3D Hierarchical NiCo Layered Double Hydroxide Nanosheet Arrays Decorated with Noble Metal Nanoparticles for Enhanced Urea Electrocatalysis

The electrocatalysis of urea represents an important potential as an efficient technology for sustainable energy development. This anodic reaction generates hydrogen or electrical power through direct electrooxidation of urea molecules, but is greatly inhibited by its slow kinetics. Therefore, tailo...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 7; no. 1; pp. 163 - 174
Main Authors Khalafallah, Diab, Xiaoyu, Li, Zhi, Mingjia, Hong, Zhanglian
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 02.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrocatalysis of urea represents an important potential as an efficient technology for sustainable energy development. This anodic reaction generates hydrogen or electrical power through direct electrooxidation of urea molecules, but is greatly inhibited by its slow kinetics. Therefore, tailoring highly efficient, earth‐abundant, and durable electrocatalysts for urea oxidation reaction (UOR) is a fundamental for the enhancement of green energy conversion technologies. Herein, we report a scalable synthetic strategy to construct three‐dimensional (3D) nickel‐cobalt layered double hydroxide nanosheet arrays (NiCo−LDH NSAs) with silver (Ag0) or gold (Au0) and palladium (Pd0) intercalants as high performance catalysts for UOR. Experimental results suggest that the interlayer spacing of multi‐anions LDH NSAs can effectively afford synergetic effects of increased electrochemical surface area, better exposure of catalytically active sites, and favorable adsorption energy of urea molecules. As expected, the deposition of noble metal nanoparticles (NPs) could successfully modulate the electronic structure, delivering a rise to significantly improved UOR activity. Specifically, the Au/NiCo−LDH hybrid exhibits a superior electro‐catalytic performance toward urea electrooxidation with a highest current. These findings offer an effective pathway to prepare potential earth‐abundant electrocatalysts for direct urea fuel cells (DUFCs). Golden catalyst: 3D highly porous Au/NiCo−LDH architecture was fabricated and applied as an electrocatalyst for urea catalysis in alkaline environment with a high‐performance benefiting from the vertical orientation of nanosheets building blocks with multiple void spaces/passages, facile diffusion of ions and mass at both interiors and outer surfaces, and enriched active sites as well. The robustly deposited Au nanoparticles could significantly improve the electronic structure and thus boosted the catalytic activity of the hybrid.
AbstractList The electrocatalysis of urea represents an important potential as an efficient technology for sustainable energy development. This anodic reaction generates hydrogen or electrical power through direct electrooxidation of urea molecules, but is greatly inhibited by its slow kinetics. Therefore, tailoring highly efficient, earth‐abundant, and durable electrocatalysts for urea oxidation reaction (UOR) is a fundamental for the enhancement of green energy conversion technologies. Herein, we report a scalable synthetic strategy to construct three‐dimensional (3D) nickel‐cobalt layered double hydroxide nanosheet arrays (NiCo−LDH NSAs) with silver (Ag 0 ) or gold (Au 0 ) and palladium (Pd 0 ) intercalants as high performance catalysts for UOR. Experimental results suggest that the interlayer spacing of multi‐anions LDH NSAs can effectively afford synergetic effects of increased electrochemical surface area, better exposure of catalytically active sites, and favorable adsorption energy of urea molecules. As expected, the deposition of noble metal nanoparticles (NPs) could successfully modulate the electronic structure, delivering a rise to significantly improved UOR activity. Specifically, the Au/NiCo−LDH hybrid exhibits a superior electro‐catalytic performance toward urea electrooxidation with a highest current. These findings offer an effective pathway to prepare potential earth‐abundant electrocatalysts for direct urea fuel cells (DUFCs).
The electrocatalysis of urea represents an important potential as an efficient technology for sustainable energy development. This anodic reaction generates hydrogen or electrical power through direct electrooxidation of urea molecules, but is greatly inhibited by its slow kinetics. Therefore, tailoring highly efficient, earth‐abundant, and durable electrocatalysts for urea oxidation reaction (UOR) is a fundamental for the enhancement of green energy conversion technologies. Herein, we report a scalable synthetic strategy to construct three‐dimensional (3D) nickel‐cobalt layered double hydroxide nanosheet arrays (NiCo−LDH NSAs) with silver (Ag0) or gold (Au0) and palladium (Pd0) intercalants as high performance catalysts for UOR. Experimental results suggest that the interlayer spacing of multi‐anions LDH NSAs can effectively afford synergetic effects of increased electrochemical surface area, better exposure of catalytically active sites, and favorable adsorption energy of urea molecules. As expected, the deposition of noble metal nanoparticles (NPs) could successfully modulate the electronic structure, delivering a rise to significantly improved UOR activity. Specifically, the Au/NiCo−LDH hybrid exhibits a superior electro‐catalytic performance toward urea electrooxidation with a highest current. These findings offer an effective pathway to prepare potential earth‐abundant electrocatalysts for direct urea fuel cells (DUFCs). Golden catalyst: 3D highly porous Au/NiCo−LDH architecture was fabricated and applied as an electrocatalyst for urea catalysis in alkaline environment with a high‐performance benefiting from the vertical orientation of nanosheets building blocks with multiple void spaces/passages, facile diffusion of ions and mass at both interiors and outer surfaces, and enriched active sites as well. The robustly deposited Au nanoparticles could significantly improve the electronic structure and thus boosted the catalytic activity of the hybrid.
The electrocatalysis of urea represents an important potential as an efficient technology for sustainable energy development. This anodic reaction generates hydrogen or electrical power through direct electrooxidation of urea molecules, but is greatly inhibited by its slow kinetics. Therefore, tailoring highly efficient, earth‐abundant, and durable electrocatalysts for urea oxidation reaction (UOR) is a fundamental for the enhancement of green energy conversion technologies. Herein, we report a scalable synthetic strategy to construct three‐dimensional (3D) nickel‐cobalt layered double hydroxide nanosheet arrays (NiCo−LDH NSAs) with silver (Ag0) or gold (Au0) and palladium (Pd0) intercalants as high performance catalysts for UOR. Experimental results suggest that the interlayer spacing of multi‐anions LDH NSAs can effectively afford synergetic effects of increased electrochemical surface area, better exposure of catalytically active sites, and favorable adsorption energy of urea molecules. As expected, the deposition of noble metal nanoparticles (NPs) could successfully modulate the electronic structure, delivering a rise to significantly improved UOR activity. Specifically, the Au/NiCo−LDH hybrid exhibits a superior electro‐catalytic performance toward urea electrooxidation with a highest current. These findings offer an effective pathway to prepare potential earth‐abundant electrocatalysts for direct urea fuel cells (DUFCs).
Author Khalafallah, Diab
Xiaoyu, Li
Zhi, Mingjia
Hong, Zhanglian
Author_xml – sequence: 1
  givenname: Diab
  surname: Khalafallah
  fullname: Khalafallah, Diab
  organization: Aswan University
– sequence: 2
  givenname: Li
  surname: Xiaoyu
  fullname: Xiaoyu, Li
  organization: Zhejiang University, 38
– sequence: 3
  givenname: Mingjia
  orcidid: 0000-0002-4291-0809
  surname: Zhi
  fullname: Zhi, Mingjia
  email: mingjia_zhi@zju.edu.cn
  organization: Zhejiang University, 38
– sequence: 4
  givenname: Zhanglian
  surname: Hong
  fullname: Hong, Zhanglian
  email: hong_zhanglian@zju.edu.cn
  organization: Zhejiang University, 38
BookMark eNqFkE1rGzEQhkVwIM7HNWdBz3ZG0u56dTRrJy447qU5L7J2FitsV85Ixtm_0F9dGYemFEphYObwPO_Ae81Gve-RsXsBUwEgHyx2dipBaBCZVBdsLIUuJiBFMfrjvmJ3IbwCgBCQq7IYs59qwVcOyZDdOWs6vnGV52szIGHDF_6w7ZCvhob8u2uQb0zvww4x8jmRGQJfoPVkYmKPLu74xp_4Z4ynpMTuDUVnOwy89cSX_c70NrEvhIYvO7SRvDUJHoILt-yyNV3Au499w14el9-r1WT97elrNV9PrMozNSnlrGkbO9MZSjmTiFZZaPNca8QyK9II1UBTzLSyhVYlgNoaLWSpQOeN3Kob9uWcuyf_dsAQ61d_oD69rGX6AFroskhUdqYs-RAI29q6aKLzfSTjulpAfSq-PhVf_y4-adO_tD25H4aGfwv6LBxdh8N_6LparqtP9xdqRZgz
CitedBy_id crossref_primary_10_1016_j_ijhydene_2020_01_016
crossref_primary_10_3390_batteries9010049
crossref_primary_10_1002_slct_202103735
crossref_primary_10_1039_D4CC05405A
crossref_primary_10_1039_D3MA00685A
crossref_primary_10_3390_nano11030725
crossref_primary_10_1016_j_ijhydene_2020_09_095
crossref_primary_10_1016_j_jcis_2022_08_055
crossref_primary_10_1088_1361_6528_ab9c54
crossref_primary_10_1016_j_ceramint_2021_07_069
crossref_primary_10_1016_j_jallcom_2021_162857
crossref_primary_10_1039_D0CC06337A
crossref_primary_10_1016_j_apsusc_2021_150449
crossref_primary_10_3390_catal12030337
crossref_primary_10_1021_acsanm_1c03870
crossref_primary_10_1002_cctc_201902304
crossref_primary_10_1016_j_jallcom_2025_178660
crossref_primary_10_1007_s10904_022_02469_9
crossref_primary_10_1016_j_fuel_2024_133314
crossref_primary_10_1002_jctb_7553
crossref_primary_10_1039_D1NA00486G
crossref_primary_10_1039_D2TA00120A
crossref_primary_10_1016_j_flatc_2023_100602
crossref_primary_10_1016_j_est_2021_103716
crossref_primary_10_1007_s11581_023_04987_z
crossref_primary_10_1002_ente_202100017
crossref_primary_10_1039_D0NJ00021C
crossref_primary_10_1016_j_electacta_2020_136399
crossref_primary_10_1002_eem2_12528
crossref_primary_10_1002_cctc_202001018
crossref_primary_10_1016_j_jechem_2021_04_067
crossref_primary_10_1016_j_ccr_2023_215405
crossref_primary_10_1016_j_electacta_2024_144195
crossref_primary_10_1007_s40820_021_00639_x
crossref_primary_10_1002_celc_202100443
crossref_primary_10_1002_aenm_202203568
crossref_primary_10_1016_j_ijhydene_2021_09_032
crossref_primary_10_1016_j_jallcom_2022_167453
crossref_primary_10_1021_acs_cgd_1c00021
crossref_primary_10_1016_j_jcat_2020_12_024
crossref_primary_10_1016_j_cis_2020_102284
crossref_primary_10_1016_j_susmat_2025_e01286
crossref_primary_10_1186_s11671_023_03937_y
crossref_primary_10_1002_celc_202000404
crossref_primary_10_1016_j_chemosphere_2021_130550
crossref_primary_10_1002_ente_202101010
crossref_primary_10_1016_j_surfin_2025_106054
crossref_primary_10_1007_s42114_022_00496_1
crossref_primary_10_1002_celc_202200045
crossref_primary_10_1016_j_jcis_2020_08_086
crossref_primary_10_1002_chem_201904991
crossref_primary_10_1007_s11244_021_01453_w
crossref_primary_10_1016_j_jcis_2023_08_186
crossref_primary_10_1016_j_apmate_2022_01_003
crossref_primary_10_1016_j_ijhydene_2023_10_279
crossref_primary_10_1016_j_jpowsour_2022_232563
crossref_primary_10_1039_D1TA09989B
crossref_primary_10_1021_acsanm_2c00047
crossref_primary_10_1021_acs_inorgchem_1c01413
crossref_primary_10_1016_j_jcis_2021_05_078
crossref_primary_10_1016_j_cej_2020_126192
crossref_primary_10_1016_j_carbon_2024_119683
crossref_primary_10_1021_acsomega_0c03477
crossref_primary_10_1039_D3RA05538H
Cites_doi 10.1007/s41061-018-0219-y
10.1039/c0cc00736f
10.1016/j.electacta.2017.05.002
10.1021/ja1087216
10.1016/j.elecom.2007.06.036
10.1021/acssuschemeng.8b04953
10.1016/j.solidstatesciences.2017.07.002
10.1002/adfm.201801573
10.1016/j.electacta.2015.02.077
10.1039/C7NJ01108C
10.1016/j.apcatb.2012.08.022
10.1016/S0022-0728(98)00062-X
10.1038/nmat3184
10.1016/j.jpowsour.2018.12.024
10.1021/jp105159t
10.1007/s12274-016-1250-3
10.1021/nn503760c
10.1039/C8NR06740F
10.1039/C6TA08032D
10.1016/j.electacta.2013.06.137
10.1016/j.electacta.2007.11.029
10.1016/j.jelechem.2005.11.013
10.1021/ja405351s
10.1016/j.jelechem.2017.12.064
10.1039/C5CC07296D
10.1016/j.jpowsour.2011.06.079
10.1002/adfm.201301747
10.1007/s41061-019-0254-3
10.1039/C7CC09653D
10.1038/srep05863
10.1016/j.apsusc.2019.03.279
10.1021/acs.chemmater.5b02177
10.1039/b924786f
10.1021/ja4027715
10.1021/acsami.6b05618
10.1016/j.electacta.2011.11.044
10.1021/la000639g
10.1021/jp211806z
10.1039/C4RA03158J
10.1016/j.jpowsour.2018.11.059
10.1039/C9CC00009G
10.1002/ente.201900548
10.1016/j.electacta.2012.07.007
10.1039/c0ee00705f
10.1016/j.electacta.2018.07.042
10.1021/acs.chemmater.8b01334
10.1039/C6TA02410F
10.1002/aenm.201702207
10.1039/C9TA02891A
10.1016/j.ijhydene.2018.07.059
10.1002/chem.201703796
10.1039/c2cc31418e
10.1016/j.ijhydene.2017.12.091
10.1351/pac199163050711
10.1016/j.apcata.2015.11.015
10.1038/srep16629
10.1039/C8RA03718C
10.1039/C8RA07492E
10.1002/adfm.201303638
10.1021/jp908239m
10.1002/celc.201801707
10.1039/C3NR05359H
10.1016/j.electacta.2016.05.149
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/celc.201901423
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage 174
