3D Hierarchical NiCo Layered Double Hydroxide Nanosheet Arrays Decorated with Noble Metal Nanoparticles for Enhanced Urea Electrocatalysis
The electrocatalysis of urea represents an important potential as an efficient technology for sustainable energy development. This anodic reaction generates hydrogen or electrical power through direct electrooxidation of urea molecules, but is greatly inhibited by its slow kinetics. Therefore, tailo...
Saved in:
Published in | ChemElectroChem Vol. 7; no. 1; pp. 163 - 174 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
02.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electrocatalysis of urea represents an important potential as an efficient technology for sustainable energy development. This anodic reaction generates hydrogen or electrical power through direct electrooxidation of urea molecules, but is greatly inhibited by its slow kinetics. Therefore, tailoring highly efficient, earth‐abundant, and durable electrocatalysts for urea oxidation reaction (UOR) is a fundamental for the enhancement of green energy conversion technologies. Herein, we report a scalable synthetic strategy to construct three‐dimensional (3D) nickel‐cobalt layered double hydroxide nanosheet arrays (NiCo−LDH NSAs) with silver (Ag0) or gold (Au0) and palladium (Pd0) intercalants as high performance catalysts for UOR. Experimental results suggest that the interlayer spacing of multi‐anions LDH NSAs can effectively afford synergetic effects of increased electrochemical surface area, better exposure of catalytically active sites, and favorable adsorption energy of urea molecules. As expected, the deposition of noble metal nanoparticles (NPs) could successfully modulate the electronic structure, delivering a rise to significantly improved UOR activity. Specifically, the Au/NiCo−LDH hybrid exhibits a superior electro‐catalytic performance toward urea electrooxidation with a highest current. These findings offer an effective pathway to prepare potential earth‐abundant electrocatalysts for direct urea fuel cells (DUFCs).
Golden catalyst: 3D highly porous Au/NiCo−LDH architecture was fabricated and applied as an electrocatalyst for urea catalysis in alkaline environment with a high‐performance benefiting from the vertical orientation of nanosheets building blocks with multiple void spaces/passages, facile diffusion of ions and mass at both interiors and outer surfaces, and enriched active sites as well. The robustly deposited Au nanoparticles could significantly improve the electronic structure and thus boosted the catalytic activity of the hybrid. |
---|---|
AbstractList | The electrocatalysis of urea represents an important potential as an efficient technology for sustainable energy development. This anodic reaction generates hydrogen or electrical power through direct electrooxidation of urea molecules, but is greatly inhibited by its slow kinetics. Therefore, tailoring highly efficient, earth‐abundant, and durable electrocatalysts for urea oxidation reaction (UOR) is a fundamental for the enhancement of green energy conversion technologies. Herein, we report a scalable synthetic strategy to construct three‐dimensional (3D) nickel‐cobalt layered double hydroxide nanosheet arrays (NiCo−LDH NSAs) with silver (Ag
0
) or gold (Au
0
) and palladium (Pd
0
) intercalants as high performance catalysts for UOR. Experimental results suggest that the interlayer spacing of multi‐anions LDH NSAs can effectively afford synergetic effects of increased electrochemical surface area, better exposure of catalytically active sites, and favorable adsorption energy of urea molecules. As expected, the deposition of noble metal nanoparticles (NPs) could successfully modulate the electronic structure, delivering a rise to significantly improved UOR activity. Specifically, the Au/NiCo−LDH hybrid exhibits a superior electro‐catalytic performance toward urea electrooxidation with a highest current. These findings offer an effective pathway to prepare potential earth‐abundant electrocatalysts for direct urea fuel cells (DUFCs). The electrocatalysis of urea represents an important potential as an efficient technology for sustainable energy development. This anodic reaction generates hydrogen or electrical power through direct electrooxidation of urea molecules, but is greatly inhibited by its slow kinetics. Therefore, tailoring highly efficient, earth‐abundant, and durable electrocatalysts for urea oxidation reaction (UOR) is a fundamental for the enhancement of green energy conversion technologies. Herein, we report a scalable synthetic strategy to construct three‐dimensional (3D) nickel‐cobalt layered double hydroxide nanosheet arrays (NiCo−LDH NSAs) with silver (Ag0) or gold (Au0) and palladium (Pd0) intercalants as high performance catalysts for UOR. Experimental results suggest that the interlayer spacing of multi‐anions LDH NSAs can effectively afford synergetic effects of increased electrochemical surface area, better exposure of catalytically active sites, and favorable adsorption energy of urea molecules. As expected, the deposition of noble metal nanoparticles (NPs) could successfully modulate the electronic structure, delivering a rise to significantly improved UOR activity. Specifically, the Au/NiCo−LDH hybrid exhibits a superior electro‐catalytic performance toward urea electrooxidation with a highest current. These findings offer an effective pathway to prepare potential earth‐abundant electrocatalysts for direct urea fuel cells (DUFCs). Golden catalyst: 3D highly porous Au/NiCo−LDH architecture was fabricated and applied as an electrocatalyst for urea catalysis in alkaline environment with a high‐performance benefiting from the vertical orientation of nanosheets building blocks with multiple void spaces/passages, facile diffusion of ions and mass at both interiors and outer surfaces, and enriched active sites as well. The robustly deposited Au nanoparticles could significantly improve the electronic structure and thus boosted the catalytic activity of the hybrid. The electrocatalysis of urea represents an important potential as an efficient technology for sustainable energy development. This anodic reaction generates hydrogen or electrical power through direct electrooxidation of urea molecules, but is greatly inhibited by its slow kinetics. Therefore, tailoring highly efficient, earth‐abundant, and durable electrocatalysts for urea oxidation reaction (UOR) is a fundamental for the enhancement of green energy conversion technologies. Herein, we report a scalable synthetic strategy to construct three‐dimensional (3D) nickel‐cobalt layered double hydroxide nanosheet arrays (NiCo−LDH NSAs) with silver (Ag0) or gold (Au0) and palladium (Pd0) intercalants as high performance catalysts for UOR. Experimental results suggest that the interlayer spacing of multi‐anions LDH NSAs can effectively afford synergetic effects of increased electrochemical surface area, better exposure of catalytically active sites, and favorable adsorption energy of urea molecules. As expected, the deposition of noble metal nanoparticles (NPs) could successfully modulate the electronic structure, delivering a rise to significantly improved UOR activity. Specifically, the Au/NiCo−LDH hybrid exhibits a superior electro‐catalytic performance toward urea electrooxidation with a highest current. These findings offer an effective pathway to prepare potential earth‐abundant electrocatalysts for direct urea fuel cells (DUFCs). |
Author | Khalafallah, Diab Xiaoyu, Li Zhi, Mingjia Hong, Zhanglian |
Author_xml | – sequence: 1 givenname: Diab surname: Khalafallah fullname: Khalafallah, Diab organization: Aswan University – sequence: 2 givenname: Li surname: Xiaoyu fullname: Xiaoyu, Li organization: Zhejiang University, 38 – sequence: 3 givenname: Mingjia orcidid: 0000-0002-4291-0809 surname: Zhi fullname: Zhi, Mingjia email: mingjia_zhi@zju.edu.cn organization: Zhejiang University, 38 – sequence: 4 givenname: Zhanglian surname: Hong fullname: Hong, Zhanglian email: hong_zhanglian@zju.edu.cn organization: Zhejiang University, 38 |
BookMark | eNqFkE1rGzEQhkVwIM7HNWdBz3ZG0u56dTRrJy447qU5L7J2FitsV85Ixtm_0F9dGYemFEphYObwPO_Ae81Gve-RsXsBUwEgHyx2dipBaBCZVBdsLIUuJiBFMfrjvmJ3IbwCgBCQq7IYs59qwVcOyZDdOWs6vnGV52szIGHDF_6w7ZCvhob8u2uQb0zvww4x8jmRGQJfoPVkYmKPLu74xp_4Z4ynpMTuDUVnOwy89cSX_c70NrEvhIYvO7SRvDUJHoILt-yyNV3Au499w14el9-r1WT97elrNV9PrMozNSnlrGkbO9MZSjmTiFZZaPNca8QyK9II1UBTzLSyhVYlgNoaLWSpQOeN3Kob9uWcuyf_dsAQ61d_oD69rGX6AFroskhUdqYs-RAI29q6aKLzfSTjulpAfSq-PhVf_y4-adO_tD25H4aGfwv6LBxdh8N_6LparqtP9xdqRZgz |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2020_01_016 crossref_primary_10_3390_batteries9010049 crossref_primary_10_1002_slct_202103735 crossref_primary_10_1039_D4CC05405A crossref_primary_10_1039_D3MA00685A crossref_primary_10_3390_nano11030725 crossref_primary_10_1016_j_ijhydene_2020_09_095 crossref_primary_10_1016_j_jcis_2022_08_055 crossref_primary_10_1088_1361_6528_ab9c54 crossref_primary_10_1016_j_ceramint_2021_07_069 crossref_primary_10_1016_j_jallcom_2021_162857 crossref_primary_10_1039_D0CC06337A crossref_primary_10_1016_j_apsusc_2021_150449 crossref_primary_10_3390_catal12030337 crossref_primary_10_1021_acsanm_1c03870 crossref_primary_10_1002_cctc_201902304 crossref_primary_10_1016_j_jallcom_2025_178660 crossref_primary_10_1007_s10904_022_02469_9 crossref_primary_10_1016_j_fuel_2024_133314 crossref_primary_10_1002_jctb_7553 crossref_primary_10_1039_D1NA00486G crossref_primary_10_1039_D2TA00120A crossref_primary_10_1016_j_flatc_2023_100602 crossref_primary_10_1016_j_est_2021_103716 crossref_primary_10_1007_s11581_023_04987_z crossref_primary_10_1002_ente_202100017 crossref_primary_10_1039_D0NJ00021C crossref_primary_10_1016_j_electacta_2020_136399 crossref_primary_10_1002_eem2_12528 crossref_primary_10_1002_cctc_202001018 crossref_primary_10_1016_j_jechem_2021_04_067 crossref_primary_10_1016_j_ccr_2023_215405 crossref_primary_10_1016_j_electacta_2024_144195 crossref_primary_10_1007_s40820_021_00639_x crossref_primary_10_1002_celc_202100443 crossref_primary_10_1002_aenm_202203568 crossref_primary_10_1016_j_ijhydene_2021_09_032 crossref_primary_10_1016_j_jallcom_2022_167453 crossref_primary_10_1021_acs_cgd_1c00021 crossref_primary_10_1016_j_jcat_2020_12_024 crossref_primary_10_1016_j_cis_2020_102284 crossref_primary_10_1016_j_susmat_2025_e01286 crossref_primary_10_1186_s11671_023_03937_y crossref_primary_10_1002_celc_202000404 crossref_primary_10_1016_j_chemosphere_2021_130550 crossref_primary_10_1002_ente_202101010 crossref_primary_10_1016_j_surfin_2025_106054 crossref_primary_10_1007_s42114_022_00496_1 crossref_primary_10_1002_celc_202200045 crossref_primary_10_1016_j_jcis_2020_08_086 crossref_primary_10_1002_chem_201904991 crossref_primary_10_1007_s11244_021_01453_w crossref_primary_10_1016_j_jcis_2023_08_186 crossref_primary_10_1016_j_apmate_2022_01_003 crossref_primary_10_1016_j_ijhydene_2023_10_279 crossref_primary_10_1016_j_jpowsour_2022_232563 crossref_primary_10_1039_D1TA09989B crossref_primary_10_1021_acsanm_2c00047 crossref_primary_10_1021_acs_inorgchem_1c01413 crossref_primary_10_1016_j_jcis_2021_05_078 crossref_primary_10_1016_j_cej_2020_126192 crossref_primary_10_1016_j_carbon_2024_119683 crossref_primary_10_1021_acsomega_0c03477 crossref_primary_10_1039_D3RA05538H |
Cites_doi | 10.1007/s41061-018-0219-y 10.1039/c0cc00736f 10.1016/j.electacta.2017.05.002 10.1021/ja1087216 10.1016/j.elecom.2007.06.036 10.1021/acssuschemeng.8b04953 10.1016/j.solidstatesciences.2017.07.002 10.1002/adfm.201801573 10.1016/j.electacta.2015.02.077 10.1039/C7NJ01108C 10.1016/j.apcatb.2012.08.022 10.1016/S0022-0728(98)00062-X 10.1038/nmat3184 10.1016/j.jpowsour.2018.12.024 10.1021/jp105159t 10.1007/s12274-016-1250-3 10.1021/nn503760c 10.1039/C8NR06740F 10.1039/C6TA08032D 10.1016/j.electacta.2013.06.137 10.1016/j.electacta.2007.11.029 10.1016/j.jelechem.2005.11.013 10.1021/ja405351s 10.1016/j.jelechem.2017.12.064 10.1039/C5CC07296D 10.1016/j.jpowsour.2011.06.079 10.1002/adfm.201301747 10.1007/s41061-019-0254-3 10.1039/C7CC09653D 10.1038/srep05863 10.1016/j.apsusc.2019.03.279 10.1021/acs.chemmater.5b02177 10.1039/b924786f 10.1021/ja4027715 10.1021/acsami.6b05618 10.1016/j.electacta.2011.11.044 10.1021/la000639g 10.1021/jp211806z 10.1039/C4RA03158J 10.1016/j.jpowsour.2018.11.059 10.1039/C9CC00009G 10.1002/ente.201900548 10.1016/j.electacta.2012.07.007 10.1039/c0ee00705f 10.1016/j.electacta.2018.07.042 10.1021/acs.chemmater.8b01334 10.1039/C6TA02410F 10.1002/aenm.201702207 10.1039/C9TA02891A 10.1016/j.ijhydene.2018.07.059 10.1002/chem.201703796 10.1039/c2cc31418e 10.1016/j.ijhydene.2017.12.091 10.1351/pac199163050711 10.1016/j.apcata.2015.11.015 10.1038/srep16629 10.1039/C8RA03718C 10.1039/C8RA07492E 10.1002/adfm.201303638 10.1021/jp908239m 10.1002/celc.201801707 10.1039/C3NR05359H 10.1016/j.electacta.2016.05.149 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1002/celc.201901423 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | 174 |
ExternalDocumentID | 10_1002_celc_201901423 CELC201901423 |
Genre | article |
GrantInformation_xml | – fundername: national key research and development program funderid: 2016YFB0901600 – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LY19E020014 – fundername: NSFC funderid: 21303162; 11604295 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJNI ADMLS CITATION 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3543-827dfdc794e2272eec3c0f5599ee84684613d0d6793c6938003ba91283095d2b3 |
ISSN | 2196-0216 |
IngestDate | Fri Jul 25 11:54:41 EDT 2025 Thu Apr 24 22:57:42 EDT 2025 Tue Jul 01 00:45:07 EDT 2025 Sat Aug 24 01:07:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3543-827dfdc794e2272eec3c0f5599ee84684613d0d6793c6938003ba91283095d2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4291-0809 |
PQID | 2354091986 |
PQPubID | 2034587 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2354091986 crossref_citationtrail_10_1002_celc_201901423 crossref_primary_10_1002_celc_201901423 wiley_primary_10_1002_celc_201901423_CELC201901423 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2, 2020 |
PublicationDateYYYYMMDD | 2020-01-02 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2, 2020 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2012; 61 2017; 41 2019; 55 2018; 809 2014; 24 2009; 113 2019; 481 2011; 196 2018; 43 2012; 127 2012; 11 2018; 8 2018; 292 2014; 4 2017; 71 2000; 16 2014; 2 1990 2010; 114 2018; 376 2007; 9 2018; 30 2017; 242 1980 2016; 510 2010; 3 2014; 8 2014; 6 2019; 7 2012; 81 2018; 28 2015; 161 2015; 5 2019; 6 2013; 108 2015; 51 2017; 24 1999; 461 2008; 53 2011; 4 2011; 133 2016; 4 2015; 27 2010; 46 1991; 63 2019; 412 2019; 377 2016; 210 2013; 135 2019; 417 2012; 48 2018; 10 2018; 54 2012; 116 2016; 8 2016; 9 2006; 587 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_2 e_1_2_7_41_1 Briggs D. (e_1_2_7_48_1) 1990 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_43_2 e_1_2_7_11_1 e_1_2_7_66_2 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_75_1 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 Sheikh A. (e_1_2_7_45_2) 2014; 2 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_14_2 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Bard A. J. (e_1_2_7_68_1) 1980 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_74_2 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 242 start-page: 247 year: 2017 end-page: 259 publication-title: Electrochim. Acta – volume: 116 start-page: 8394 year: 2012 end-page: 8400 publication-title: J. Phys. Chem. – volume: 587 start-page: 172 year: 2006 end-page: 181 publication-title: J. Electroanal. Chem. – volume: 9 start-page: 3598 year: 2016 end-page: 3621 publication-title: Nano Res. – volume: 8 start-page: 24525 year: 2016 end-page: 24535 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 5702 year: 2015 end-page: 5711 publication-title: Chem. Mater. – volume: 7 start-page: 4777 year: 2019 end-page: 4783 publication-title: ACS Sustainable Chem. Eng. – volume: 46 start-page: 6735 year: 2010 end-page: 6737 publication-title: Chem. Commun. – volume: 51 start-page: 15880 year: 2015 end-page: 15893 publication-title: Chem. Commun. – volume: 24 start-page: 934 year: 2014 end-page: 942 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 8888 year: 2016 end-page: 8897 publication-title: J. Mater. Chem. A – volume: 30 start-page: 4321 year: 2018 end-page: 4330 publication-title: Chem. Mater. – volume: 417 start-page: 159 year: 2019 end-page: 175 publication-title: , J. Power Sources – volume: 412 start-page: 265 year: 2019 end-page: 271 publication-title: J. Power Sources – volume: 376 start-page: 42 year: 2018 publication-title: Top. Curr. Chem. – year: 1990 – volume: 481 start-page: 1206 year: 2019 end-page: 1212 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 13577 year: 2019 end-page: 13584 publication-title: J. Mater. Chem. – volume: 6 start-page: 1369 year: 2014 end-page: 1376 publication-title: Nanoscale – volume: 9 start-page: 2334 year: 2007 end-page: 2339 publication-title: Electrochem. Commun. – volume: 16 start-page: 10376 year: 2000 end-page: 10384 publication-title: Langmuir – volume: 4 start-page: 18922 year: 2016 publication-title: J. Mater. Chem. A – volume: 43 start-page: 2742 year: 2018 end-page: 2753 publication-title: Int. J. Hydrogen Energy – volume: 53 start-page: 4030 year: 2008 end-page: 4034 publication-title: Electrochim. Acta – volume: 113 start-page: 21596 year: 2009 end-page: 603 publication-title: J. Phys. Chem. C – volume: 114 start-page: 11513 year: 2010 end-page: 11521 publication-title: J. Phys. Chem. A – volume: 28 start-page: 1801573 year: 2018 publication-title: Adv. Funct. Mater. – volume: 63 start-page: 711 year: 1991 end-page: 734 publication-title: Pure Appl. Chem. – volume: 61 start-page: 25 year: 2012 end-page: 30 publication-title: Electrochim. Acta – volume: 10 start-page: 21087 year: 2018 end-page: 21095 publication-title: Nanoscale – volume: 6 start-page: 1 year: 2019 end-page: 13 publication-title: ChemElectroChem – volume: 210 start-page: 474 year: 2016 end-page: 482 publication-title: Electrochim. Acta – start-page: 290 year: 1980 – volume: 43 start-page: 16302 year: 2018 end-page: 16310 publication-title: Int. J. Hydrogen Energy – volume: 161 start-page: 108 year: 2015 end-page: 14 publication-title: Electrochim. Acta – volume: 127 start-page: 221 year: 2012 end-page: 226 publication-title: Appl. Catal. B – volume: 48 start-page: 4465 year: 2012 end-page: 4467 publication-title: Chem. Commun. – volume: 41 start-page: 10773 year: 2017 end-page: 10779 publication-title: New J. Chem. – volume: 54 start-page: 2603 year: 2018 end-page: 2606 publication-title: Chem. Commun. – volume: 11 start-page: 155 year: 2012 end-page: 161 publication-title: Nat. Mater. – volume: 108 start-page: 660 year: 2013 end-page: 665 publication-title: Electrochim. Acta – volume: 71 start-page: 51 year: 2017 end-page: 60 publication-title: Solid State Sci. – volume: 135 start-page: 12329 year: 2013 end-page: 12337 publication-title: J. Am. Chem. Soc. – volume: 81 start-page: 292 year: 2012 end-page: 300 publication-title: Electrochim. Acta – volume: 2 start-page: 64 year: 2014 end-page: 69 publication-title: Am. J. Min. Metal. – volume: 8 start-page: 1702207 year: 2018 publication-title: Adv. Energy Mater. – volume: 809 start-page: 96 year: 2018 end-page: 104 publication-title: J. Electroanal. Chem. – volume: 461 start-page: 65 year: 1999 end-page: 75 publication-title: J. Electroanal. Chem. – volume: 135 start-page: 8452 year: 2013 end-page: 8455 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 23539 year: 2018 publication-title: RSC Adv. – volume: 24 start-page: 400 year: 2017 end-page: 408 publication-title: Chem. Eur. J. – volume: 196 start-page: 9579 year: 2011 end-page: 9584 publication-title: J. Power Sources – volume: 4 start-page: 24962 year: 2014 end-page: 24972 publication-title: RSC Adv. – volume: 8 start-page: 9518 year: 2014 end-page: 9523 publication-title: ACS Nano – volume: 3 start-page: 438 year: 2010 end-page: 441 publication-title: Energy Environ. Sci. – volume: 292 start-page: 374 year: 2018 end-page: 382 publication-title: Electrochim. Acta – volume: 510 start-page: 180 year: 2016 end-page: 188 publication-title: Appl. Catal. A – volume: 24 start-page: 2938 year: 2014 end-page: 2946 publication-title: Adv. Funct. Mater. – volume: 133 start-page: 613 year: 2011 end-page: 620 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1216 year: 2011 end-page: 1224 publication-title: Energy Environ. Sci. – volume: 377 start-page: 29 year: 2019 publication-title: Top. Curr. Chem. – volume: 7 start-page: 1900548 year: 2019 publication-title: Energy Technol. – volume: 4 start-page: 5863 year: 2014 publication-title: Sci. Rep. – volume: 55 start-page: 4023 year: 2019 end-page: 4026 publication-title: Chem. Commun. – volume: 5 start-page: 16629 year: 2015 publication-title: Sci. Rep. – volume: 8 start-page: 38562 year: 2018 end-page: 38565 publication-title: RSC Adv. – ident: e_1_2_7_2_2 doi: 10.1007/s41061-018-0219-y – ident: e_1_2_7_66_2 doi: 10.1039/c0cc00736f – ident: e_1_2_7_7_2 doi: 10.1016/j.electacta.2017.05.002 – ident: e_1_2_7_11_1 – ident: e_1_2_7_55_1 doi: 10.1021/ja1087216 – ident: e_1_2_7_69_1 doi: 10.1016/j.elecom.2007.06.036 – ident: e_1_2_7_74_2 doi: 10.1021/acssuschemeng.8b04953 – ident: e_1_2_7_10_2 doi: 10.1016/j.solidstatesciences.2017.07.002 – ident: e_1_2_7_44_2 doi: 10.1002/adfm.201801573 – ident: e_1_2_7_46_1 doi: 10.1016/j.electacta.2015.02.077 – ident: e_1_2_7_39_1 doi: 10.1039/C7NJ01108C – ident: e_1_2_7_20_1 doi: 10.1016/j.apcatb.2012.08.022 – ident: e_1_2_7_22_2 doi: 10.1016/S0022-0728(98)00062-X – ident: e_1_2_7_16_1 doi: 10.1038/nmat3184 – ident: e_1_2_7_77_1 doi: 10.1016/j.jpowsour.2018.12.024 – ident: e_1_2_7_78_1 doi: 10.1021/jp105159t – ident: e_1_2_7_36_1 doi: 10.1007/s12274-016-1250-3 – ident: e_1_2_7_52_1 – ident: e_1_2_7_61_1 doi: 10.1021/nn503760c – ident: e_1_2_7_9_2 doi: 10.1039/C8NR06740F – ident: e_1_2_7_41_1 – ident: e_1_2_7_42_2 doi: 10.1039/C6TA08032D – ident: e_1_2_7_3_2 doi: 10.1016/j.electacta.2013.06.137 – ident: e_1_2_7_21_1 – ident: e_1_2_7_30_1 – start-page: 290 volume-title: Electrochemical methods: fundamentals and applications year: 1980 ident: e_1_2_7_68_1 – ident: e_1_2_7_76_1 doi: 10.1016/j.electacta.2007.11.029 – ident: e_1_2_7_75_1 doi: 10.1016/j.jelechem.2005.11.013 – ident: e_1_2_7_50_1 doi: 10.1039/C8NR06740F – ident: e_1_2_7_63_1 doi: 10.1021/ja405351s – ident: e_1_2_7_8_2 doi: 10.1016/j.jelechem.2017.12.064 – ident: e_1_2_7_35_1 doi: 10.1039/C5CC07296D – ident: e_1_2_7_24_1 doi: 10.1016/j.jpowsour.2011.06.079 – ident: e_1_2_7_79_1 doi: 10.1002/adfm.201301747 – ident: e_1_2_7_15_2 doi: 10.1007/s41061-019-0254-3 – ident: e_1_2_7_65_1 – ident: e_1_2_7_12_2 doi: 10.1039/C7CC09653D – ident: e_1_2_7_60_1 doi: 10.1038/srep05863 – ident: e_1_2_7_14_2 doi: 10.1016/j.apsusc.2019.03.279 – ident: e_1_2_7_34_1 doi: 10.1021/acs.chemmater.5b02177 – ident: e_1_2_7_19_1 doi: 10.1039/b924786f – ident: e_1_2_7_32_2 doi: 10.1021/ja4027715 – ident: e_1_2_7_49_1 doi: 10.1021/acsami.6b05618 – ident: e_1_2_7_62_1 doi: 10.1016/j.electacta.2011.11.044 – ident: e_1_2_7_25_1 doi: 10.1021/la000639g – ident: e_1_2_7_57_1 doi: 10.1038/srep05863 – ident: e_1_2_7_64_1 doi: 10.1021/jp211806z – ident: e_1_2_7_43_2 doi: 10.1039/C4RA03158J – ident: e_1_2_7_27_1 doi: 10.1038/srep05863 – ident: e_1_2_7_53_2 doi: 10.1016/j.jpowsour.2018.11.059 – ident: e_1_2_7_33_2 doi: 10.1039/C9CC00009G – ident: e_1_2_7_23_2 doi: 10.1002/ente.201900548 – ident: e_1_2_7_5_2 doi: 10.1016/j.electacta.2012.07.007 – ident: e_1_2_7_1_1 – ident: e_1_2_7_18_1 doi: 10.1039/c0ee00705f – ident: e_1_2_7_37_1 doi: 10.1016/j.electacta.2018.07.042 – ident: e_1_2_7_73_2 doi: 10.1021/acs.chemmater.8b01334 – ident: e_1_2_7_54_2 doi: 10.1039/C6TA02410F – ident: e_1_2_7_58_1 doi: 10.1002/aenm.201702207 – ident: e_1_2_7_51_1 doi: 10.1039/C9TA02891A – ident: e_1_2_7_17_1 doi: 10.1016/j.ijhydene.2018.07.059 – ident: e_1_2_7_56_1 doi: 10.1002/chem.201703796 – volume: 2 start-page: 64 year: 2014 ident: e_1_2_7_45_2 publication-title: Am. J. Min. Metal. – ident: e_1_2_7_59_1 doi: 10.1039/c2cc31418e – ident: e_1_2_7_4_2 doi: 10.1016/j.ijhydene.2017.12.091 – ident: e_1_2_7_72_1 – ident: e_1_2_7_67_2 doi: 10.1351/pac199163050711 – ident: e_1_2_7_70_1 doi: 10.1016/j.apcata.2015.11.015 – ident: e_1_2_7_6_1 – ident: e_1_2_7_28_1 doi: 10.1016/j.electacta.2011.11.044 – ident: e_1_2_7_71_1 doi: 10.1038/srep16629 – volume-title: Practical Surface Analysis year: 1990 ident: e_1_2_7_48_1 – ident: e_1_2_7_40_1 doi: 10.1039/C8RA03718C – ident: e_1_2_7_31_2 doi: 10.1039/C8RA07492E – ident: e_1_2_7_38_1 doi: 10.1002/adfm.201303638 – ident: e_1_2_7_47_1 doi: 10.1021/jp908239m – ident: e_1_2_7_13_2 doi: 10.1002/celc.201801707 – ident: e_1_2_7_26_1 doi: 10.1039/C3NR05359H – ident: e_1_2_7_29_1 doi: 10.1016/j.electacta.2016.05.149 |
SSID | ssj0001105386 |
Score | 2.4278028 |
Snippet | The electrocatalysis of urea represents an important potential as an efficient technology for sustainable energy development. This anodic reaction generates... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 163 |
SubjectTerms | Arrays Clean energy double layered hydroxide Electrocatalysis Electrocatalysts Electronic structure Energy conversion Fuel cells Hydroxides Interlayers Intermetallic compounds Nanoparticles nanosheet arrays Nanosheets Noble metals Oxidation Palladium Platinum Reaction kinetics Silver Sustainable development Urea urea electrocatalysis |
Title | 3D Hierarchical NiCo Layered Double Hydroxide Nanosheet Arrays Decorated with Noble Metal Nanoparticles for Enhanced Urea Electrocatalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201901423 https://www.proquest.com/docview/2354091986 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9owFLbozKG9VF1VptPKh0o9oLTEDiE5IqBCFcylg8QtcmynUEVhxCKV-Qnzh_r3-p7tGOhMt5FQFNnGEbwvb_NbCHkngeGFeTsPVMREEMXwKoKWgGlcKglDCQJL4Inu5CIeTaPPs86s0fhxELW03eQf5PWdeSX3oSqMAV0xS_Y_KOs3hQG4B_rCFSgM13-iMR-0RgvMIDYNTUoga3_ZGosd9t9E1RizokY7tVp-XyiNjHS5nuMZdG-1Ers18BqJAKgD0C-wtUxrojE9Etde1UFzJhRxWM1tsMAU1MzW0HbPMc4frGlyqONiDQI3j7eepc9FKQr02xtPDobi1FOzhVjuttZFsPdkL2xYf_X128LLjpGLIDZ-7rKGtvNasLbxWhw4MoFRYvBz6Mpg3zHmuHP3Fggtpw0dX7RCO7Stfm7JA1tfVuoSq1Wi7hMxvpd89Wm_X9n581oj9vvDcd_PPyCnDOwTYLCnvcFk_GXv3gO9lZs-o_5X1SVD2-zj8UOOVaK9nXNoLRl15_IJeezsFNqzEHhKGrp6Rh726_aAz8kNH9BD8FEEH3XgoxZ81IOPevBRCz7qwUcRfNSAjxrw0SPwUQAfrcFHEXz0V_C9INNPw8v-KHCNPQLJOxEPEtZVhZIgCjRjXaa15LJdYO07rUEfhk_IVVvFIDtknHKwaXgu0hBr1aUdxXL-kpxUy0q_IhTmZZFLJtKoiEQiRQL6L4N9lOoUhU6aJKj_20y6qvfYfKXMbL1uliEtMk-LJnnv11_Zei-_XXlekypzPGGdMXSjpmGaxE3CDPn-skt2BKez-3zpNXm0f8POyclmtdVvQFPe5G8dKn8CF7m4vw |
linkProvider | EBSCOhost |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0oHPBi_Iwo6h5MPDXQ3VLaIymQqsCJGuOl2e5uAwkpBGoif8Ff7Uw_QA7GxKSXpts5dHZ23k5n3yPkQcKCZ0atyFAWE4ZlQygCSsBjXMoxTQkJS-Af3dHY9gPr-a1ddhPiWZicH2JbcMPIyNZrDHAsSDd3rKFSz5GDEDMaYIJDUkVoAxO72n0N3oNdoQUQBM8UHyE4seHWtEvyxhZr7hvZT047xPkTt2aJZ3BCjgvESLu5i0_JgU7OSM0rhdrOyRfvUX-GB4kzXZM5Hc-8BR2KDcpwUkDI0VxTf6NWi8-Z0hTW08V6qnUKJldis6Y93IEC5FQUi7J0jAozdKRTtARjl2XvHAV8S_vJNOsZoAGgTdrPRXSyGhBSm1yQYNCfeL5RSCwYkrctbjiso2IlISg1Yx2mteSyFSMLmdaATOAyuWopG6JY2i4HdMkj4ZrIGua2FYv4Jakki0RfEQrPZRxJJlwrtoQjhQNIhIEdpdpxrJ06McpvG8qCfxxlMOZhzpzMQvRFuPVFnTxuxy9z5o1fRzZKV4VFBK5DhgUt13Qdu05Y5r4_rIRef-ht767_89I9qfmT0TAcPo1fbsgRw605VmtYg1TS1Ye-BfySRnfFDP0G9ObmnA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB20gnoRP7FadQ-Cp9BkN0mTY0lbqtbiwYh4CcnuhhZKW9oK9i_4q53JR1sPIgi5hGzmkMnbeZnsvgdwK3HCsxIzMZTNY8N2EYrIEmgbl_IsS2LBiumP7lPf7Yb2w5vztrGLP9eHWDXcCBnZfE0An6q0vhYNlXpEEoRU0JASbMOOg6XJrMBO8zV8D9d9FiQQIjN8RGzSelvLLbUbTV7_GeRnbVoTzk3amtWdziEcFISRNfMMH8GWHh_DXlD6tJ3Al2ix7pD2EWe2JiPWHwYT1ouX5MLJkCAnI826SzWbfA6VZjidTuYDrRcYchYv56xFH6DIOBWjnizrk8EMe9ILioRjp-XSOYb0lrXHg2zJAAuRbLJ27qGTtYBI2eQUwk77JegahcOCIYVjC8PjDZUqiZjUnDe41lJIMyURMq2RmOBhCWUqF0EsXV8guRRJ7FskGuY7iifiDCrjyVifA8PrMk0kj307tWNPxh4SEY5xlHLSVHtVMMpnG8lCfpxcMEZRLpzMI8pFtMpFFe5W46e58MavI2tlqqICgPOIUz_Lt3zPrQLP0vdHlCho94LV2cV_brqB3edWJ-rd9x8vYZ_Thzn1angNKovZh75C9rJIrosX9Bt-VOW8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Hierarchical+NiCo+Layered+Double+Hydroxide+Nanosheet+Arrays+Decorated+with+Noble+Metal+Nanoparticles+for+Enhanced+Urea+Electrocatalysis&rft.jtitle=ChemElectroChem&rft.au=Khalafallah%2C+Diab&rft.au=Xiaoyu%2C+Li&rft.au=Zhi%2C+Mingjia&rft.au=Hong%2C+Zhanglian&rft.date=2020-01-02&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=7&rft.issue=1&rft.spage=163&rft.epage=174&rft_id=info:doi/10.1002%2Fcelc.201901423&rft.externalDBID=10.1002%252Fcelc.201901423&rft.externalDocID=CELC201901423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |