Identification and formation mechanism of individual degradation products in lithium-ion batteries studied by liquid chromatography/electrospray ionization mass spectrometry and atmospheric solid analysis probe mass spectrometry
Rationale Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard....
Saved in:
Published in | Rapid communications in mass spectrometry Vol. 30; no. 15; pp. 1754 - 1762 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
15.08.2016
Wiley Subscription Services, Inc |
Online Access | Get full text |
Cover
Loading…
Abstract | Rationale
Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products.
Methods
The degradation products in the electrolytes recovered from cycle‐tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI‐MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)‐MS analysis was conducted by time‐of‐flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source.
Results
The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI‐MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP‐MS, and its formation mechanism was explained similarly to those in the electrolyte.
Conclusions
The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI‐MS and ASAP‐MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Rationale Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. Methods The degradation products in the electrolytes recovered from cycle-tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI-MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)-MS analysis was conducted by time-of-flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. Results The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI-MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP-MS, and its formation mechanism was explained similarly to those in the electrolyte. Conclusions The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI-MS and ASAP-MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd. Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. The degradation products in the electrolytes recovered from cycle-tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI-MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)-MS analysis was conducted by time-of-flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI-MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP-MS, and its formation mechanism was explained similarly to those in the electrolyte. The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI-MS and ASAP-MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd. Rationale Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. Methods The degradation products in the electrolytes recovered from cycle‐tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI‐MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)‐MS analysis was conducted by time‐of‐flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. Results The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI‐MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP‐MS, and its formation mechanism was explained similarly to those in the electrolyte. Conclusions The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI‐MS and ASAP‐MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd. |
Author | Liu, Yi-Hung Saito, Yuria Morimura, Wataru Takeda, Sahori Sakai, Tetsuo |
Author_xml | – sequence: 1 givenname: Sahori surname: Takeda fullname: Takeda, Sahori email: : S. Takeda, Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan., takeda-s@aist.go.jp organization: Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, 563-8577, Osaka, Japan – sequence: 2 givenname: Wataru surname: Morimura fullname: Morimura, Wataru organization: Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, 563-8577, Osaka, Japan – sequence: 3 givenname: Yi-Hung surname: Liu fullname: Liu, Yi-Hung organization: Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, 563-8577, Osaka, Japan – sequence: 4 givenname: Tetsuo surname: Sakai fullname: Sakai, Tetsuo organization: Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, 563-8577, Osaka, Japan – sequence: 5 givenname: Yuria surname: Saito fullname: Saito, Yuria organization: Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, 563-8577, Osaka, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27426451$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV9r1jAUxoNM3Lsp-Akk4I033fKnadpLfZ3b4FVBJoo3IU1Sm9k2XZJO6-fdBzHvWncjQiDknN95zhOeI3AwuMEA8ByjE4wQOfWqP-EFI4_ABqOKZ4hQfAA2qGI4y3FVHoKjEK4RwpgR9AQcEp6TImd4A-4utRmibayS0boBykHDxvl-efVGtXKwoYeugXbQ9tbqSXZQm-9e6oUZvdOTiiH1YWdja6c-29drGaPx1gQY4qSt0bCeE3AzWQ1V611a4ZLK2M6npjMqehdGL2eYZu3vdb0MaXq8b_Ym-vnenox9QtukrWBwXZKTg-zmYMPeS23-HXsKHjeyC-bZeh-Dz-_OrrYX2e7j-eX29S5TlOUko6rWDalMhY1SiktclETqUqmyrlCBa00KWhW64oXkPMdElVTWGrO8oboqeU6PwctFN_m4mUyI4tpNPpkLApcoTydnLFGvFkqlLwdvGjF620s_C4zEPk6R4hT7OBP6YhWc6t7oB_BvfgnIFuCn7cz8XyHxaft-FVx5G6L59cBL_0MUnHImvnw4F1v27c3bq69U7OgftdnDIw |
CitedBy_id | crossref_primary_10_1039_C6RA15168J crossref_primary_10_3390_separations6020026 crossref_primary_10_1002_batt_202000170 crossref_primary_10_1021_acsami_9b03359 crossref_primary_10_1021_acs_analchem_6b04348 crossref_primary_10_1002_ente_202000696 crossref_primary_10_1002_anie_202000727 crossref_primary_10_1016_j_elecom_2021_106979 crossref_primary_10_1016_j_jpowsour_2019_227414 crossref_primary_10_1016_j_sab_2018_07_027 crossref_primary_10_1021_acs_jpcc_3c04154 crossref_primary_10_1021_acs_chemmater_9b04135 crossref_primary_10_1002_aenm_202304295 crossref_primary_10_1016_j_chroma_2019_07_008 crossref_primary_10_1016_j_electacta_2021_139670 crossref_primary_10_1021_acsami_1c06890 crossref_primary_10_1039_C7JA00073A crossref_primary_10_1039_C7TA08289D crossref_primary_10_1149_1945_7111_abba62 crossref_primary_10_1002_ange_202000727 crossref_primary_10_1016_j_xcrp_2021_100327 crossref_primary_10_1016_j_electacta_2018_07_224 crossref_primary_10_1039_C7RA07486G crossref_primary_10_1016_j_electacta_2022_140765 crossref_primary_10_1021_acs_analchem_8b05229 crossref_primary_10_1021_acs_chemmater_9b00063 crossref_primary_10_1149_1945_7111_ac44bb crossref_primary_10_1016_j_jpowsour_2017_12_015 crossref_primary_10_1021_acs_jpcc_7b10391 crossref_primary_10_1021_acs_jpcc_2c08234 |
Cites_doi | 10.1039/C5RA23624J 10.1021/ac101948u 10.1098/rsta.2010.0112 10.1016/j.jpowsour.2014.09.064 10.1016/j.electacta.2014.05.072 10.1021/ac051470k 10.1149/1.2054777 10.1016/S0378-7753(97)02635-9 10.1149/1.1397771 10.1016/j.jpowsour.2007.11.110 10.1149/1.2044000 10.1016/S0378-7753(03)00257-X 10.1149/1.2128859 10.1016/j.jpowsour.2013.05.125 10.1016/j.jpowsour.2005.02.021 10.1149/1.1760992 10.1016/j.chroma.2015.03.048 10.1038/ncomms7950 10.1039/c2ee21892e 10.1016/j.elecom.2015.10.008 10.1149/2.0231510jes 10.1149/1.2083267 10.1149/1.1837858 10.1016/j.chroma.2015.07.054 10.1149/2.0401504jes 10.1021/ac051987w 10.1016/0378-7753(94)02086-I 10.1149/1.1837300 10.1016/j.chroma.2014.05.066 |
ContentType | Journal Article |
Copyright | Copyright © 2016 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
DBID | BSCLL NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 JQ2 L7M |
DOI | 10.1002/rcm.7652 |
DatabaseName | Istex PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database ProQuest Computer Science Collection Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1097-0231 |
EndPage | 1762 |
ExternalDocumentID | 4119912111 10_1002_rcm_7652 27426451 RCM7652 ark_67375_WNG_C5ZBDTX3_L |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT NPM AAMNL AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 JQ2 L7M |
ID | FETCH-LOGICAL-c3542-3cbdf29e91eccc7a1682ad8cc8b9061bd26396d976a77412c83abd154f3d98743 |
IEDL.DBID | DR2 |
ISSN | 0951-4198 |
IngestDate | Tue Nov 19 07:11:16 EST 2024 Thu Nov 21 22:11:46 EST 2024 Sat Sep 28 07:58:39 EDT 2024 Sat Aug 24 00:58:51 EDT 2024 Wed Oct 30 09:51:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | Copyright © 2016 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3542-3cbdf29e91eccc7a1682ad8cc8b9061bd26396d976a77412c83abd154f3d98743 |
Notes | ArticleID:RCM7652 istex:3AB6A2CCAD07E16CF0EA6BA8F398DEE9AD1154B4 ark:/67375/WNG-C5ZBDTX3-L |
PMID | 27426451 |
PQID | 1804804455 |
PQPubID | 1016428 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1804804455 crossref_primary_10_1002_rcm_7652 pubmed_primary_27426451 wiley_primary_10_1002_rcm_7652_RCM7652 istex_primary_ark_67375_WNG_C5ZBDTX3_L |
PublicationCentury | 2000 |
PublicationDate | 2016-08-15 15 August 2016 20160815 |
PublicationDateYYYYMMDD | 2016-08-15 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationSubtitle | RCM |
PublicationTitle | Rapid communications in mass spectrometry |
PublicationTitleAlternate | Rapid Commun. Mass Spectrom |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | B. Ravdel, K. M. Abraham, R. Gitzendanner, J. Dicarlo, B. Lucht, C. Campion. Thermal stability of lithium-ion battery electrolytes. J. Power Sources 2003, 119-121, 805. D. Ortiz, V. Steinmetz, D. Durand, S. Legand, V. Dauvois, P. Maître, S. Le Caër. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries. Nat. Commun. 2015, 6, 6950. M. Tochihara, H. Nara, D. Mukoyama, T. Yokoshima, T. Momma, T. Osaka. Liquid chromatography-quadruple time of flight mass spectrometry analysis of products in degraded lithium-ion batteries. J. Electrochem. Soc. 2015, 162, A2008. M. Grützke, V. Kraft, B. Hoffmann, S. Klamor, J. Diekmann, A. Kwade, M. Winter, S. Nowak. Aging investigations of a lithium-ion battery electrolyte from a field-tested hybrid electric vehicle. J. Power Sources 2015, 273, 83. L. Terborg, S. Weber, F. Blaske, S. Passerini, M. Winter, U. Karst, S. Nowak. Investigation of thermal aging and hydrolysis mechanisms in commercial lithium ion battery electrolyte. J. Power Sources 2013, 242, 832. K. Kanamura, H. Tamura, S. Shiraishi, Z. Takehara. XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4. J. Electrochem. Soc. 1995, 142, 340. S. Laruelle, S. Pilard, P. Guenot, S. Grugeon, J.-M. Tarascon. Identification of Li-based electrolyte degradation products through DEI and ESI high-resolution mass spectrometry. J. Electrochem. Soc. 2004, 151, A1202. G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot, J.-M. Tarascon, S. Laruelle. Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J. Power Sources 2008, 178, 409. V. Kraft, M. Grützke, W. Weber, J. Menzel, S. Wiemers-Meyer, M. Winter, S. Nowak. Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes. J. Chromatogr. A 2015, 1409, 201. G. Gachot, P. Ribiére, D. Mathiron, S. Grugeon, M. Armand, J.-B. Leriche, S. Pilard, S. Laruelle. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study. Anal. Chem. 2011, 83, 478. M. M. Thackeray, C. Wolverton, E. D. Isaacs. Electrical energy storage for transportation - approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854. T. Sasaki, T. Abe, Y. Iriyama, M. Inaba, Z. Ogumi. Formation mechanism of alkyl dicarbonates in Li-ion cells. J. Power Sources 2005, 150, 208. C. L. Campion, W. Li, B. L. Lucht. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A2327. A. M. Andersson, K. Edström. Chemical composition and morphology of the elevated temperature SEI on graphite. J. Electrochem. Soc. 2001, 148, A1100. E. Peled, D. Golodnitsky, G. Ardel. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144, L208. C. Schultz, V. Kraft, M. Pyschik, S. Weber, F. Schappacher, M. Winter, S. Nowak. Separation and quantification of organic electrolyte components in lithium-ion batteries via a developed HPLC method. J. Electrochem. Soc. 2015, 162, A629. D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli, H. Cohen. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc. 1996, 143, 3809. E. Peled. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems - the solid electrolyte interphase model. J. Electrochem. Soc. 1979, 127, 2047. W. Weber, K. Kraft, M. Grützke, R. Wagner, M. Winter, S. Nowak. Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte. J. Chromatogr. A 2015, 1394, 128. J.-M. Tarascon. Key challenges in future Li-battery research. Phil. Trans. R. Soc. A 2010, 368, 3227. V. Kraft, W. Weber, B. Streipert, R. Wagner, C. Schultz, M. Winter, S. Nowak. Qualitative and quantitative investigation of organophosphates in an electrochemically and thermally treated lithium hexafluorophosphate based lithium ion battery electrolyte by a developed liquid chromatography-tandem quadrupole mass spectrometry method. RSC Adv. 2016, 6, 8. C.N. McEwen, R.G. McKay, B. S. Larsen. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal. Chem. 2005, 77, 7826. A. Zaban, D. Aurbach. Impedance spectroscopy of lithium and nickel electrodes in propylene carbonate solutions of different lithium salts - A comparative study. J. Power Sources 1995, 54, 289. L. Gireaud, S. Grugeon, S. Pilard, P. Guenot, J.-M. Tarascon, S. Laruelle. Mass spectrometry investigations on electrolyte degradation products for the development of nanocomposite electrodes in lithium ion batteries. Anal. Chem. 2006, 78, 3688. H. Kim, S. Grugeon, G. Gachot, M. Armand, L. Sannier, S. Laruelle. Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives. Electrochim. Acta 2014, 136, 157. Y.-H. Liu, S. Takeda, I. Kaneko, H. Yoshitake, M. Yanagida, Y. Saito, T. Sakai. An approach of evaluating the effect of vinylene carbonate additive on graphite anode for lithium ion battery at elevated temperature. Electrochem. Commun. 2015, 61, 70. D. Aurbach, Y. Ein-Eli, O. Chusid, Y. Carmeli, M. Babai, H. Yamin. The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable "rocking-chair" type batteries. J. Electrochem. Soc. 1994, 141, 603. H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani, M. Yamauchi. Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging. J. Power Sources 1997, 68, 311. V. Kraft, M. Grützke, W. Weber, M. Winter, S. Nowak. Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products. J. Chromatogr. A 2014, 1354, 92. 2015; 162 1979; 127 2005; 150 2015; 6 2005; 152 2006; 78 2003; 119‐121 2010; 368 1997; 68 1995; 54 2011; 83 1996; 143 2013; 242 2001; 148 2014; 136 2015; 1394 2015; 273 2016; 6 2015; 1409 2015; 61 1994; 141 2004; 151 1997; 144 2014; 1354 1995; 142 2008; 178 2012; 5 2005; 77 e_1_2_6_10_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 143 start-page: 3809 year: 1996 article-title: A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate‐dimethyl carbonate mixtures publication-title: J. Electrochem. Soc. – volume: 151 start-page: A1202 year: 2004 article-title: Identification of Li‐based electrolyte degradation products through DEI and ESI high‐resolution mass spectrometry publication-title: J. Electrochem. Soc. – volume: 162 start-page: A629 year: 2015 article-title: Separation and quantification of organic electrolyte components in lithium‐ion batteries via a developed HPLC method publication-title: J. Electrochem. Soc. – volume: 152 start-page: A2327 year: 2005 article-title: Thermal decomposition of LiPF ‐based electrolytes for lithium‐ion batteries publication-title: J. Electrochem. Soc. – volume: 61 start-page: 70 year: 2015 article-title: An approach of evaluating the effect of vinylene carbonate additive on graphite anode for lithium ion battery at elevated temperature publication-title: Electrochem. Commun. – volume: 178 start-page: 409 year: 2008 article-title: Deciphering the multi‐step degradation mechanisms of carbonate‐based electrolyte in Li batteries publication-title: J. Power Sources – volume: 1394 start-page: 128 year: 2015 article-title: Identification of alkylated phosphates by gas chromatography–mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte publication-title: J. Chromatogr. A – volume: 127 start-page: 2047 year: 1979 article-title: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems – the solid electrolyte interphase model publication-title: J. Electrochem. Soc. – volume: 119‐121 start-page: 805 year: 2003 article-title: Thermal stability of lithium‐ion battery electrolytes publication-title: J. Power Sources – volume: 162 start-page: A2008 year: 2015 article-title: Liquid chromatography‐quadruple time of flight mass spectrometry analysis of products in degraded lithium‐ion batteries publication-title: J. Electrochem. Soc. – volume: 273 start-page: 83 year: 2015 article-title: Aging investigations of a lithium‐ion battery electrolyte from a field‐tested hybrid electric vehicle publication-title: J. Power Sources – volume: 54 start-page: 289 year: 1995 article-title: Impedance spectroscopy of lithium and nickel electrodes in propylene carbonate solutions of different lithium salts – A comparative study publication-title: J. Power Sources – volume: 1354 start-page: 92 year: 2014 article-title: Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate‐based organic electrolytes and their thermal decomposition products publication-title: J. Chromatogr. A – volume: 1409 start-page: 201 year: 2015 article-title: Two‐dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate‐based lithium ion battery electrolytes publication-title: J. Chromatogr. A – volume: 6 start-page: 8 year: 2016 article-title: Qualitative and quantitative investigation of organophosphates in an electrochemically and thermally treated lithium hexafluorophosphate based lithium ion battery electrolyte by a developed liquid chromatography‐tandem quadrupole mass spectrometry method publication-title: RSC Adv. – volume: 368 start-page: 3227 year: 2010 article-title: Key challenges in future Li‐battery research publication-title: Phil. Trans. R. Soc. A – volume: 148 start-page: A1100 year: 2001 article-title: Chemical composition and morphology of the elevated temperature SEI on graphite publication-title: J. Electrochem. Soc. – volume: 136 start-page: 157 year: 2014 article-title: Ethylene bis‐carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives publication-title: Electrochim. Acta – volume: 78 start-page: 3688 year: 2006 article-title: Mass spectrometry investigations on electrolyte degradation products for the development of nanocomposite electrodes in lithium ion batteries publication-title: Anal. Chem. – volume: 142 start-page: 340 year: 1995 article-title: XPS analysis of lithium surfaces following immersion in various solvents containing LiBF publication-title: J. Electrochem. Soc. – volume: 150 start-page: 208 year: 2005 article-title: Formation mechanism of alkyl dicarbonates in Li‐ion cells publication-title: J. Power Sources – volume: 242 start-page: 832 year: 2013 article-title: Investigation of thermal aging and hydrolysis mechanisms in commercial lithium ion battery electrolyte publication-title: J. Power Sources – volume: 77 start-page: 7826 year: 2005 article-title: Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments publication-title: Anal. Chem. – volume: 68 start-page: 311 year: 1997 article-title: Degradation mechanism of alkyl carbonate solvents used in lithium‐ion cells during initial charging publication-title: J. Power Sources – volume: 141 start-page: 603 year: 1994 article-title: The correlation between the surface chemistry and the performance of Li‐carbon intercalation anodes for rechargeable "rocking‐chair" type batteries publication-title: J. Electrochem. Soc. – volume: 5 start-page: 7854 year: 2012 article-title: Electrical energy storage for transportation – approaching the limits of, and going beyond, lithium‐ion batteries publication-title: Energy Environ. Sci. – volume: 6 start-page: 6950 year: 2015 article-title: Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium‐ion batteries publication-title: Nat. Commun. – volume: 144 start-page: L208 year: 1997 article-title: Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes publication-title: J. Electrochem. Soc. – volume: 83 start-page: 478 year: 2011 article-title: Gas chromatography/mass spectrometry as a suitable tool for the Li‐ion battery electrolyte degradation mechanisms study publication-title: Anal. Chem. – ident: e_1_2_6_27_1 doi: 10.1039/C5RA23624J – ident: e_1_2_6_16_1 doi: 10.1021/ac101948u – ident: e_1_2_6_2_1 doi: 10.1098/rsta.2010.0112 – ident: e_1_2_6_25_1 doi: 10.1016/j.jpowsour.2014.09.064 – ident: e_1_2_6_20_1 doi: 10.1016/j.electacta.2014.05.072 – ident: e_1_2_6_30_1 doi: 10.1021/ac051470k – ident: e_1_2_6_5_1 doi: 10.1149/1.2054777 – ident: e_1_2_6_11_1 doi: 10.1016/S0378-7753(97)02635-9 – ident: e_1_2_6_8_1 doi: 10.1149/1.1397771 – ident: e_1_2_6_15_1 doi: 10.1016/j.jpowsour.2007.11.110 – ident: e_1_2_6_7_1 doi: 10.1149/1.2044000 – ident: e_1_2_6_17_1 doi: 10.1016/S0378-7753(03)00257-X – ident: e_1_2_6_4_1 doi: 10.1149/1.2128859 – ident: e_1_2_6_22_1 doi: 10.1016/j.jpowsour.2013.05.125 – ident: e_1_2_6_12_1 doi: 10.1016/j.jpowsour.2005.02.021 – ident: e_1_2_6_13_1 doi: 10.1149/1.1760992 – ident: e_1_2_6_26_1 doi: 10.1016/j.chroma.2015.03.048 – ident: e_1_2_6_19_1 doi: 10.1038/ncomms7950 – ident: e_1_2_6_3_1 doi: 10.1039/c2ee21892e – ident: e_1_2_6_28_1 doi: 10.1016/j.elecom.2015.10.008 – ident: e_1_2_6_29_1 doi: 10.1149/2.0231510jes – ident: e_1_2_6_18_1 doi: 10.1149/1.2083267 – ident: e_1_2_6_10_1 doi: 10.1149/1.1837858 – ident: e_1_2_6_24_1 doi: 10.1016/j.chroma.2015.07.054 – ident: e_1_2_6_21_1 doi: 10.1149/2.0401504jes – ident: e_1_2_6_14_1 doi: 10.1021/ac051987w – ident: e_1_2_6_9_1 doi: 10.1016/0378-7753(94)02086-I – ident: e_1_2_6_6_1 doi: 10.1149/1.1837300 – ident: e_1_2_6_23_1 doi: 10.1016/j.chroma.2014.05.066 |
SSID | ssj0011520 |
Score | 2.3738682 |
Snippet | Rationale
Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The... Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the... Rationale Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1754 |
Title | Identification and formation mechanism of individual degradation products in lithium-ion batteries studied by liquid chromatography/electrospray ionization mass spectrometry and atmospheric solid analysis probe mass spectrometry |
URI | https://api.istex.fr/ark:/67375/WNG-C5ZBDTX3-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frcm.7652 https://www.ncbi.nlm.nih.gov/pubmed/27426451 https://www.proquest.com/docview/1804804455 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pb9MwFMctNA5w4TesMJCRELe0jWOnyREKY0Jsh2kTFRws_4pWTWlL0kpsJ_4E_kYO-zv2nu0EjR8S4tRDHOe1ebY_fvX7PkJeAGKYLE9tojNTJJy5cVLCziIBsrdmAgtIaTAOuX-Q7x3z9zMxi6cqMRcm6EP0ATccGX6-xgGudDv6KRramHo4yQVOv6iahzx02CtHAecERUasIs9hY93pzo7ZqLvxykp0HX_Ur3_CzKvU6ped3dvkc2dwOG1yOtys9dCc_6Ll-H_f6A65FWmUvgruc5dcc4t75Ma0KwJ3n1yERN4qRvaoWlja5zvS2mHe8Lyt6bKi8z61i1pUoAjFmugqSMq2cJ0C8p_MN_WPb9_xivbSnrBTp60_zGipPoMmXzZzS81Js4SHRD3tUSzW064adUYxgnweDQD0pz5ZFFUXwGJvoFrX0BQTGw2FoQXdqSi9gtZo9_ttD8jx7tuj6V4SS0MkJhOcJZnRtmKlK1NwQTNRaV4wZQtjCl2Cg2nLgLxyC6ylgG9TZopMaQu4WGW2LICaHpKtxXLhtglV0EdhNLdWG85dpQF5gEnH2jmmzTgfkOedm8hVUACRQeuZSXhjEt_YgLz0_tM3UM0pnpibCPnx4J2cik-v3xzNMvlhQHY6B5NxsmhlWmBiP-dCDMij4HR9R_hPes5FCk_wrvNXE-ThdB8_H_9rwyfkJsBfjvHxVOyQrXWzcU8BsNb6mR9Kl0rKK2g |
link.rule.ids | 315,782,786,1377,27931,27932,46301,46725 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWu4flwvtRWMBIiFvaxnHSRJygy1Kg7WHVFRVCsvyKtlqlLUkrsXviJ_AbOfA7mLGToOUhIU45-DWJZ-zPE883hDwFiKGjJDSBinQacGb7QQYniwCQvdED2EAyjX7IyTQZnfC383i-Q543sTCeH6J1uKFluPUaDRwd0r2frKGlLrqDJIb1dw-sneF9vsPjljsKkI7nZMQ88hyO1g3zbJ_1mpaX9qI9_Kyf_wQ0L-NWt_EcXSMfG5H9fZOz7najuvriFzbH_3yn6-RqDUjpC69BN8iOXd4k-8MmD9wt8t3H8ua1c4_KpaFtyCMtLIYOL6qCrnK6aKO7qEESCp-via49q2wF5RRQ_-liW3z78hVLlGP3hMM6rdx9RkPVOVT5tF0Yqk_LFQxSU2r36nw91bqU5xSdyBe1AID-qYsXReIFkNgJKDcFVMXYRk3BuqA7WbOvoDTK_t7sNjk5ejUbjoI6O0Sgo5izINLK5CyzWQhaqAcyTFImTap1qjLQMWUYgK_EANySAHFDptNIKgOIMY9MlgJwukN2l6ulvUeohD5SrbgxSnNucwWoB2BpX1nLlO4nHfKk0ROx9iQgwtM9MwEzJnDGOuSZU6C2gizP8NLcIBbvp6_FMP7w8nA2j8S4Qw4aDRP1elGJMMXYfs7juEPueq1rO8Kf6QmPQxjB6c5fRRDHwwk-7_9rxcdkfzSbjMX4zfTdA3IFsGCC7vIwPiC7m3JrHwLe2qhHzq5-AMIQL4U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXqJWAC29KaIFFQtycxOu1Yx9LSijQRqhqRQSH1b6sRpWTYCcS7akfoZ-xh34OZrxro_KQEKccvF5P4tnd3052_kPIK0AMHSWhCVSk04Az2w8y2FkEQPZGD2AByTTGIffHye4R_zCJJ_5UJebCOH2INuCGI6Oer3GAL0ze-ykaWuqiO0himH7XeQJuikB00EpHAeg4SUYsI89hZ90Iz_ZZr7nz2lK0jr_q9z9x5nVsrded0V3ytbHYHTc56a6WqqvPfhFz_L-vdI_c8ThKt53_3Cc37OwBuTVsqsA9JFcukzf3oT0qZ4a2CY-0sJg4PK0KOs_ptM3togYlKFy1JrpwmrIVXKfA_MfTVXF5foFXVK3tCVt1WtWnGQ1Vp9Dk22pqqD4u5_AQL6jd89V6qkUpTymGkM-8AcD-tM4WRdkFsLg2UC4LaIqZjZrC2ILupNdeQWuU_f22R-Ro9PZwuBv42hCBjmLOgkgrk7PMZiH4oB7IMEmZNKnWqcrAw5RhgF6JAdiSALgh02kklQFezCOTpYBNj8nabD6zTwiV0EeqFTdGac5troB5AEr7ylqmdD_pkJeNm4iFkwARTuyZCXhjAt9Yh7yu_adtIMsTPDI3iMXn8TsxjL-82TmcRGKvQ7YaBxN-tqhEmGJmP-dx3CEbzunajvCv9ITHITyhdp2_miAOhvv4-fRfG74gNz_tjMTe-_HHTXIbQDDBWHkYb5G1ZbmyzwC2lup5Pap-ABGMLis |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+formation+mechanism+of+individual+degradation+products+in+lithium%E2%80%90ion+batteries+studied+by+liquid+chromatography%2Felectrospray+ionization+mass+spectrometry+and+atmospheric+solid+analysis+probe+mass+spectrometry&rft.jtitle=Rapid+communications+in+mass+spectrometry&rft.au=Takeda%2C+Sahori&rft.au=Morimura%2C+Wataru&rft.au=Liu%2C+Yi%E2%80%90Hung&rft.au=Sakai%2C+Tetsuo&rft.date=2016-08-15&rft.issn=0951-4198&rft.eissn=1097-0231&rft.volume=30&rft.issue=15&rft.spage=1754&rft.epage=1762&rft_id=info:doi/10.1002%2Frcm.7652&rft.externalDBID=10.1002%252Frcm.7652&rft.externalDocID=RCM7652 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-4198&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-4198&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-4198&client=summon |