ExternalDocumentID 10_1002_celc_201901423
CELC201901423
Genre article
GrantInformation_xml – fundername: national key research and development program
  funderid: 2016YFB0901600
– fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LY19E020014
– fundername: NSFC
  funderid: 21303162; 11604295
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJNI
ADMLS
CITATION
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3543-827dfdc794e2272eec3c0f5599ee84684613d0d6793c6938003ba91283095d2b3
ISSN 2196-0216
IngestDate Fri Jul 25 11:54:41 EDT 2025
Thu Apr 24 22:57:42 EDT 2025
Tue Jul 01 00:45:07 EDT 2025
Sat Aug 24 01:07:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3543-827dfdc794e2272eec3c0f5599ee84684613d0d6793c6938003ba91283095d2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4291-0809
PQID 2354091986
PQPubID 2034587
PageCount 12
ParticipantIDs proquest_journals_2354091986
crossref_citationtrail_10_1002_celc_201901423
crossref_primary_10_1002_celc_201901423
wiley_primary_10_1002_celc_201901423_CELC201901423
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2, 2020
PublicationDateYYYYMMDD 2020-01-02
PublicationDate_xml – month: 01
  year: 2020
  text: January 2, 2020
  day: 02
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2012; 61
2017; 41
2019; 55
2018; 809
2014; 24
2009; 113
2019; 481
2011; 196
2018; 43
2012; 127
2012; 11
2018; 8
2018; 292
2014; 4
2017; 71
2000; 16
2014; 2
1990
2010; 114
2018; 376
2007; 9
2018; 30
2017; 242
1980
2016; 510
2010; 3
2014; 8
2014; 6
2019; 7
2012; 81
2018; 28
2015; 161
2015; 5
2019; 6
2013; 108
2015; 51
2017; 24
1999; 461
2008; 53
2011; 4
2011; 133
2016; 4
2015; 27
2010; 46
1991; 63
2019; 412
2019; 377
2016; 210
2013; 135
2019; 417
2012; 48
2018; 10
2018; 54
2012; 116
2016; 8
2016; 9
2006; 587
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_2
e_1_2_7_41_1
Briggs D. (e_1_2_7_48_1) 1990
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_43_2
e_1_2_7_11_1
e_1_2_7_66_2
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_75_1
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
Sheikh A. (e_1_2_7_45_2) 2014; 2
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_14_2
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Bard A. J. (e_1_2_7_68_1) 1980
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_74_2
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 242
  start-page: 247
  year: 2017
  end-page: 259
  publication-title: Electrochim. Acta
– volume: 116
  start-page: 8394
  year: 2012
  end-page: 8400
  publication-title: J. Phys. Chem.
– volume: 587
  start-page: 172
  year: 2006
  end-page: 181
  publication-title: J. Electroanal. Chem.
– volume: 9
  start-page: 3598
  year: 2016
  end-page: 3621
  publication-title: Nano Res.
– volume: 8
  start-page: 24525
  year: 2016
  end-page: 24535
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 5702
  year: 2015
  end-page: 5711
  publication-title: Chem. Mater.
– volume: 7
  start-page: 4777
  year: 2019
  end-page: 4783
  publication-title: ACS Sustainable Chem. Eng.
– volume: 46
  start-page: 6735
  year: 2010
  end-page: 6737
  publication-title: Chem. Commun.
– volume: 51
  start-page: 15880
  year: 2015
  end-page: 15893
  publication-title: Chem. Commun.
– volume: 24
  start-page: 934
  year: 2014
  end-page: 942
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 8888
  year: 2016
  end-page: 8897
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 4321
  year: 2018
  end-page: 4330
  publication-title: Chem. Mater.
– volume: 417
  start-page: 159
  year: 2019
  end-page: 175
  publication-title: , J. Power Sources
– volume: 412
  start-page: 265
  year: 2019
  end-page: 271
  publication-title: J. Power Sources
– volume: 376
  start-page: 42
  year: 2018
  publication-title: Top. Curr. Chem.
– year: 1990
– volume: 481
  start-page: 1206
  year: 2019
  end-page: 1212
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 13577
  year: 2019
  end-page: 13584
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 1369
  year: 2014
  end-page: 1376
  publication-title: Nanoscale
– volume: 9
  start-page: 2334
  year: 2007
  end-page: 2339
  publication-title: Electrochem. Commun.
– volume: 16
  start-page: 10376
  year: 2000
  end-page: 10384
  publication-title: Langmuir
– volume: 4
  start-page: 18922
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 43
  start-page: 2742
  year: 2018
  end-page: 2753
  publication-title: Int. J. Hydrogen Energy
– volume: 53
  start-page: 4030
  year: 2008
  end-page: 4034
  publication-title: Electrochim. Acta
– volume: 113
  start-page: 21596
  year: 2009
  end-page: 603
  publication-title: J. Phys. Chem. C
– volume: 114
  start-page: 11513
  year: 2010
  end-page: 11521
  publication-title: J. Phys. Chem. A
– volume: 28
  start-page: 1801573
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 63
  start-page: 711
  year: 1991
  end-page: 734
  publication-title: Pure Appl. Chem.
– volume: 61
  start-page: 25
  year: 2012
  end-page: 30
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 21087
  year: 2018
  end-page: 21095
  publication-title: Nanoscale
– volume: 6
  start-page: 1
  year: 2019
  end-page: 13
  publication-title: ChemElectroChem
– volume: 210
  start-page: 474
  year: 2016
  end-page: 482
  publication-title: Electrochim. Acta
– start-page: 290
  year: 1980
– volume: 43
  start-page: 16302
  year: 2018
  end-page: 16310
  publication-title: Int. J. Hydrogen Energy
– volume: 161
  start-page: 108
  year: 2015
  end-page: 14
  publication-title: Electrochim. Acta
– volume: 127
  start-page: 221
  year: 2012
  end-page: 226
  publication-title: Appl. Catal. B
– volume: 48
  start-page: 4465
  year: 2012
  end-page: 4467
  publication-title: Chem. Commun.
– volume: 41
  start-page: 10773
  year: 2017
  end-page: 10779
  publication-title: New J. Chem.
– volume: 54
  start-page: 2603
  year: 2018
  end-page: 2606
  publication-title: Chem. Commun.
– volume: 11
  start-page: 155
  year: 2012
  end-page: 161
  publication-title: Nat. Mater.
– volume: 108
  start-page: 660
  year: 2013
  end-page: 665
  publication-title: Electrochim. Acta
– volume: 71
  start-page: 51
  year: 2017
  end-page: 60
  publication-title: Solid State Sci.
– volume: 135
  start-page: 12329
  year: 2013
  end-page: 12337
  publication-title: J. Am. Chem. Soc.
– volume: 81
  start-page: 292
  year: 2012
  end-page: 300
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 64
  year: 2014
  end-page: 69
  publication-title: Am. J. Min. Metal.
– volume: 8
  start-page: 1702207
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 809
  start-page: 96
  year: 2018
  end-page: 104
  publication-title: J. Electroanal. Chem.
– volume: 461
  start-page: 65
  year: 1999
  end-page: 75
  publication-title: J. Electroanal. Chem.
– volume: 135
  start-page: 8452
  year: 2013
  end-page: 8455
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 23539
  year: 2018
  publication-title: RSC Adv.
– volume: 24
  start-page: 400
  year: 2017
  end-page: 408
  publication-title: Chem. Eur. J.
– volume: 196
  start-page: 9579
  year: 2011
  end-page: 9584
  publication-title: J. Power Sources
– volume: 4
  start-page: 24962
  year: 2014
  end-page: 24972
  publication-title: RSC Adv.
– volume: 8
  start-page: 9518
  year: 2014
  end-page: 9523
  publication-title: ACS Nano
– volume: 3
  start-page: 438
  year: 2010
  end-page: 441
  publication-title: Energy Environ. Sci.
– volume: 292
  start-page: 374
  year: 2018
  end-page: 382
  publication-title: Electrochim. Acta
– volume: 510
  start-page: 180
  year: 2016
  end-page: 188
  publication-title: Appl. Catal. A
– volume: 24
  start-page: 2938
  year: 2014
  end-page: 2946
  publication-title: Adv. Funct. Mater.
– volume: 133
  start-page: 613
  year: 2011
  end-page: 620
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1216
  year: 2011
  end-page: 1224
  publication-title: Energy Environ. Sci.
– volume: 377
  start-page: 29
  year: 2019
  publication-title: Top. Curr. Chem.
– volume: 7
  start-page: 1900548
  year: 2019
  publication-title: Energy Technol.
– volume: 4
  start-page: 5863
  year: 2014
  publication-title: Sci. Rep.
– volume: 55
  start-page: 4023
  year: 2019
  end-page: 4026
  publication-title: Chem. Commun.
– volume: 5
  start-page: 16629
  year: 2015
  publication-title: Sci. Rep.
– volume: 8
  start-page: 38562
  year: 2018
  end-page: 38565
  publication-title: RSC Adv.
– ident: e_1_2_7_2_2
  doi: 10.1007/s41061-018-0219-y
– ident: e_1_2_7_66_2
  doi: 10.1039/c0cc00736f
– ident: e_1_2_7_7_2
  doi: 10.1016/j.electacta.2017.05.002
– ident: e_1_2_7_11_1
– ident: e_1_2_7_55_1
  doi: 10.1021/ja1087216
– ident: e_1_2_7_69_1
  doi: 10.1016/j.elecom.2007.06.036
– ident: e_1_2_7_74_2
  doi: 10.1021/acssuschemeng.8b04953
– ident: e_1_2_7_10_2
  doi: 10.1016/j.solidstatesciences.2017.07.002
– ident: e_1_2_7_44_2
  doi: 10.1002/adfm.201801573
– ident: e_1_2_7_46_1
  doi: 10.1016/j.electacta.2015.02.077
– ident: e_1_2_7_39_1
  doi: 10.1039/C7NJ01108C
– ident: e_1_2_7_20_1
  doi: 10.1016/j.apcatb.2012.08.022
– ident: e_1_2_7_22_2
  doi: 10.1016/S0022-0728(98)00062-X
– ident: e_1_2_7_16_1
  doi: 10.1038/nmat3184
– ident: e_1_2_7_77_1
  doi: 10.1016/j.jpowsour.2018.12.024
– ident: e_1_2_7_78_1
  doi: 10.1021/jp105159t
– ident: e_1_2_7_36_1
  doi: 10.1007/s12274-016-1250-3
– ident: e_1_2_7_52_1
– ident: e_1_2_7_61_1
  doi: 10.1021/nn503760c
– ident: e_1_2_7_9_2
  doi: 10.1039/C8NR06740F
– ident: e_1_2_7_41_1
– ident: e_1_2_7_42_2
  doi: 10.1039/C6TA08032D
– ident: e_1_2_7_3_2
  doi: 10.1016/j.electacta.2013.06.137
– ident: e_1_2_7_21_1
– ident: e_1_2_7_30_1
– start-page: 290
  volume-title: Electrochemical methods: fundamentals and applications
  year: 1980
  ident: e_1_2_7_68_1
– ident: e_1_2_7_76_1
  doi: 10.1016/j.electacta.2007.11.029
– ident: e_1_2_7_75_1
  doi: 10.1016/j.jelechem.2005.11.013
– ident: e_1_2_7_50_1
  doi: 10.1039/C8NR06740F
– ident: e_1_2_7_63_1
  doi: 10.1021/ja405351s
– ident: e_1_2_7_8_2
  doi: 10.1016/j.jelechem.2017.12.064
– ident: e_1_2_7_35_1
  doi: 10.1039/C5CC07296D
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jpowsour.2011.06.079
– ident: e_1_2_7_79_1
  doi: 10.1002/adfm.201301747
– ident: e_1_2_7_15_2
  doi: 10.1007/s41061-019-0254-3
– ident: e_1_2_7_65_1
– ident: e_1_2_7_12_2
  doi: 10.1039/C7CC09653D
– ident: e_1_2_7_60_1
  doi: 10.1038/srep05863
– ident: e_1_2_7_14_2
  doi: 10.1016/j.apsusc.2019.03.279
– ident: e_1_2_7_34_1
  doi: 10.1021/acs.chemmater.5b02177
– ident: e_1_2_7_19_1
  doi: 10.1039/b924786f
– ident: e_1_2_7_32_2
  doi: 10.1021/ja4027715
– ident: e_1_2_7_49_1
  doi: 10.1021/acsami.6b05618
– ident: e_1_2_7_62_1
  doi: 10.1016/j.electacta.2011.11.044
– ident: e_1_2_7_25_1
  doi: 10.1021/la000639g
– ident: e_1_2_7_57_1
  doi: 10.1038/srep05863
– ident: e_1_2_7_64_1
  doi: 10.1021/jp211806z
– ident: e_1_2_7_43_2
  doi: 10.1039/C4RA03158J
– ident: e_1_2_7_27_1
  doi: 10.1038/srep05863
– ident: e_1_2_7_53_2
  doi: 10.1016/j.jpowsour.2018.11.059
– ident: e_1_2_7_33_2
  doi: 10.1039/C9CC00009G
– ident: e_1_2_7_23_2
  doi: 10.1002/ente.201900548
– ident: e_1_2_7_5_2
  doi: 10.1016/j.electacta.2012.07.007
– ident: e_1_2_7_1_1
– ident: e_1_2_7_18_1
  doi: 10.1039/c0ee00705f
– ident: e_1_2_7_37_1
  doi: 10.1016/j.electacta.2018.07.042
– ident: e_1_2_7_73_2
  doi: 10.1021/acs.chemmater.8b01334
– ident: e_1_2_7_54_2
  doi: 10.1039/C6TA02410F
– ident: e_1_2_7_58_1
  doi: 10.1002/aenm.201702207
– ident: e_1_2_7_51_1
  doi: 10.1039/C9TA02891A
– ident: e_1_2_7_17_1
  doi: 10.1016/j.ijhydene.2018.07.059
– ident: e_1_2_7_56_1
  doi: 10.1002/chem.201703796
– volume: 2
  start-page: 64
  year: 2014
  ident: e_1_2_7_45_2
  publication-title: Am. J. Min. Metal.
– ident: e_1_2_7_59_1
  doi: 10.1039/c2cc31418e
– ident: e_1_2_7_4_2
  doi: 10.1016/j.ijhydene.2017.12.091
– ident: e_1_2_7_72_1
– ident: e_1_2_7_67_2
  doi: 10.1351/pac199163050711
– ident: e_1_2_7_70_1
  doi: 10.1016/j.apcata.2015.11.015
– ident: e_1_2_7_6_1
– ident: e_1_2_7_28_1
  doi: 10.1016/j.electacta.2011.11.044
– ident: e_1_2_7_71_1
  doi: 10.1038/srep16629
– volume-title: Practical Surface Analysis
  year: 1990
  ident: e_1_2_7_48_1
– ident: e_1_2_7_40_1
  doi: 10.1039/C8RA03718C
– ident: e_1_2_7_31_2
  doi: 10.1039/C8RA07492E
– ident: e_1_2_7_38_1
  doi: 10.1002/adfm.201303638
– ident: e_1_2_7_47_1
  doi: 10.1021/jp908239m
– ident: e_1_2_7_13_2
  doi: 10.1002/celc.201801707
– ident: e_1_2_7_26_1
  doi: 10.1039/C3NR05359H
– ident: e_1_2_7_29_1
  doi: 10.1016/j.electacta.2016.05.149
SSID ssj0001105386
Score 2.4278028
Snippet The electrocatalysis of urea represents an important potential as an efficient technology for sustainable energy development. This anodic reaction generates...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 163
SubjectTerms Arrays
Clean energy
double layered hydroxide
Electrocatalysis
Electrocatalysts
Electronic structure
Energy conversion
Fuel cells
Hydroxides
Interlayers
Intermetallic compounds
Nanoparticles
nanosheet arrays
Nanosheets
Noble metals
Oxidation
Palladium
Platinum
Reaction kinetics
Silver
Sustainable development
Urea
urea electrocatalysis
Title 3D Hierarchical NiCo Layered Double Hydroxide Nanosheet Arrays Decorated with Noble Metal Nanoparticles for Enhanced Urea Electrocatalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201901423
https://www.proquest.com/docview/2354091986
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9owFLbozKG9VF1VptPKh0o9oLTEDiE5IqBCFcylg8QtcmynUEVhxCKV-Qnzh_r3-p7tGOhMt5FQFNnGEbwvb_NbCHkngeGFeTsPVMREEMXwKoKWgGlcKglDCQJL4Inu5CIeTaPPs86s0fhxELW03eQf5PWdeSX3oSqMAV0xS_Y_KOs3hQG4B_rCFSgM13-iMR-0RgvMIDYNTUoga3_ZGosd9t9E1RizokY7tVp-XyiNjHS5nuMZdG-1Ers18BqJAKgD0C-wtUxrojE9Etde1UFzJhRxWM1tsMAU1MzW0HbPMc4frGlyqONiDQI3j7eepc9FKQr02xtPDobi1FOzhVjuttZFsPdkL2xYf_X128LLjpGLIDZ-7rKGtvNasLbxWhw4MoFRYvBz6Mpg3zHmuHP3Fggtpw0dX7RCO7Stfm7JA1tfVuoSq1Wi7hMxvpd89Wm_X9n581oj9vvDcd_PPyCnDOwTYLCnvcFk_GXv3gO9lZs-o_5X1SVD2-zj8UOOVaK9nXNoLRl15_IJeezsFNqzEHhKGrp6Rh726_aAz8kNH9BD8FEEH3XgoxZ81IOPevBRCz7qwUcRfNSAjxrw0SPwUQAfrcFHEXz0V_C9INNPw8v-KHCNPQLJOxEPEtZVhZIgCjRjXaa15LJdYO07rUEfhk_IVVvFIDtknHKwaXgu0hBr1aUdxXL-kpxUy0q_IhTmZZFLJtKoiEQiRQL6L4N9lOoUhU6aJKj_20y6qvfYfKXMbL1uliEtMk-LJnnv11_Zei-_XXlekypzPGGdMXSjpmGaxE3CDPn-skt2BKez-3zpNXm0f8POyclmtdVvQFPe5G8dKn8CF7m4vw
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0oHPBi_Iwo6h5MPDXQ3VLaIymQqsCJGuOl2e5uAwkpBGoif8Ff7Uw_QA7GxKSXpts5dHZ23k5n3yPkQcKCZ0atyFAWE4ZlQygCSsBjXMoxTQkJS-Af3dHY9gPr-a1ddhPiWZicH2JbcMPIyNZrDHAsSDd3rKFSz5GDEDMaYIJDUkVoAxO72n0N3oNdoQUQBM8UHyE4seHWtEvyxhZr7hvZT047xPkTt2aJZ3BCjgvESLu5i0_JgU7OSM0rhdrOyRfvUX-GB4kzXZM5Hc-8BR2KDcpwUkDI0VxTf6NWi8-Z0hTW08V6qnUKJldis6Y93IEC5FQUi7J0jAozdKRTtARjl2XvHAV8S_vJNOsZoAGgTdrPRXSyGhBSm1yQYNCfeL5RSCwYkrctbjiso2IlISg1Yx2mteSyFSMLmdaATOAyuWopG6JY2i4HdMkj4ZrIGua2FYv4Jakki0RfEQrPZRxJJlwrtoQjhQNIhIEdpdpxrJ06McpvG8qCfxxlMOZhzpzMQvRFuPVFnTxuxy9z5o1fRzZKV4VFBK5DhgUt13Qdu05Y5r4_rIRef-ht767_89I9qfmT0TAcPo1fbsgRw605VmtYg1TS1Ye-BfySRnfFDP0G9ObmnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB20gnoRP7FadQ-Cp9BkN0mTY0lbqtbiwYh4CcnuhhZKW9oK9i_4q53JR1sPIgi5hGzmkMnbeZnsvgdwK3HCsxIzMZTNY8N2EYrIEmgbl_IsS2LBiumP7lPf7Yb2w5vztrGLP9eHWDXcCBnZfE0An6q0vhYNlXpEEoRU0JASbMOOg6XJrMBO8zV8D9d9FiQQIjN8RGzSelvLLbUbTV7_GeRnbVoTzk3amtWdziEcFISRNfMMH8GWHh_DXlD6tJ3Al2ix7pD2EWe2JiPWHwYT1ouX5MLJkCAnI826SzWbfA6VZjidTuYDrRcYchYv56xFH6DIOBWjnizrk8EMe9ILioRjp-XSOYb0lrXHg2zJAAuRbLJ27qGTtYBI2eQUwk77JegahcOCIYVjC8PjDZUqiZjUnDe41lJIMyURMq2RmOBhCWUqF0EsXV8guRRJ7FskGuY7iifiDCrjyVifA8PrMk0kj307tWNPxh4SEY5xlHLSVHtVMMpnG8lCfpxcMEZRLpzMI8pFtMpFFe5W46e58MavI2tlqqICgPOIUz_Lt3zPrQLP0vdHlCho94LV2cV_brqB3edWJ-rd9x8vYZ_Thzn1angNKovZh75C9rJIrosX9Bt-VOW8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Hierarchical+NiCo+Layered+Double+Hydroxide+Nanosheet+Arrays+Decorated+with+Noble+Metal+Nanoparticles+for+Enhanced+Urea+Electrocatalysis&rft.jtitle=ChemElectroChem&rft.au=Khalafallah%2C+Diab&rft.au=Xiaoyu%2C+Li&rft.au=Zhi%2C+Mingjia&rft.au=Hong%2C+Zhanglian&rft.date=2020-01-02&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=7&rft.issue=1&rft.spage=163&rft.epage=174&rft_id=info:doi/10.1002%2Fcelc.201901423&rft.externalDBID=10.1002%252Fcelc.201901423&rft.externalDocID=CELC201901423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon