycerol in the presence of alkaline catalysts. The mechanism involves the in situ formation of glycidol and oligo‐glycerols with terminal epoxy groups by intramolecular SN2 substitution reactions. We consider that terminal 1,2‐glycol structures of oligo‐glycerols also form terminal epoxy groups. The formation of polyglycerol consists of the addition of epoxy groups of glycidol or oligo‐glycerols formed in situ, to various hydroxyl groups present in the reaction system. The formation of epoxy groups from 1,2‐glycols catalyzed by bases at higher temperatures seems to be a general reaction. The proposed mechanism explains the formation of all the structures found in polyglycerols, such as linear, branched, and cyclic polyglycerol, as well as hybrid cyclic‐linear and hybrid cyclic‐branched polyglycerol. The self‐condensation of glycerol to polyglycerol is in fact a special case of ring opening polymerization. Practical Application: While glycerol is used as an example, the results show that any compound containing 1,2‐glycol structure in presence of alkaline catalysts forms a transient epoxy group, which can react with any hydroxyl group in the system. This allows generation of a large family of new ethers useful as additives or polyethers for foams, coating, and adhesives. This argument is supported by the examples of copolymers of glycerol, polyglycerols, and 1,2,6‐hexane triol with triethanolamine or timethylolpropane. Mechanism of self‐condensation of glycerol to PGL in the presence of alkaline catalysts involves “in situ” formed epoxy compounds as reactive intermediates. The formation of epoxy groups from 1,2 glycols catalyzed by bases at higher temperature seems to be a general reaction. The presented mechanism explains the copolymerization of glycerol with other polyols useful for a range of new products. Mechanism of self‐condensation of glycerol to PGL in the presence of alkaline catalysts involves “in situ” formed epoxy compounds as reactive intermediates. The formation of epoxy groups from 1,2 glycols catalyzed by bases at higher temperature seems to be a general reaction. The presented mechanism explains the copolymerization of glycerol with other polyols useful for a range of new products.
AbstractList Based on the herein experimental results and literature data, this article proposes a general mechanism of self‐condensation of glycerol to polyglycerol in the presence of alkaline catalysts. The mechanism involves the in situ formation of glycidol and oligo‐glycerols with terminal epoxy groups by intramolecular SN 2 substitution reactions. We consider that terminal 1,2‐glycol structures of oligo‐glycerols also form terminal epoxy groups. The formation of polyglycerol consists of the addition of epoxy groups of glycidol or oligo‐glycerols formed in situ, to various hydroxyl groups present in the reaction system. The formation of epoxy groups from 1,2‐glycols catalyzed by bases at higher temperatures seems to be a general reaction. The proposed mechanism explains the formation of all the structures found in polyglycerols, such as linear, branched, and cyclic polyglycerol, as well as hybrid cyclic‐linear and hybrid cyclic‐branched polyglycerol. The self‐condensation of glycerol to polyglycerol is in fact a special case of ring opening polymerization. Practical Application : While glycerol is used as an example, the results show that any compound containing 1,2‐glycol structure in presence of alkaline catalysts forms a transient epoxy group, which can react with any hydroxyl group in the system. This allows generation of a large family of new ethers useful as additives or polyethers for foams, coating, and adhesives. This argument is supported by the examples of copolymers of glycerol, polyglycerols, and 1,2,6‐hexane triol with triethanolamine or timethylolpropane. Mechanism of self‐condensation of glycerol to PGL in the presence of alkaline catalysts involves “in situ” formed epoxy compounds as reactive intermediates. The formation of epoxy groups from 1,2 glycols catalyzed by bases at higher temperature seems to be a general reaction. The presented mechanism explains the copolymerization of glycerol with other polyols useful for a range of new products.
Based on the herein experimental results and literature data, this article proposes a general mechanism of self‐condensation of glycerol to polyglycerol in the presence of alkaline catalysts. The mechanism involves the in situ formation of glycidol and oligo‐glycerols with terminal epoxy groups by intramolecular SN2 substitution reactions. We consider that terminal 1,2‐glycol structures of oligo‐glycerols also form terminal epoxy groups. The formation of polyglycerol consists of the addition of epoxy groups of glycidol or oligo‐glycerols formed in situ, to various hydroxyl groups present in the reaction system. The formation of epoxy groups from 1,2‐glycols catalyzed by bases at higher temperatures seems to be a general reaction. The proposed mechanism explains the formation of all the structures found in polyglycerols, such as linear, branched, and cyclic polyglycerol, as well as hybrid cyclic‐linear and hybrid cyclic‐branched polyglycerol. The self‐condensation of glycerol to polyglycerol is in fact a special case of ring opening polymerization.Practical Application: While glycerol is used as an example, the results show that any compound containing 1,2‐glycol structure in presence of alkaline catalysts forms a transient epoxy group, which can react with any hydroxyl group in the system. This allows generation of a large family of new ethers useful as additives or polyethers for foams, coating, and adhesives. This argument is supported by the examples of copolymers of glycerol, polyglycerols, and 1,2,6‐hexane triol with triethanolamine or timethylolpropane.Mechanism of self‐condensation of glycerol to PGL in the presence of alkaline catalysts involves “in situ” formed epoxy compounds as reactive intermediates. The formation of epoxy groups from 1,2 glycols catalyzed by bases at higher temperature seems to be a general reaction. The presented mechanism explains the copolymerization of glycerol with other polyols useful for a range of new products.
Based on the herein experimental results and literature data, this article proposes a general mechanism of self‐condensation of glycerol to polyglycerol in the presence of alkaline catalysts. The mechanism involves the in situ formation of glycidol and oligo‐glycerols with terminal epoxy groups by intramolecular SN2 substitution reactions. We consider that terminal 1,2‐glycol structures of oligo‐glycerols also form terminal epoxy groups. The formation of polyglycerol consists of the addition of epoxy groups of glycidol or oligo‐glycerols formed in situ, to various hydroxyl groups present in the reaction system. The formation of epoxy groups from 1,2‐glycols catalyzed by bases at higher temperatures seems to be a general reaction. The proposed mechanism explains the formation of all the structures found in polyglycerols, such as linear, branched, and cyclic polyglycerol, as well as hybrid cyclic‐linear and hybrid cyclic‐branched polyglycerol. The self‐condensation of glycerol to polyglycerol is in fact a special case of ring opening polymerization. Practical Application: While glycerol is used as an example, the results show that any compound containing 1,2‐glycol structure in presence of alkaline catalysts forms a transient epoxy group, which can react with any hydroxyl group in the system. This allows generation of a large family of new ethers useful as additives or polyethers for foams, coating, and adhesives. This argument is supported by the examples of copolymers of glycerol, polyglycerols, and 1,2,6‐hexane triol with triethanolamine or timethylolpropane. Mechanism of self‐condensation of glycerol to PGL in the presence of alkaline catalysts involves “in situ” formed epoxy compounds as reactive intermediates. The formation of epoxy groups from 1,2 glycols catalyzed by bases at higher temperature seems to be a general reaction. The presented mechanism explains the copolymerization of glycerol with other polyols useful for a range of new products. Mechanism of self‐condensation of glycerol to PGL in the presence of alkaline catalysts involves “in situ” formed epoxy compounds as reactive intermediates. The formation of epoxy groups from 1,2 glycols catalyzed by bases at higher temperature seems to be a general reaction. The presented mechanism explains the copolymerization of glycerol with other polyols useful for a range of new products.
Author Petrović, Zoran S.
Ionescu, Mihail
Author_xml – sequence: 1
  givenname: Mihail
  surname: Ionescu
  fullname: Ionescu, Mihail
  organization: Pittsburg State University
– sequence: 2
  givenname: Zoran S.
  surname: Petrović
  fullname: Petrović, Zoran S.
  email: zpetrovic@pittstate.edu
  organization: Pittsburg State University
BookMark eNqFkLFOwzAQhi1UJNrCymyJOcV2bCcZISoFVFSQslvGvqip0rjYqVA68Qg8I09CqlYgJm650-n77z_9IzRoXAMIXVIyoYSwa1jV7YQRmpK--AkaUh6nURZTNjjOicySMzQKYdUTmZRkiF4WDW6XgJ_ALHVThTV2Jb7VAb4-PnPd6rrbgcWzujPgXY2fXd2twVc73VauwbqxOHebP8tzdFrqOsDFsY9RcTct8vtovpg95DfzyMSC88ja_lUOxHIhSWotWMsTYZOUGqHNa5pIClwLQuKUSSs1SYUQJVBmOCljE4_R1eHsxru3LYRWrdzWN72jYkRQKRjLRE9NDpTxLgQPpdr4aq19pyhR-9TUPjX1k1ovyA6C96qG7h9aTR_nxa_2G4T1c9E
CitedBy_id crossref_primary_10_1016_j_indcrop_2023_117291
crossref_primary_10_3390_catal10101170
crossref_primary_10_1039_D1NJ03508H
crossref_primary_10_1007_s43153_024_00480_w
crossref_primary_10_3390_polym14225028
crossref_primary_10_3390_catal9030231
crossref_primary_10_1016_j_ijbiomac_2023_125855
crossref_primary_10_3390_catal10091021
crossref_primary_10_3390_ma16093551
crossref_primary_10_1021_acssuschemeng_3c07205
crossref_primary_10_1051_e3sconf_202450308003
Cites_doi 10.1016/S1351-4180(03)00931-0
10.1016/S0277-5387(00)86661-9
10.1002/chem.200701757
10.1021/ie0513090
10.1016/S0021-9673(01)92732-3
10.1002/1099-0690(200103)2001:5<875::AID-EJOC875>3.0.CO;2-R
10.1016/j.theochem.2009.11.030
10.1021/jp060597q
10.1021/ma991237m
10.1021/cr068216s
10.1016/S0958-2118(98)90297-X
10.1002/macp.201100064
10.1002/lipi.19840860902
10.1021/jp201078e
10.1007/BF02490694
10.1002/ejlt.201000386
10.1002/lipi.19860880309
10.1177/0021955X09355887
ContentType Journal Article
Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7T7
8FD
C1K
FR3
P64
DOI 10.1002/ejlt.201800004
DatabaseName CrossRef
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1438-9312
EndPage n/a
ExternalDocumentID 10_1002_ejlt_201800004
EJLT201800004
Genre article
GrantInformation_xml – fundername: United Soybean Board, USA
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
7T7
8FD
C1K
FR3
P64
ID FETCH-LOGICAL-c3544-dd2014e0d45608ddedd475d781c5acb8761e4a5003826d6a08555fe12c40f3c3
IEDL.DBID DR2
ISSN 1438-7697
IngestDate Thu Oct 10 19:13:05 EDT 2024
Fri Aug 23 01:24:55 EDT 2024
Sat Aug 24 01:11:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3544-dd2014e0d45608ddedd475d781c5acb8761e4a5003826d6a08555fe12c40f3c3
PQID 2051652295
PQPubID 2030175
PageCount 9
ParticipantIDs proquest_journals_2051652295
crossref_primary_10_1002_ejlt_201800004
wiley_primary_10_1002_ejlt_201800004_EJLT201800004
PublicationCentury 2000
PublicationDate June 2018
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of lipid science and technology
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2011; 212
2011; 113
1984; 86
2010; 942
1966; 7
1998
1976
2009
2008; 14
1956; 878
2008; 108
2000; 51
2006; 110
2003
1991
1966; E9
2010; 46
2006; 45
1963; 7
1984; 298
1986; 88
2000; 33
1985
2001; 2001
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
Hauschild R. (e_1_2_7_19_1) 1956; 878
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – year: 1985
– year: 2009
– volume: 2001
  start-page: 875
  year: 2001
  publication-title: Eur. J. Org. Chem
– year: 2003
– volume: E9
  start-page: 91
  year: 1966
  end-page: 101
– volume: 88
  start-page: 101
  year: 1986
  publication-title: Fette Seifen Anstrichmitel
– volume: 113
  start-page: 100
  year: 2011
  publication-title: Eur. J. Lipid Sci. Technol
– volume: 7
  start-page: 179
  year: 1963
  end-page: 189
– volume: 110
  start-page: 6145
  year: 2006
  publication-title: J. Phys. Chem. A
– volume: 108
  start-page: 5253
  year: 2008
  publication-title: Chem. Rev
– volume: 942
  start-page: 38
  year: 2010
  publication-title: J. Mol. Struct
– year: 1998
– volume: 86
  start-page: 339
  year: 1984
  publication-title: Seifen Anstrichmittel
– volume: 45
  start-page: 3447
  year: 2006
  publication-title: Ind. Eng. Chem. Res
– volume: 51
  start-page: 44
  year: 2000
  end-page: 52
– volume: 878
  start-page: 878
  year: 1956
  publication-title: Bull. Soc. Chim. Fr
– volume: 115
  start-page: 3592
  year: 2011
  publication-title: J. Phys. Chem. A
– volume: 33
  start-page: 1330
  year: 2000
  publication-title: Macromolecules
– volume: 46
  start-page: 223
  year: 2010
  publication-title: J. Cell. Plastics
– volume: 298
  start-page: 360
  year: 1984
  publication-title: J. Chromatogr
– year: 1991
– volume: 212
  start-page: 1284
  year: 2011
  publication-title: Macromol. Chem. Phys
– year: 1976
– volume: 14
  start-page: 2016
  year: 2008
  publication-title: Chem. Eur. J
– volume: 7
  start-page: 191
  year: 1966
  end-page: 210
– ident: e_1_2_7_20_1
– ident: e_1_2_7_3_1
  doi: 10.1016/S1351-4180(03)00931-0
– ident: e_1_2_7_7_1
  doi: 10.1016/S0277-5387(00)86661-9
– ident: e_1_2_7_12_1
  doi: 10.1002/chem.200701757
– ident: e_1_2_7_21_1
  doi: 10.1021/ie0513090
– ident: e_1_2_7_23_1
  doi: 10.1016/S0021-9673(01)92732-3
– ident: e_1_2_7_24_1
  doi: 10.1002/1099-0690(200103)2001:5<875::AID-EJOC875>3.0.CO;2-R
– ident: e_1_2_7_17_1
– ident: e_1_2_7_4_1
– ident: e_1_2_7_15_1
  doi: 10.1016/j.theochem.2009.11.030
– ident: e_1_2_7_14_1
  doi: 10.1021/jp060597q
– ident: e_1_2_7_8_1
– ident: e_1_2_7_10_1
– ident: e_1_2_7_27_1
  doi: 10.1021/ma991237m
– ident: e_1_2_7_2_1
  doi: 10.1021/cr068216s
– ident: e_1_2_7_5_1
  doi: 10.1016/S0958-2118(98)90297-X
– ident: e_1_2_7_11_1
  doi: 10.1002/macp.201100064
– ident: e_1_2_7_26_1
  doi: 10.1002/lipi.19840860902
– ident: e_1_2_7_16_1
  doi: 10.1021/jp201078e
– ident: e_1_2_7_22_1
  doi: 10.1007/BF02490694
– volume: 878
  start-page: 878
  year: 1956
  ident: e_1_2_7_19_1
  publication-title: Bull. Soc. Chim. Fr
  contributor:
    fullname: Hauschild R.
– ident: e_1_2_7_13_1
  doi: 10.1002/ejlt.201000386
– ident: e_1_2_7_25_1
  doi: 10.1002/lipi.19860880309
– ident: e_1_2_7_18_1
– ident: e_1_2_7_6_1
– ident: e_1_2_7_9_1
  doi: 10.1177/0021955X09355887
SSID ssj0009660
Score 2.2983744
Snippet Based on the herein experimental results and literature data, this article proposes a general mechanism of self‐condensation of glycerol to polyglycerol in the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Additives
Catalysis
Catalysts
Condensates
Condensation
Copolymerization
Data processing
Epoxy compounds
Ethers
Foams
Glycerol
glycidol
Glycols
Hydroxyl groups
Intermediates
Plastic foam
Polyethers
polyglycerol
Polyglycerols
Polymerization
Polyols
Ring opening polymerization
Substitution reactions
Triethanolamine
Title On the Mechanism of Base‐Catalyzed Glycerol Polymerization and Copolymerization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejlt.201800004
https://www.proquest.com/docview/2051652295
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLYQEwzciEJBHpCY0iY-4nSE0lJV3CpSt8hXJCAkqMfQTvwEfiO_BDtp2pQFCbYccuTjHZ-d974HwCkSgeUdZw5SiNkNCnJEhM3GVdEGJVxJJLMo31u_80S6fdovZfHn_BDzAzerGZm9tgrOxbC-IA3VL7GNhfSCDOYaI-xhZmO6Lh8X_FGWejJLLzJazfwGK1gbXVRfbr7slRZQswxYM4_T3gS86GseaPJaG49ETU5_0Dj-ZzBbYGMGR-F5Lj_bYEUnO2C9RFK4Cx7uEmhQIrzRNkn4efgG0wheGOf39fHZtIc_k6lW8CqeSD1IY3ifxhP7FyhP74Q8UbBpCzGUHu6BXrvVa3acWSEGR2JKiKOU6RrRrjJoyw2MQVSKMKpY4EnKpTAG1dPEllbAZrOifG5j32ikPSSJG2GJ98Fqkib6AEAcCMZ9bqRDICI0N_gDC-TKSDAhGAsq4KxYh_A9p9sIc2JlFNo5CudzVAHVYpnCmdoNzVvq-dRWKK8AlM33L18JW93r3vzu8C-NjsCavc7Dx6pgdTQY62MDVEbiJBPGb77D4EE
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGICBN6JQwAMSUyBx7DiMUFoKtLxUJLYofkQCSoqgDGXiJ_Ab-SX4kqYtLEgwxpEjx_bdfT7ffQewTWWIvOPCoZoKPKBQRya-Pbhqvs9ZrBVVWZTveVC_Yae3vIgmxFyYnB9i4HBDycj0NQo4OqT3hqyh5r6NwZBemOHccZi0Mu9j9Yaj6yGDFJJPZglGVq5FsC8K3kaX7n3v_90uDcHmKGTNbE5tDmQx2jzU5GH3tSt31dsPIsd__c48zPYRKTnIt9ACjJl0EWZGeAqX4OoiJRYokqbBPOG7l0fSScihtX-f7x8V9P_03owmx-2eMs-dNrnstHt4EZRneJI41aSCtRhGGpehVau2KnWnX4vBUT5nzNHaDo0ZV1vA5YZWJ2rNBNci9BSPlbQ61TMMqyv49ryigxjD33hiPKqYm_jKX4GJtJOaVSB-KEUcxHaDSMqkiS0E8SV1VSKFlEKEJdgpFiJ6yhk3opxbmUY4R9FgjkpQLtYp6kvei33LvYBjkfIS0GzCf_lKVD1ttAZPa3_ptAVT9VazETVOzs_WYRrb82iyMkx0n1_NhsUtXbmZ7cwvyB_kWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BGFAj4gcUqbOHacHqG0bKUUVCRuUbxEAkpadTm0Jz6Bb-RLsJOuXJDgGEeOnPHM-NmeeQNwgrlveMeZhSVmZoOCLR65euMqaZGSUAoskijfmnf1RG6e6fNMFn_KDzE5cDOWkfhrY-BtGRWmpKHqtWliIR0_gbmLsEQ8DX8NLHqcEkgZ7skkv0ibNfOKbEzbaOPCfP_5ZWmKNWcRa7LkVNYhHA82jTR5y_d7PC-GP3gc__M3G7A2wqPoLFWgTVhQ8RaszrAUbsPDfYw0TER3ymQJv3TfUStC53r1-_r4LJnTn8FQSXTZHAjVaTVRvdUcmGugNL8ThbFEJVOJYaZxBxqVcqN0ZY0qMVjCpYRYUuqhEWVLDbdsX3tEKQmjkvmOoKHg2qM6ipjaCq7erUgvNMFvNFIOFsSOXOHuQiZuxWoPkOtzFnqhVg-OCVehBiAux7aIOOOcMT8Lp-N5CNop30aQMivjwMgomMgoC7nxNAUju-vqt9TxqClRngWcyPuXrwTlm2pj8rT_l07HsFy_qATV69rtAayY5jSULAeZXqevDjVo6fGjRC-_ATBx4wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Mechanism+of+Base%E2%80%90Catalyzed+Glycerol+Polymerization+and+Copolymerization&rft.jtitle=European+journal+of+lipid+science+and+technology&rft.au=Ionescu%2C+Mihail&rft.au=Petrovi%C4%87%2C+Zoran+S&rft.date=2018-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1438-7697&rft.eissn=1438-9312&rft.volume=120&rft.issue=6&rft_id=info:doi/10.1002%2Fejlt.201800004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-7697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-7697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-7697&client=summon