Synthesis of Nitrogen‐Doped Microporous/Mesoporous Carbon with Enhanced Pseudocapacitive Behavior for High‐Performance Symmetrical Supercapacitors

Hierarchical porous carbons are widely used as electrode materials for supercapacitors; however, promotion of the specific capacitance and energy density remains a challenge. Here, we design a N‐doped hierarchical microporous/mesoporous carbon (NMC) fabricated through the one‐step heat treatment of...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 7; no. 12; pp. 2592 - 2598
Main Authors Guo, Jia‐Kang, Liu, Jian, Kong, Ling‐Bin
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 17.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hierarchical porous carbons are widely used as electrode materials for supercapacitors; however, promotion of the specific capacitance and energy density remains a challenge. Here, we design a N‐doped hierarchical microporous/mesoporous carbon (NMC) fabricated through the one‐step heat treatment of interpenetrating polymer networks. The pores are obtained by phase separation of the two network polymers with physical penetration and subsequent pyrolysis of the sacrificial polymers to shape the rich micropores/mesopores on the pore wall of a honeycomb‐like carbon skeleton formed from carbon precursors. In particular, the optimized NMC possesses an ultrahigh specific surface area of 1969.0 m2 g−1 and a pore volume of 1.092 cm3 g−1, as well as homogeneous distribution of elemental nitrogen. The NMC also exhibits a distinguished specific capacitance of 261.6 F g−1 at 0.5 A g−1 and an excellent cycling stability of 100 % after 10 000 cycles in 6 M KOH in a three‐electrode system. Impressively, in situ heteroatom doping of NMC effectively enhances the specific capacitance, and the proportion of pseudocapacitive performance can be as high as 25.4 % of the total capacitance. Symmetrical supercapacitors assembled with two protruding electrodes deliver a high energy density of 23.9 W h kg−1 at 225 W kg−1 and an outstanding cycling stability of 93 % after 10 000 cycles in 1 M Na2SO4. All of these features indicate that N‐doped microporous/mesoporous carbon is a promising electrode material for supercapacitors. Plenty of pore‐tential: Nitrogen‐doped hierarchical microporous/mesoporous carbon materials are successfully fabricated by high‐temperature pyrolysis of urea−formaldehyde‐based polymers. The as‐obtained carbon materials with tunable micropores/mesopores exhibit a high specific surface area of 1969 m2 g−1 and an outstanding specific capacitance of 261.6 F g−1 at 0.5 A g−1. The contribution of pseudocapacitance is up to 25.4 % and effectively improves their application in supercapacitors with 23.9 W h kg−1 at 225 W kg−1 in 1 M Na2SO4.
AbstractList Hierarchical porous carbons are widely used as electrode materials for supercapacitors; however, promotion of the specific capacitance and energy density remains a challenge. Here, we design a N‐doped hierarchical microporous/mesoporous carbon (NMC) fabricated through the one‐step heat treatment of interpenetrating polymer networks. The pores are obtained by phase separation of the two network polymers with physical penetration and subsequent pyrolysis of the sacrificial polymers to shape the rich micropores/mesopores on the pore wall of a honeycomb‐like carbon skeleton formed from carbon precursors. In particular, the optimized NMC possesses an ultrahigh specific surface area of 1969.0 m2 g−1 and a pore volume of 1.092 cm3 g−1, as well as homogeneous distribution of elemental nitrogen. The NMC also exhibits a distinguished specific capacitance of 261.6 F g−1 at 0.5 A g−1 and an excellent cycling stability of 100 % after 10 000 cycles in 6 M KOH in a three‐electrode system. Impressively, in situ heteroatom doping of NMC effectively enhances the specific capacitance, and the proportion of pseudocapacitive performance can be as high as 25.4 % of the total capacitance. Symmetrical supercapacitors assembled with two protruding electrodes deliver a high energy density of 23.9 W h kg−1 at 225 W kg−1 and an outstanding cycling stability of 93 % after 10 000 cycles in 1 M Na2SO4. All of these features indicate that N‐doped microporous/mesoporous carbon is a promising electrode material for supercapacitors.
Abstract Hierarchical porous carbons are widely used as electrode materials for supercapacitors; however, promotion of the specific capacitance and energy density remains a challenge. Here, we design a N‐doped hierarchical microporous/mesoporous carbon (NMC) fabricated through the one‐step heat treatment of interpenetrating polymer networks. The pores are obtained by phase separation of the two network polymers with physical penetration and subsequent pyrolysis of the sacrificial polymers to shape the rich micropores/mesopores on the pore wall of a honeycomb‐like carbon skeleton formed from carbon precursors. In particular, the optimized NMC possesses an ultrahigh specific surface area of 1969.0 m 2  g −1 and a pore volume of 1.092 cm 3  g −1 , as well as homogeneous distribution of elemental nitrogen. The NMC also exhibits a distinguished specific capacitance of 261.6 F g −1 at 0.5 A g −1 and an excellent cycling stability of 100 % after 10 000 cycles in 6 M KOH in a three‐electrode system. Impressively, in situ heteroatom doping of NMC effectively enhances the specific capacitance, and the proportion of pseudocapacitive performance can be as high as 25.4 % of the total capacitance. Symmetrical supercapacitors assembled with two protruding electrodes deliver a high energy density of 23.9 W h kg −1 at 225 W kg −1 and an outstanding cycling stability of 93 % after 10 000 cycles in 1 M Na 2 SO 4 . All of these features indicate that N‐doped microporous/mesoporous carbon is a promising electrode material for supercapacitors.
Hierarchical porous carbons are widely used as electrode materials for supercapacitors; however, promotion of the specific capacitance and energy density remains a challenge. Here, we design a N‐doped hierarchical microporous/mesoporous carbon (NMC) fabricated through the one‐step heat treatment of interpenetrating polymer networks. The pores are obtained by phase separation of the two network polymers with physical penetration and subsequent pyrolysis of the sacrificial polymers to shape the rich micropores/mesopores on the pore wall of a honeycomb‐like carbon skeleton formed from carbon precursors. In particular, the optimized NMC possesses an ultrahigh specific surface area of 1969.0 m2 g−1 and a pore volume of 1.092 cm3 g−1, as well as homogeneous distribution of elemental nitrogen. The NMC also exhibits a distinguished specific capacitance of 261.6 F g−1 at 0.5 A g−1 and an excellent cycling stability of 100 % after 10 000 cycles in 6 M KOH in a three‐electrode system. Impressively, in situ heteroatom doping of NMC effectively enhances the specific capacitance, and the proportion of pseudocapacitive performance can be as high as 25.4 % of the total capacitance. Symmetrical supercapacitors assembled with two protruding electrodes deliver a high energy density of 23.9 W h kg−1 at 225 W kg−1 and an outstanding cycling stability of 93 % after 10 000 cycles in 1 M Na2SO4. All of these features indicate that N‐doped microporous/mesoporous carbon is a promising electrode material for supercapacitors. Plenty of pore‐tential: Nitrogen‐doped hierarchical microporous/mesoporous carbon materials are successfully fabricated by high‐temperature pyrolysis of urea−formaldehyde‐based polymers. The as‐obtained carbon materials with tunable micropores/mesopores exhibit a high specific surface area of 1969 m2 g−1 and an outstanding specific capacitance of 261.6 F g−1 at 0.5 A g−1. The contribution of pseudocapacitance is up to 25.4 % and effectively improves their application in supercapacitors with 23.9 W h kg−1 at 225 W kg−1 in 1 M Na2SO4.
Author Liu, Jian
Guo, Jia‐Kang
Kong, Ling‐Bin
Author_xml – sequence: 1
  givenname: Jia‐Kang
  surname: Guo
  fullname: Guo, Jia‐Kang
  organization: Lanzhou University of Technology
– sequence: 2
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
  organization: Lanzhou University of Technology
– sequence: 3
  givenname: Ling‐Bin
  orcidid: 0000-0002-2271-4202
  surname: Kong
  fullname: Kong, Ling‐Bin
  email: konglb@lut.edu.cn
  organization: Lanzhou University of Technology
BookMark eNqFkLtOwzAUhi0EEuWyMltibms7cRKPEMpFaqFSYY4c54S4auNgJ6268QhMPCBPgqtWwMZg-1j6vnN0_hN0WJsaELqgZEAJYUMFCzVghBFCwjg4QD1GRdQnjEaHf-pjdO7c3DOUEh4kUQ99zjZ1W4HTDpsSP-rWmleov94_bkwDBZ5oZU1jrOnccAJuX-JU2tzUeK3bCo_qStbKs1MHXWGUbKTSrV4BvoZKrrSxuPTnXr9Wvu0UrP8ttwaebZZLaK1WcoFnXQN27xrrztBRKRcOzvfvKXq5HT2n9_3x091DejXuq4CHQT_hkIhAKsn8OoTkRaICybgSMReCxzmnHCSlNMnDQtC8iISCxN88jCEvvXqKLnd9G2veOnBtNjedrf3IjIU04SwWEfHUYEf5MJyzUGaN1UtpNxkl2Tb-bBt_9hO_F8ROWOsFbP6hs3Q0Tn_db0grkAw
CitedBy_id crossref_primary_10_1016_j_electacta_2022_141219
crossref_primary_10_1016_j_jallcom_2021_161176
crossref_primary_10_1016_j_indcrop_2024_118060
crossref_primary_10_1039_D1MA00911G
crossref_primary_10_1016_j_materresbull_2020_111198
crossref_primary_10_1021_acsaelm_4c00191
crossref_primary_10_1002_cssc_202001838
crossref_primary_10_1039_D2RA06817F
crossref_primary_10_1016_j_jpowsour_2024_234483
crossref_primary_10_1002_celc_202101041
Cites_doi 10.1002/aenm.201803665
10.1016/j.jallcom.2019.02.025
10.1021/acs.iecr.9b00222
10.1002/adma.201104942
10.1016/j.jpowsour.2019.01.092
10.1002/adma.201304137
10.1021/ja7106178
10.1002/adma.200903765
10.1002/cssc.201901137
10.1016/j.electacta.2015.05.088
10.1002/aenm.201800892
10.1039/C8TA10158B
10.1016/j.jpowsour.2019.227443
10.1039/C9TA00781D
10.1016/j.cplett.2019.137028
10.1002/adfm.201902564
10.1002/celc.201801044
10.1039/C8TA10406A
10.1016/j.carbon.2018.02.076
10.1039/C9TA00890J
10.1002/celc.201801642
10.1016/j.carbon.2019.04.110
10.1016/j.carbon.2019.04.070
10.1016/j.cej.2019.122061
10.1016/j.carbon.2017.11.050
10.1016/j.jpowsour.2018.10.033
10.1016/j.carbon.2018.08.018
10.1002/celc.201801813
10.1007/s11581-019-02964-z
10.1039/C7TA05646J
10.1002/aenm.201702787
10.1021/nn3056077
10.1021/nn507079x
10.1126/science.1132195
10.1002/vjch.201800070
10.1039/C7RA01151B
10.1002/celc.201900020
10.1002/adma.201807876
10.1016/S0378-7753(00)00485-7
10.1002/admi.201801900
10.1126/science.1158736
10.1002/app.39008
10.1016/j.jpowsour.2012.11.026
10.1016/j.jallcom.2019.03.374
10.1093/nsr/nwx009
10.1002/ente.201900105
10.1126/science.aab3798
10.1002/adfm.201808994
10.1016/j.apsusc.2018.12.095
10.1021/acsami.9b19977
10.1002/aenm.201900618
10.1016/j.nanoen.2017.04.040
10.1016/j.carbon.2018.01.032
10.1021/ja304352n
10.1016/j.carbon.2019.07.020
10.1002/adfm.201904785
10.1002/adma.201604164
10.1002/celc.201801185
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/celc.202000473
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage 2598
ExternalDocumentID 10_1002_celc_202000473
CELC202000473
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51971104; 51762031
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c3543-85e893aca205300bd8c3a25c9759957b515ea1118b4d91bd69ce8d69547ebf893
ISSN 2196-0216
IngestDate Sat Jul 27 16:31:01 EDT 2024
Fri Aug 23 01:52:29 EDT 2024
Sat Aug 24 01:06:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3543-85e893aca205300bd8c3a25c9759957b515ea1118b4d91bd69ce8d69547ebf893
ORCID 0000-0002-2271-4202
PQID 2418527960
PQPubID 2034587
PageCount 7
ParticipantIDs proquest_journals_2418527960
crossref_primary_10_1002_celc_202000473
wiley_primary_10_1002_celc_202000473_CELC202000473
PublicationCentury 2000
PublicationDate June 17, 2020
PublicationDateYYYYMMDD 2020-06-17
PublicationDate_xml – month: 06
  year: 2020
  text: June 17, 2020
  day: 17
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 5
2019; 7
2017; 7
2019; 9
2019; 6
2018; 140
2017; 4
2019; 31
2018; 127
2018; 405
2019; 12
2013; 129
2013; 227
2019; 58
2014; 26
2019; 149
2019; 787
2020; 448
2000; 91
2020; 12
2017; 29
2008; 321
2013; 7
2006; 313
2015; 9
2015; 173
2015; 350
2010; 22
2018; 130
2018; 8
2018; 132
2018; 5
2012; 134
2020; 30
2017; 36
2019; 25
2019; 29
2019; 416
2018; 56
2020; 739
2012; 24
2008; 130
2019; 375
2019; 475
2019; 791
2019; 153
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 91
  start-page: 37
  year: 2000
  end-page: 50
  publication-title: J. Power Sources
– volume: 321
  start-page: 651
  year: 2008
  publication-title: Science
– volume: 313
  start-page: 1760
  year: 2006
  end-page: 1763
  publication-title: Science
– volume: 7
  start-page: 14516
  year: 2017
  end-page: 14527
  publication-title: RSC Adv.
– volume: 132
  start-page: 503
  year: 2018
  end-page: 511
  publication-title: Carbon
– volume: 25
  start-page: 4305
  year: 2019
  end-page: 4314
  publication-title: Ionics
– volume: 173
  start-page: 680
  year: 2015
  end-page: 686
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 1696
  year: 2019
  end-page: 1703
  publication-title: ChemElectroChem
– volume: 375
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 130
  start-page: 2730
  year: 2008
  end-page: 2731
  publication-title: J. Am. Chem. Soc.
– volume: 149
  start-page: 646
  year: 2019
  end-page: 654
  publication-title: Carbon
– volume: 6
  start-page: 535
  year: 2019
  end-page: 542
  publication-title: ChemElectroChem
– volume: 127
  start-page: 557
  year: 2018
  end-page: 567
  publication-title: Carbon
– volume: 6
  start-page: 2648
  year: 2019
  end-page: 2658
  publication-title: ChemElectroChem
– volume: 405
  start-page: 132
  year: 2018
  end-page: 141
  publication-title: J. Power Sources
– volume: 130
  start-page: 325
  year: 2018
  end-page: 332
  publication-title: Carbon
– volume: 791
  start-page: 1005
  year: 2019
  end-page: 1014
  publication-title: J. Alloys Compd.
– volume: 149
  start-page: 452
  year: 2019
  end-page: 461
  publication-title: Carbon
– volume: 7
  start-page: 1177
  year: 2019
  end-page: 1186
  publication-title: J. Mater. Chem. A
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 24
  start-page: 4197
  year: 2012
  end-page: 4202
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 448
  year: 2020
  publication-title: J. Power Sources
– volume: 58
  start-page: 4487
  year: 2019
  end-page: 4494
  publication-title: Ind. Eng. Chem. Res.
– volume: 350
  start-page: 1508
  year: 2015
  end-page: 1513
  publication-title: Science
– volume: 9
  start-page: 2018
  year: 2015
  end-page: 2027
  publication-title: ACS Nano
– volume: 7
  start-page: 13154
  year: 2019
  end-page: 13163
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1768
  year: 2019
  end-page: 1775
  publication-title: ChemElectroChem
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 475
  start-page: 56
  year: 2019
  end-page: 66
  publication-title: Appl. Surf. Sci.
– volume: 787
  start-page: 1
  year: 2019
  end-page: 8
  publication-title: J. Alloys Compd.
– volume: 153
  start-page: 225
  year: 2019
  end-page: 233
  publication-title: Carbon
– volume: 129
  start-page: 2848
  year: 2013
  end-page: 2856
  publication-title: J. Appl. Polym. Sci.
– volume: 36
  start-page: 268
  year: 2017
  end-page: 285
  publication-title: Nano Energy
– volume: 134
  start-page: 14846
  year: 2012
  end-page: 14857
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 68
  year: 2018
  end-page: 76
  publication-title: Carbon
– volume: 56
  start-page: 684
  year: 2018
  end-page: 688
  publication-title: Vietnam J. Chem.
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 4
  start-page: 453
  year: 2017
  end-page: 489
  publication-title: Natl. Sci. Rev.
– volume: 5
  start-page: 17705
  year: 2017
  end-page: 17733
  publication-title: J. Mater. Chem. A
– volume: 227
  start-page: 300
  year: 2013
  end-page: 308
  publication-title: J. Power Sources
– volume: 7
  start-page: 1200
  year: 2013
  end-page: 1214
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 22
  start-page: 853
  year: 2010
  end-page: 857
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 3541
  year: 2019
  end-page: 3549
  publication-title: ChemSusChem
– volume: 12
  start-page: 4777
  year: 2020
  end-page: 4786
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 3460
  year: 2018
  end-page: 3467
  publication-title: ChemElectroChem
– volume: 739
  year: 2020
  publication-title: Chem. Phys. Lett.
– volume: 7
  start-page: 9163
  year: 2019
  end-page: 9172
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 816
  year: 2019
  end-page: 826
  publication-title: J. Mater. Chem. A
– volume: 416
  start-page: 79
  year: 2019
  end-page: 88
  publication-title: J. Power Sources
– volume: 26
  start-page: 2219
  year: 2014
  end-page: 2251
  publication-title: Adv. Mater.
– volume: 7
  year: 2019
  publication-title: Energy Technol.
– ident: e_1_2_6_38_1
  doi: 10.1002/aenm.201803665
– ident: e_1_2_6_54_1
  doi: 10.1016/j.jallcom.2019.02.025
– ident: e_1_2_6_57_1
  doi: 10.1021/acs.iecr.9b00222
– ident: e_1_2_6_17_1
  doi: 10.1002/adma.201104942
– ident: e_1_2_6_50_1
  doi: 10.1016/j.jpowsour.2019.01.092
– ident: e_1_2_6_1_1
  doi: 10.1002/adma.201304137
– ident: e_1_2_6_9_1
  doi: 10.1021/ja7106178
– ident: e_1_2_6_34_1
  doi: 10.1002/adma.200903765
– ident: e_1_2_6_58_1
  doi: 10.1002/cssc.201901137
– ident: e_1_2_6_28_1
  doi: 10.1016/j.electacta.2015.05.088
– ident: e_1_2_6_11_1
  doi: 10.1002/aenm.201800892
– ident: e_1_2_6_53_1
  doi: 10.1039/C8TA10158B
– ident: e_1_2_6_25_1
  doi: 10.1016/j.jpowsour.2019.227443
– ident: e_1_2_6_31_1
  doi: 10.1039/C9TA00781D
– ident: e_1_2_6_12_1
  doi: 10.1016/j.cplett.2019.137028
– ident: e_1_2_6_6_1
  doi: 10.1002/adfm.201902564
– ident: e_1_2_6_10_1
  doi: 10.1002/celc.201801044
– ident: e_1_2_6_52_1
  doi: 10.1039/C8TA10406A
– ident: e_1_2_6_20_1
  doi: 10.1016/j.carbon.2018.02.076
– ident: e_1_2_6_39_1
  doi: 10.1039/C9TA00890J
– ident: e_1_2_6_22_1
  doi: 10.1002/celc.201801642
– ident: e_1_2_6_24_1
  doi: 10.1016/j.carbon.2019.04.110
– ident: e_1_2_6_44_1
  doi: 10.1016/j.carbon.2019.04.070
– ident: e_1_2_6_43_1
  doi: 10.1016/j.cej.2019.122061
– ident: e_1_2_6_37_1
  doi: 10.1016/j.carbon.2017.11.050
– ident: e_1_2_6_30_1
  doi: 10.1016/j.jpowsour.2018.10.033
– ident: e_1_2_6_40_1
  doi: 10.1016/j.carbon.2018.08.018
– ident: e_1_2_6_41_1
  doi: 10.1002/celc.201801813
– ident: e_1_2_6_56_1
  doi: 10.1007/s11581-019-02964-z
– ident: e_1_2_6_13_1
  doi: 10.1039/C7TA05646J
– ident: e_1_2_6_46_1
  doi: 10.1002/aenm.201702787
– ident: e_1_2_6_48_1
  doi: 10.1021/nn3056077
– ident: e_1_2_6_14_1
  doi: 10.1021/nn507079x
– ident: e_1_2_6_8_1
  doi: 10.1126/science.1132195
– ident: e_1_2_6_7_1
  doi: 10.1002/vjch.201800070
– ident: e_1_2_6_15_1
  doi: 10.1039/C7RA01151B
– ident: e_1_2_6_16_1
  doi: 10.1002/celc.201900020
– ident: e_1_2_6_27_1
  doi: 10.1002/adma.201807876
– ident: e_1_2_6_4_1
  doi: 10.1016/S0378-7753(00)00485-7
– ident: e_1_2_6_32_1
  doi: 10.1002/admi.201801900
– ident: e_1_2_6_5_1
  doi: 10.1126/science.1158736
– ident: e_1_2_6_29_1
  doi: 10.1002/app.39008
– ident: e_1_2_6_49_1
  doi: 10.1016/j.jpowsour.2012.11.026
– ident: e_1_2_6_33_1
  doi: 10.1016/j.jallcom.2019.03.374
– ident: e_1_2_6_21_1
  doi: 10.1093/nsr/nwx009
– ident: e_1_2_6_55_1
  doi: 10.1002/ente.201900105
– ident: e_1_2_6_51_1
  doi: 10.1126/science.aab3798
– ident: e_1_2_6_2_1
  doi: 10.1002/adfm.201808994
– ident: e_1_2_6_23_1
  doi: 10.1016/j.apsusc.2018.12.095
– ident: e_1_2_6_19_1
  doi: 10.1021/acsami.9b19977
– ident: e_1_2_6_3_1
  doi: 10.1002/aenm.201900618
– ident: e_1_2_6_18_1
  doi: 10.1016/j.nanoen.2017.04.040
– ident: e_1_2_6_45_1
  doi: 10.1016/j.carbon.2018.01.032
– ident: e_1_2_6_35_1
  doi: 10.1021/ja304352n
– ident: e_1_2_6_42_1
  doi: 10.1016/j.carbon.2019.07.020
– ident: e_1_2_6_26_1
  doi: 10.1002/adfm.201904785
– ident: e_1_2_6_47_1
  doi: 10.1002/adma.201604164
– ident: e_1_2_6_36_1
  doi: 10.1002/celc.201801185
SSID ssj0001105386
Score 2.280565
Snippet Hierarchical porous carbons are widely used as electrode materials for supercapacitors; however, promotion of the specific capacitance and energy density...
Abstract Hierarchical porous carbons are widely used as electrode materials for supercapacitors; however, promotion of the specific capacitance and energy...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 2592
SubjectTerms Capacitance
Carbon
Cycles
Electrode materials
Electrodes
Flux density
Heat treatment
Interpenetrating networks
micropores/mesopores
N-doping
Nitrogen
Phase separation
Polymers
pseudocapacitance
Pyrolysis
Sodium sulfate
Stability
Supercapacitors
Title Synthesis of Nitrogen‐Doped Microporous/Mesoporous Carbon with Enhanced Pseudocapacitive Behavior for High‐Performance Symmetrical Supercapacitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202000473
https://www.proquest.com/docview/2418527960/abstract/
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfKdoAL4q8obMgHJA4oLHOc2DmOrtM01mlSVzRxiWLH0SqtSdU2h3HiI3Di0_Bp-CQ8x46TVpUYXKzYrZ027xf7Ofm930PonQBXSMQy9zIpqEdjlXoiFsQTQZYzxZjidS6C0UV0OqFn1-F1r_erw1qqVuKj_LY1ruR_rAptYFcdJfsPlnWDQgMcg32hBAtDeS8bj-8K8N-spMjFdLUo4auOvnBczsGbHGnGHTjZsMOHE43U0lY01UOUJoj7w7C4MUyAy6WqMljeYCdtSEVWP3FR0xE1KcQNf9kJORjfzWY6NZc2-Liaq4UdobTvihophBs1G5q8O_rQcX8q8_pnmrrBP6d2RdVcoWllP24ZA5ZIfK7DtZs-n6yIuH2GQXSqG8-EbJqpDqZNTYU-tKLYW9rsXM26kCTdiTc0KfXsIg5VvnWBMIKzUt1q-UodpkRNJpV1Je6NFdLxFo3GM0l0_8T1f4B2CYtD2PrvHn2ZfJ20z_jAeQ3qZKPuzzS6oT45WP8R635Ru9npbplqn-fqCXpsNyv4yCDvKeqp4hl6OGhyBD5HPx0CcZnjBoG_v_-osYc72DtokYcN8rBGHm6QhzeRhxvkYUAZ1siDYTuYwx3M4Q3MvUCTk-HV4NSzmT48GYQ08HiowG9OZUrggvm-yLgMUhLKmGk9PCbA6VYprMpc0Cw-FFkUS8WhDClTIoeuL9FOURbqFcKCExkHNCIpJZQxwbkIlGQ-zSMdgM_76H1znZO5EXRJtpu1j_YaMyT2pl8mRIs9gbUjv49IbZq_jJIMhucDV3t977O_QY_aO2UP7awWldoH_3cl3lqY_QFH-bCw
link.rule.ids 315,786,790,27957,27958,50849,50958
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTttAEB2VcIBLBaWI0ED3UImTlWS99q6PyCRK2yRCCqkqLpZ3vRZIYEd2cuDGJ3DqB_ZLmHHspJyQerFsS7uHnZ2dt6M3bwC-aYRCOjCpkxgtHBHY2NGB5o52k1RaKa2qehFMpv5oLn789ho2IdXCrPUhNgk38ozqvCYHp4R0d6saauwDaRBSrYmQ7g7sYuzzVAt2L3_Nb-fbRAsiCLfq-IjOSYTbvt-IN_Z49-0kb4PTFnH-i1urwDM8gI81YmSXaxMfwgebfYK9sGnUdgR_Zk8ZwrjyvmR5yqb3yyLHXfH3-eUqX9iETYhyhygbr_jdiS3rVxbGhc4zRnlYNsjuKiIAuy7tKsHohhfpilPEavnEgiG2ZcQJwWmvt7UGbPb0-Eg9udDSbLZa2KIemxflZ5gPBzfhyKnbLTjG9YTrKM8ieIlNzHHBej2dKOPG3DOBJFEyqRH52BiPRqVFEvR14gfGKnx6Qlqd4tBjaGV5Zk-AacVN4Aqfx4ILKbVS2rVG9kTqUxW0asNFs87RYq2qEa31k3lEFok2FmlDpzFDVHtXGXFS3OESL19t4JVp3pklCgfjcPN1-j-DvsLe6GYyjsbfpz-_wD79J8ZYX3agtSxW9gyxyVKf17vvFXLX4Eg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4UEvVi_BlR1B5MPC1A163dkQwIKhASxBAvy9p1kUQ2ssGBm3-CJ_9A_xJfx_jhycTLsi1pD_362u-9vPc9hO4EUCHhyNAIpKAGdZRvCEcQQ5hByBRjime9CLo9uz2kjyNrtFXFv9SHWAfctGVk57U28GkQVjaioVK9awlCXWpCmbmLikA1KOzrYv1l-DrcxFmAQJhZw0ewTZ1vW7NX2o1VUvk9ye-7aUM4t2lrdu-0jtBhThhxfYnwMdpR0Qnad1d92k7R12ARAYtLxymOQ9wbz5IYNsX3x2cjnqoAd3XGHZBs8PArXZXmr9j1ExFHWIdhcTN6y_IAcD9V8wAuN_Cjs5QinKsnJhioLdYpITBtf1NqgAeLyUS35AKg8WA-VUk-Nk7SMzRsNZ_dtpF3WzCkaVHT4JYC7uJLn8CCVasi4NL0iSUdpjXJmADio3w4GbmggVMTge1IxeFpUaZECEPPUSGKI3WBsOBEOia1iU8JZUxwLkwlWZWGti6C5iV0v1pnb7oU1fCW8snE04h4a0RKqLyCwcuNK_WIFtwhDHyvEiIZNH_M4rnNjrv-uvzPoFu012-0vM5D7-kKHejfOl-sxsqoMEvm6hqYyUzc5JvvByoj33E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Nitrogen%E2%80%90Doped+Microporous%2FMesoporous+Carbon+with+Enhanced+Pseudocapacitive+Behavior+for+High%E2%80%90Performance+Symmetrical+Supercapacitors&rft.jtitle=ChemElectroChem&rft.au=Guo%2C+Jia%E2%80%90Kang&rft.au=Liu%2C+Jian&rft.au=Kong%2C+Ling%E2%80%90Bin&rft.date=2020-06-17&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=7&rft.issue=12&rft.spage=2592&rft.epage=2598&rft_id=info:doi/10.1002%2Fcelc.202000473&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_celc_202000473
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon