Superoleophilic Magnetic Iron Oxide Nanoparticles for Effective Hydrocarbon Removal from Water

Various hydrocarbons are efficiently extracted from water by using a new sorbent material based on covalently functionalized magnetic nanoparticles. The functionalization of the magnetite nanoparticles with a self‐assembled monolayer of hexadecylphosphonic acid renders the nanoparticles oleophilic a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 15
Main Authors Sarcletti, Marco, Vivod, Dustin, Luchs, Tobias, Rejek, Tobias, Portilla, Luis, Müller, Lukas, Dietrich, Hanno, Hirsch, Andreas, Zahn, Dirk, Halik, Marcus
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 11.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various hydrocarbons are efficiently extracted from water by using a new sorbent material based on covalently functionalized magnetic nanoparticles. The functionalization of the magnetite nanoparticles with a self‐assembled monolayer of hexadecylphosphonic acid renders the nanoparticles oleophilic and the magnetic nature of magnetite allows for simple extraction of the hydrocarbon‐soaked sorbent. The sorbent material is capable of extracting single contaminants such as alkanes and aromatics and complex hydrocarbon mixtures such as crude oils in high extraction rates of up to 14 times the sorbent volume. Experimental results are explained by molecular dynamics simulations on the adsorption of single components from a hydrocarbon‐water mixture to the alkylphosphonic acid layer on the nanoparticles. The core–shell sorbent material is highly stable and therefore, reusable over several successive extraction cycles without degradation. The extraction performance is determined at different water temperatures, different water sources, and different magnetic core materials and evaluated compared to heptadecanoic acid functionalized magnetite. The new sorbent material provides the opportunity for an efficient, reliable, inexpensive, and environmental friendly removal of hydrocarbons from water. Magnetic nanoparticles are rendered hydrophobic and oleophilic by self‐assembly of a monolayer of alkyl phosphonic acids. Such nanoparticles can be used as sorbent material to extract hydrocarbons from the water surface. The extraction process is straightforward and the sorbent material can be used in multiple successive extraction cycles without degradation.
AbstractList Abstract Various hydrocarbons are efficiently extracted from water by using a new sorbent material based on covalently functionalized magnetic nanoparticles. The functionalization of the magnetite nanoparticles with a self‐assembled monolayer of hexadecylphosphonic acid renders the nanoparticles oleophilic and the magnetic nature of magnetite allows for simple extraction of the hydrocarbon‐soaked sorbent. The sorbent material is capable of extracting single contaminants such as alkanes and aromatics and complex hydrocarbon mixtures such as crude oils in high extraction rates of up to 14 times the sorbent volume. Experimental results are explained by molecular dynamics simulations on the adsorption of single components from a hydrocarbon‐water mixture to the alkylphosphonic acid layer on the nanoparticles. The core–shell sorbent material is highly stable and therefore, reusable over several successive extraction cycles without degradation. The extraction performance is determined at different water temperatures, different water sources, and different magnetic core materials and evaluated compared to heptadecanoic acid functionalized magnetite. The new sorbent material provides the opportunity for an efficient, reliable, inexpensive, and environmental friendly removal of hydrocarbons from water.
Various hydrocarbons are efficiently extracted from water by using a new sorbent material based on covalently functionalized magnetic nanoparticles. The functionalization of the magnetite nanoparticles with a self‐assembled monolayer of hexadecylphosphonic acid renders the nanoparticles oleophilic and the magnetic nature of magnetite allows for simple extraction of the hydrocarbon‐soaked sorbent. The sorbent material is capable of extracting single contaminants such as alkanes and aromatics and complex hydrocarbon mixtures such as crude oils in high extraction rates of up to 14 times the sorbent volume. Experimental results are explained by molecular dynamics simulations on the adsorption of single components from a hydrocarbon‐water mixture to the alkylphosphonic acid layer on the nanoparticles. The core–shell sorbent material is highly stable and therefore, reusable over several successive extraction cycles without degradation. The extraction performance is determined at different water temperatures, different water sources, and different magnetic core materials and evaluated compared to heptadecanoic acid functionalized magnetite. The new sorbent material provides the opportunity for an efficient, reliable, inexpensive, and environmental friendly removal of hydrocarbons from water.
Various hydrocarbons are efficiently extracted from water by using a new sorbent material based on covalently functionalized magnetic nanoparticles. The functionalization of the magnetite nanoparticles with a self‐assembled monolayer of hexadecylphosphonic acid renders the nanoparticles oleophilic and the magnetic nature of magnetite allows for simple extraction of the hydrocarbon‐soaked sorbent. The sorbent material is capable of extracting single contaminants such as alkanes and aromatics and complex hydrocarbon mixtures such as crude oils in high extraction rates of up to 14 times the sorbent volume. Experimental results are explained by molecular dynamics simulations on the adsorption of single components from a hydrocarbon‐water mixture to the alkylphosphonic acid layer on the nanoparticles. The core–shell sorbent material is highly stable and therefore, reusable over several successive extraction cycles without degradation. The extraction performance is determined at different water temperatures, different water sources, and different magnetic core materials and evaluated compared to heptadecanoic acid functionalized magnetite. The new sorbent material provides the opportunity for an efficient, reliable, inexpensive, and environmental friendly removal of hydrocarbons from water. Magnetic nanoparticles are rendered hydrophobic and oleophilic by self‐assembly of a monolayer of alkyl phosphonic acids. Such nanoparticles can be used as sorbent material to extract hydrocarbons from the water surface. The extraction process is straightforward and the sorbent material can be used in multiple successive extraction cycles without degradation.
Author Portilla, Luis
Sarcletti, Marco
Müller, Lukas
Rejek, Tobias
Hirsch, Andreas
Halik, Marcus
Dietrich, Hanno
Vivod, Dustin
Luchs, Tobias
Zahn, Dirk
Author_xml – sequence: 1
  givenname: Marco
  orcidid: 0000-0001-5282-0041
  surname: Sarcletti
  fullname: Sarcletti, Marco
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 2
  givenname: Dustin
  surname: Vivod
  fullname: Vivod, Dustin
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 3
  givenname: Tobias
  surname: Luchs
  fullname: Luchs, Tobias
  organization: University Erlangen‐Nürnberg
– sequence: 4
  givenname: Tobias
  surname: Rejek
  fullname: Rejek, Tobias
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 5
  givenname: Luis
  surname: Portilla
  fullname: Portilla, Luis
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 6
  givenname: Lukas
  surname: Müller
  fullname: Müller, Lukas
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 7
  givenname: Hanno
  surname: Dietrich
  fullname: Dietrich, Hanno
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 8
  givenname: Andreas
  surname: Hirsch
  fullname: Hirsch, Andreas
  organization: University Erlangen‐Nürnberg
– sequence: 9
  givenname: Dirk
  surname: Zahn
  fullname: Zahn, Dirk
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 10
  givenname: Marcus
  orcidid: 0000-0001-5976-0862
  surname: Halik
  fullname: Halik, Marcus
  email: marcus.halik@fau.de
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
BookMark eNqFkEtLw0AURgepYFvduh5wnTqPJJMuS-0LWgs-0JXDZOaOpiSZOEmr_femVOrS1f24nO9eOD3UKV0JCF1TMqCEsFtlbDFghCYkEiE7Q10a0zjghCWdU6avF6hX1xtCqBA87KK3x20F3uXgqo8szzReqfcSmjYsvCvx-jszgO9V6Srl220ONbbO44m1oJtsB3i-N95p5dOWfoDC7VSOrXcFflEN-Et0blVew9Xv7KPn6eRpPA-W69liPFoGmkchC4aacsuZpWmq0ygCQyKexFbpVNGYcy1MSlMSJpHWgmorGDEGSGKpEUkI1PA-ujnerbz73ELdyI3b-rJ9KRkjEYs5EUlLDY6U9q6uPVhZ-axQfi8pkQeH8uBQnhy2heGx8JXlsP-HlqO76eqv-wPa-Xjq
CitedBy_id crossref_primary_10_1002_chem_202000195
crossref_primary_10_1021_acs_jpcc_0c10338
crossref_primary_10_3390_magnetochemistry6020022
crossref_primary_10_1002_chem_202005427
crossref_primary_10_1016_j_chemosphere_2021_131611
crossref_primary_10_1002_ejoc_202100067
crossref_primary_10_1016_j_polymer_2023_126484
crossref_primary_10_3390_microorganisms10112142
crossref_primary_10_1002_marc_202400121
crossref_primary_10_1002_ange_202012428
crossref_primary_10_1016_j_chemosphere_2022_135063
crossref_primary_10_2139_ssrn_3996394
crossref_primary_10_3390_molecules29030706
crossref_primary_10_1002_anie_202012428
crossref_primary_10_1002_cptc_201900194
crossref_primary_10_1016_j_mattod_2021_02_020
crossref_primary_10_1002_admi_202000664
crossref_primary_10_1016_j_jhazmat_2022_128720
crossref_primary_10_1002_nadc_20214116548
crossref_primary_10_1021_acs_jpcc_4c01415
crossref_primary_10_1002_nano_202300130
crossref_primary_10_1039_D0RA05513A
crossref_primary_10_1002_advs_202302495
crossref_primary_10_1039_D0CS01033B
crossref_primary_10_1016_j_isci_2022_104213
crossref_primary_10_1016_j_jhazmat_2022_130594
crossref_primary_10_1016_j_jece_2021_105894
crossref_primary_10_1016_j_jmst_2023_02_023
crossref_primary_10_1002_chem_202102581
crossref_primary_10_1002_smll_202305467
crossref_primary_10_1016_j_jcis_2020_11_089
crossref_primary_10_1016_j_jhazmat_2021_126485
crossref_primary_10_1002_chem_202004928
crossref_primary_10_1080_17518253_2021_1993349
Cites_doi 10.1002/cmmi.417
10.1007/s11356-017-9458-7
10.1002/open.201800011
10.1021/am4008374
10.1039/C6RA09651D
10.1021/am1006194
10.1002/adma.201502792
10.1002/anie.201306709
10.1021/nn3012948
10.1039/C5RA13051D
10.1016/j.jmmm.2015.06.045
10.1002/chem.201601920
10.1016/j.cej.2017.12.135
10.1007/BF02394670
10.1016/j.jcis.2014.05.062
10.1016/j.petrol.2014.09.013
10.1021/am3000825
10.1021/cr2004212
10.1021/am501155r
10.1016/j.tiv.2012.03.011
10.1021/la990663y
10.1016/S0277-5387(01)00741-0
10.1021/cm071046v
10.1088/0957-4484/19/41/415101
10.1039/C5EM00070J
10.1038/472152a
10.1002/ejic.201200510
10.3844/ajessp.2011.108.118
10.1021/la010703
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201805742
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201805742
ADFM201805742
Genre article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: HA 2952/6‐1
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3542-9c13f32f1bbcb55ed05386facba1633c7db1b0485cc71cf720dde08f1d784e1d3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Thu Oct 10 19:24:33 EDT 2024
Fri Aug 23 02:45:59 EDT 2024
Sat Aug 24 00:56:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3542-9c13f32f1bbcb55ed05386facba1633c7db1b0485cc71cf720dde08f1d784e1d3
ORCID 0000-0001-5282-0041
0000-0001-5976-0862
PQID 2205263078
PQPubID 2045204
PageCount 7
ParticipantIDs proquest_journals_2205263078
crossref_primary_10_1002_adfm_201805742
wiley_primary_10_1002_adfm_201805742_ADFM201805742
PublicationCentury 2000
PublicationDate April 11, 2019
PublicationDateYYYYMMDD 2019-04-11
PublicationDate_xml – month: 04
  year: 2019
  text: April 11, 2019
  day: 11
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 19
2015; 17
2015; 5
2012; 2012
2008; 19
2017; 24
2014; 430
2011; 6
2013; 5
2011; 7
2001; 20
2011; 472
2015; 394
2018; 7
2016; 6
2015; 27
1993; 17
2012; 112
2018; 337
1999; 15
2018
2016
2014
2001; 17
2012; 26
2012; 6
2014; 122
2010; 2
2012; 4
2014; 6
2016; 22
2014; 53
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
(e_1_2_7_4_1) 2016
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Shigenaka G. (e_1_2_7_2_1) 2014
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 26
  start-page: 746
  year: 2012
  publication-title: Toxicol. In Vitro
– volume: 7
  start-page: 282
  year: 2018
  publication-title: ChemistryOpen
– volume: 337
  start-page: 541
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 430
  start-page: 337
  year: 2014
  publication-title: J. Colloid Interface Sci.
– volume: 22
  start-page: 13506
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 6
  start-page: 59242
  year: 2016
  publication-title: RSC Adv.
– volume: 5
  start-page: 72863
  year: 2015
  publication-title: RSC Adv.
– volume: 7
  start-page: 108
  year: 2011
  publication-title: Am. J. Environ. Sci.
– volume: 15
  start-page: 7111
  year: 1999
  publication-title: Langmuir
– volume: 24
  start-page: 18063
  year: 2017
  publication-title: Environ. Sci. Pollut. Res.
– volume: 17
  start-page: 7907
  year: 2001
  publication-title: Langmuir
– volume: 5
  start-page: 6073
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– year: 2016
– year: 2018
– year: 2014
– volume: 2
  start-page: 3141
  year: 2010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 122
  start-page: 705
  year: 2014
  publication-title: J. Pet. Sci. Eng.
– volume: 6
  start-page: 5977
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 5413
  year: 2012
  publication-title: ACS Nano
– volume: 2012
  start-page: 5323
  year: 2012
  publication-title: Eur. J. Inorg. Chem.
– volume: 6
  start-page: 189
  year: 2011
  publication-title: Contrast Media Mol. Imaging
– volume: 19
  start-page: 415101
  year: 2008
  publication-title: Nanotechnology
– volume: 17
  start-page: 557
  year: 1993
  publication-title: Environ. Manage.
– volume: 27
  start-page: 5950
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2420
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 112
  start-page: 3777
  year: 2012
  publication-title: Chem. Rev.
– volume: 17
  start-page: 1201
  year: 2015
  publication-title: Environ. Sci.: Processes Impacts
– volume: 20
  start-page: 1821
  year: 2001
  publication-title: Polyhedron
– volume: 394
  start-page: 14
  year: 2015
  publication-title: J. Magn. Magn. Mater.
– volume: 472
  start-page: 152
  year: 2011
  publication-title: Nature
– volume: 53
  start-page: 6322
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  start-page: 4494
  year: 2007
  publication-title: Chem. Mater.
– ident: e_1_2_7_30_1
  doi: 10.1002/cmmi.417
– ident: e_1_2_7_11_1
  doi: 10.1007/s11356-017-9458-7
– ident: e_1_2_7_27_1
  doi: 10.1002/open.201800011
– ident: e_1_2_7_31_1
  doi: 10.1021/am4008374
– ident: e_1_2_7_29_1
  doi: 10.1039/C6RA09651D
– ident: e_1_2_7_15_1
  doi: 10.1021/am1006194
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201502792
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.201306709
– ident: e_1_2_7_14_1
  doi: 10.1021/nn3012948
– ident: e_1_2_7_16_1
  doi: 10.1039/C5RA13051D
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jmmm.2015.06.045
– ident: e_1_2_7_18_1
  doi: 10.1002/chem.201601920
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cej.2017.12.135
– ident: e_1_2_7_1_1
  doi: 10.1007/BF02394670
– ident: e_1_2_7_28_1
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jcis.2014.05.062
– ident: e_1_2_7_7_1
  doi: 10.1016/j.petrol.2014.09.013
– ident: e_1_2_7_12_1
  doi: 10.1021/am3000825
– ident: e_1_2_7_20_1
  doi: 10.1021/cr2004212
– ident: e_1_2_7_21_1
  doi: 10.1021/am501155r
– ident: e_1_2_7_6_1
  doi: 10.1016/j.tiv.2012.03.011
– volume-title: Twenty‐Five Years after the Exxon Valdez Oil Spill: NOAA's Scientific Support, Monitoring, and Research
  year: 2014
  ident: e_1_2_7_2_1
  contributor:
    fullname: Shigenaka G.
– ident: e_1_2_7_25_1
  doi: 10.1021/la990663y
– ident: e_1_2_7_22_1
  doi: 10.1016/S0277-5387(01)00741-0
– ident: e_1_2_7_24_1
  doi: 10.1021/cm071046v
– ident: e_1_2_7_23_1
  doi: 10.1088/0957-4484/19/41/415101
– ident: e_1_2_7_8_1
  doi: 10.1039/C5EM00070J
– ident: e_1_2_7_3_1
  doi: 10.1038/472152a
– ident: e_1_2_7_26_1
  doi: 10.1002/ejic.201200510
– ident: e_1_2_7_5_1
  doi: 10.3844/ajessp.2011.108.118
– ident: e_1_2_7_32_1
  doi: 10.1021/la010703
– volume-title: Oil Tanker Spill Statistics 2015
  year: 2016
  ident: e_1_2_7_4_1
SSID ssj0017734
Score 2.4999568
Snippet Various hydrocarbons are efficiently extracted from water by using a new sorbent material based on covalently functionalized magnetic nanoparticles. The...
Abstract Various hydrocarbons are efficiently extracted from water by using a new sorbent material based on covalently functionalized magnetic nanoparticles....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Alkanes
Contaminants
functionalized nanoparticles
Hydrocarbons
Iron oxides
Magnetic cores
magnetic nanoparticles
Magnetite
Materials science
Molecular dynamics
Nanoparticles
oil extraction
phosphonic acids
Sorbents
water remediation
Water temperature
Title Superoleophilic Magnetic Iron Oxide Nanoparticles for Effective Hydrocarbon Removal from Water
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201805742
https://www.proquest.com/docview/2205263078
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-ykx78FqdTchA8dWvStM2OQx1TmMJ0uJMlSRMRtR37APWv96Vf27wIemuhKe3Le7_3a_LerwidaRVwyoRylOHGYSrwHGAh1HGFcAEL29o3thu5fxv0huxm5I-WuvhzfYhqwc1GRobXNsCFnLYWoqEiNraTnHBgHMyCsFXTs6xoUOlHkTDMt5UDYgu8yKhUbXRpa3X4alZaUM1lwpplnO4WEuWz5oUmr835TDbV1w8Zx_-8zDbaLOgo7uT-s4PWdLKLNpZECvfQ0_3ciom_6XRsF18U7ovnxLY-4utJmuC7j5dYYwBp-PouiuwwEGGcyyIDluLeZwxZUkwkXD3Q7yn4NrZdLfgReO5kHw27Vw8XPaf4K4OjPJ9Rp62IZzxqiJRK-r6OIYx5YISSAridp8JYEgm44CsVEmVC6gKCutyQOORMk9g7QLUkTfQhwsBVlPAU86XUTIaUS-3REAifpEZyTurovJyVaJyLb0S5zDKNrMWiymJ11CgnLSqCcBrZHmIaAIjxOqKZ9X-5S9S57Pars6O_DDpG63Cc7TcR0kC12WSuT4C2zORp5prf0VXl2g
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG-MHtSD30YUtQcTT4O1-ypHIhJQwAQhcnJpu9YYdSMIifrX-7oxPryY6HHLumyv7_3eb-17vyF0oaTPqMulJTXTlit9xwIWQi2bcxuwsKI8bbqR2x2_0XdvBl5eTWh6YTJ9iNmCm4mMFK9NgJsF6fJcNZRH2rSSEwaUwwUUXoOY90xs1rozBSkSBNnGsk9MiRcZ5LqNNi0vj1_OS3OyuUhZ05xT30Yif9qs1OSlNBmLkvz6IeT4r9fZQVtTRoqrmQvtohUV76HNBZ3CffR4PzF64q8qGZr1F4nb_Ck23Y-4OUpifPfxHCkMOA0f4NM6OwxcGGfKyACnuPEZQaLkIwFXd9VbAu6NTWMLfgCqOzpA_fp176phTX_MYEnHc6lVkcTRDtVECCk8T0UQyczXXAoO9M6RQSSIAGjwpAyI1AG1AURtpkkUMFeRyDlEq3ESqyOEga5I7kjXE0K5IqBMKIcGwPkE1YIxUkCX-bSEw0x_I8yUlmloLBbOLFZAxXzWwmkcvoemjZj6gGOsgGhq_l_uElZr9fbs6Pgvg87ReqPXboWtZuf2BG3A-XT7iZAiWh2PJuoUWMxYnKV--g1GR-n6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQfTBuzidmgfBp25NmrbZ43COTd2U6XBPliRNRNRuzA3UX-9Ju6svgj62NKU9J-c7Xy7nC0KnWgWcMqEcZbhxmAo8B1gIdVwhXMDCsvaNrUZutoJ6h112_e5cFX-mDzGdcLORkeK1DfB-bEoz0VARG1tJTjgwDgYgvMwCj9rhV7U9FZAiYZitKwfE7vAi3Ylso0tLi-0X09KMa84z1jTl1DaQmHxsttPkpTgayqL6-qHj-J-_2UTrYz6KK1kH2kJLOtlGa3MqhTvo8W5k1cRfda9vZ18UboqnxNY-4sagl-Cbj-dYY0BpGH6Pd9lhYMI400UGMMX1zxjSpBhIeLqt33rQubEta8EPQHQHu6hTu7g_rzvjYxkc5fmMOmVFPONRQ6RU0vd1DHHMAyOUFEDuPBXGkkgABl-pkCgTUhcg1OWGxCFnmsTeHsolvUTvIwxkRQlPMV9KzWRIudTgQ2B8khrJOcmjs4lXon6mvhFlOss0shaLphbLo8LEadE4Ct8jW0RMA0Axnkc0tf4vb4kq1VpzenXwl0YnaOW2WouuG62rQ7QKt9O1J0IKKDccjPQRUJihPE576TeZ5Oip
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superoleophilic+Magnetic+Iron+Oxide+Nanoparticles+for+Effective+Hydrocarbon+Removal+from+Water&rft.jtitle=Advanced+functional+materials&rft.au=Sarcletti%2C+Marco&rft.au=Vivod%2C+Dustin&rft.au=Luchs%2C+Tobias&rft.au=Rejek%2C+Tobias&rft.date=2019-04-11&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=15&rft_id=info:doi/10.1002%2Fadfm.201805742&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201805742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon