Identification and formation mechanism of individual degradation products in lithium-ion batteries studied by liquid chromatography/electrospray ionization mass spectrometry and atmospheric solid analysis probe mass spectrometry

Rationale Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard....

Full description

Saved in:
Bibliographic Details
Published inRapid communications in mass spectrometry Vol. 30; no. 15; pp. 1754 - 1762
Main Authors Takeda, Sahori, Morimura, Wataru, Liu, Yi-Hung, Sakai, Tetsuo, Saito, Yuria
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 15.08.2016
Wiley Subscription Services, Inc
Online AccessGet full text

Cover

Loading…
Abstract Rationale Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. Methods The degradation products in the electrolytes recovered from cycle‐tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI‐MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)‐MS analysis was conducted by time‐of‐flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. Results The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI‐MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP‐MS, and its formation mechanism was explained similarly to those in the electrolyte. Conclusions The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI‐MS and ASAP‐MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList Rationale Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. Methods The degradation products in the electrolytes recovered from cycle-tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI-MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)-MS analysis was conducted by time-of-flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. Results The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI-MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP-MS, and its formation mechanism was explained similarly to those in the electrolyte. Conclusions The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI-MS and ASAP-MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd.
Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. The degradation products in the electrolytes recovered from cycle-tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI-MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)-MS analysis was conducted by time-of-flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI-MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP-MS, and its formation mechanism was explained similarly to those in the electrolyte. The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI-MS and ASAP-MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd.
Rationale Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. Methods The degradation products in the electrolytes recovered from cycle‐tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI‐MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)‐MS analysis was conducted by time‐of‐flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. Results The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI‐MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP‐MS, and its formation mechanism was explained similarly to those in the electrolyte. Conclusions The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI‐MS and ASAP‐MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd.
Author Liu, Yi-Hung
Saito, Yuria
Morimura, Wataru
Takeda, Sahori
Sakai, Tetsuo
Author_xml – sequence: 1
  givenname: Sahori
  surname: Takeda
  fullname: Takeda, Sahori
  email: : S. Takeda, Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan., takeda-s@aist.go.jp
  organization: Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, 563-8577, Osaka, Japan
– sequence: 2
  givenname: Wataru
  surname: Morimura
  fullname: Morimura, Wataru
  organization: Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, 563-8577, Osaka, Japan
– sequence: 3
  givenname: Yi-Hung
  surname: Liu
  fullname: Liu, Yi-Hung
  organization: Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, 563-8577, Osaka, Japan
– sequence: 4
  givenname: Tetsuo
  surname: Sakai
  fullname: Sakai, Tetsuo
  organization: Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, 563-8577, Osaka, Japan
– sequence: 5
  givenname: Yuria
  surname: Saito
  fullname: Saito, Yuria
  organization: Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, 563-8577, Osaka, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27426451$$D View this record in MEDLINE/PubMed
BookMark eNp1kV9r1jAUxoNM3Lsp-Akk4I033fKnadpLfZ3b4FVBJoo3IU1Sm9k2XZJO6-fdBzHvWncjQiDknN95zhOeI3AwuMEA8ByjE4wQOfWqP-EFI4_ABqOKZ4hQfAA2qGI4y3FVHoKjEK4RwpgR9AQcEp6TImd4A-4utRmibayS0boBykHDxvl-efVGtXKwoYeugXbQ9tbqSXZQm-9e6oUZvdOTiiH1YWdja6c-29drGaPx1gQY4qSt0bCeE3AzWQ1V611a4ZLK2M6npjMqehdGL2eYZu3vdb0MaXq8b_Ym-vnenox9QtukrWBwXZKTg-zmYMPeS23-HXsKHjeyC-bZeh-Dz-_OrrYX2e7j-eX29S5TlOUko6rWDalMhY1SiktclETqUqmyrlCBa00KWhW64oXkPMdElVTWGrO8oboqeU6PwctFN_m4mUyI4tpNPpkLApcoTydnLFGvFkqlLwdvGjF620s_C4zEPk6R4hT7OBP6YhWc6t7oB_BvfgnIFuCn7cz8XyHxaft-FVx5G6L59cBL_0MUnHImvnw4F1v27c3bq69U7OgftdnDIw
CitedBy_id crossref_primary_10_1039_C6RA15168J
crossref_primary_10_3390_separations6020026
crossref_primary_10_1002_batt_202000170
crossref_primary_10_1021_acsami_9b03359
crossref_primary_10_1021_acs_analchem_6b04348
crossref_primary_10_1002_ente_202000696
crossref_primary_10_1002_anie_202000727
crossref_primary_10_1016_j_elecom_2021_106979
crossref_primary_10_1016_j_jpowsour_2019_227414
crossref_primary_10_1016_j_sab_2018_07_027
crossref_primary_10_1021_acs_jpcc_3c04154
crossref_primary_10_1021_acs_chemmater_9b04135
crossref_primary_10_1002_aenm_202304295
crossref_primary_10_1016_j_chroma_2019_07_008
crossref_primary_10_1016_j_electacta_2021_139670
crossref_primary_10_1021_acsami_1c06890
crossref_primary_10_1039_C7JA00073A
crossref_primary_10_1039_C7TA08289D
crossref_primary_10_1149_1945_7111_abba62
crossref_primary_10_1002_ange_202000727
crossref_primary_10_1016_j_xcrp_2021_100327
crossref_primary_10_1016_j_electacta_2018_07_224
crossref_primary_10_1039_C7RA07486G
crossref_primary_10_1016_j_electacta_2022_140765
crossref_primary_10_1021_acs_analchem_8b05229
crossref_primary_10_1021_acs_chemmater_9b00063
crossref_primary_10_1149_1945_7111_ac44bb
crossref_primary_10_1016_j_jpowsour_2017_12_015
crossref_primary_10_1021_acs_jpcc_7b10391
crossref_primary_10_1021_acs_jpcc_2c08234
Cites_doi 10.1039/C5RA23624J
10.1021/ac101948u
10.1098/rsta.2010.0112
10.1016/j.jpowsour.2014.09.064
10.1016/j.electacta.2014.05.072
10.1021/ac051470k
10.1149/1.2054777
10.1016/S0378-7753(97)02635-9
10.1149/1.1397771
10.1016/j.jpowsour.2007.11.110
10.1149/1.2044000
10.1016/S0378-7753(03)00257-X
10.1149/1.2128859
10.1016/j.jpowsour.2013.05.125
10.1016/j.jpowsour.2005.02.021
10.1149/1.1760992
10.1016/j.chroma.2015.03.048
10.1038/ncomms7950
10.1039/c2ee21892e
10.1016/j.elecom.2015.10.008
10.1149/2.0231510jes
10.1149/1.2083267
10.1149/1.1837858
10.1016/j.chroma.2015.07.054
10.1149/2.0401504jes
10.1021/ac051987w
10.1016/0378-7753(94)02086-I
10.1149/1.1837300
10.1016/j.chroma.2014.05.066
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
DOI 10.1002/rcm.7652
DatabaseName Istex
PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
ProQuest Computer Science Collection
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-0231
EndPage 1762
ExternalDocumentID 4119912111
10_1002_rcm_7652
27426451
RCM7652
ark_67375_WNG_C5ZBDTX3_L
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
NPM
AAMNL
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
ID FETCH-LOGICAL-c3542-3cbdf29e91eccc7a1682ad8cc8b9061bd26396d976a77412c83abd154f3d98743
IEDL.DBID DR2
ISSN 0951-4198
IngestDate Tue Nov 19 07:11:16 EST 2024
Thu Nov 21 22:11:46 EST 2024
Sat Sep 28 07:58:39 EDT 2024
Sat Aug 24 00:58:51 EDT 2024
Wed Oct 30 09:51:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Copyright © 2016 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3542-3cbdf29e91eccc7a1682ad8cc8b9061bd26396d976a77412c83abd154f3d98743
Notes ArticleID:RCM7652
istex:3AB6A2CCAD07E16CF0EA6BA8F398DEE9AD1154B4
ark:/67375/WNG-C5ZBDTX3-L
PMID 27426451
PQID 1804804455
PQPubID 1016428
PageCount 9
ParticipantIDs proquest_journals_1804804455
crossref_primary_10_1002_rcm_7652
pubmed_primary_27426451
wiley_primary_10_1002_rcm_7652_RCM7652
istex_primary_ark_67375_WNG_C5ZBDTX3_L
PublicationCentury 2000
PublicationDate 2016-08-15
15 August 2016
20160815
PublicationDateYYYYMMDD 2016-08-15
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationSubtitle RCM
PublicationTitle Rapid communications in mass spectrometry
PublicationTitleAlternate Rapid Commun. Mass Spectrom
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References B. Ravdel, K. M. Abraham, R. Gitzendanner, J. Dicarlo, B. Lucht, C. Campion. Thermal stability of lithium-ion battery electrolytes. J. Power Sources 2003, 119-121, 805.
D. Ortiz, V. Steinmetz, D. Durand, S. Legand, V. Dauvois, P. Maître, S. Le Caër. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries. Nat. Commun. 2015, 6, 6950.
M. Tochihara, H. Nara, D. Mukoyama, T. Yokoshima, T. Momma, T. Osaka. Liquid chromatography-quadruple time of flight mass spectrometry analysis of products in degraded lithium-ion batteries. J. Electrochem. Soc. 2015, 162, A2008.
M. Grützke, V. Kraft, B. Hoffmann, S. Klamor, J. Diekmann, A. Kwade, M. Winter, S. Nowak. Aging investigations of a lithium-ion battery electrolyte from a field-tested hybrid electric vehicle. J. Power Sources 2015, 273, 83.
L. Terborg, S. Weber, F. Blaske, S. Passerini, M. Winter, U. Karst, S. Nowak. Investigation of thermal aging and hydrolysis mechanisms in commercial lithium ion battery electrolyte. J. Power Sources 2013, 242, 832.
K. Kanamura, H. Tamura, S. Shiraishi, Z. Takehara. XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4. J. Electrochem. Soc. 1995, 142, 340.
S. Laruelle, S. Pilard, P. Guenot, S. Grugeon, J.-M. Tarascon. Identification of Li-based electrolyte degradation products through DEI and ESI high-resolution mass spectrometry. J. Electrochem. Soc. 2004, 151, A1202.
G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot, J.-M. Tarascon, S. Laruelle. Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J. Power Sources 2008, 178, 409.
V. Kraft, M. Grützke, W. Weber, J. Menzel, S. Wiemers-Meyer, M. Winter, S. Nowak. Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes. J. Chromatogr. A 2015, 1409, 201.
G. Gachot, P. Ribiére, D. Mathiron, S. Grugeon, M. Armand, J.-B. Leriche, S. Pilard, S. Laruelle. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study. Anal. Chem. 2011, 83, 478.
M. M. Thackeray, C. Wolverton, E. D. Isaacs. Electrical energy storage for transportation - approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854.
T. Sasaki, T. Abe, Y. Iriyama, M. Inaba, Z. Ogumi. Formation mechanism of alkyl dicarbonates in Li-ion cells. J. Power Sources 2005, 150, 208.
C. L. Campion, W. Li, B. L. Lucht. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A2327.
A. M. Andersson, K. Edström. Chemical composition and morphology of the elevated temperature SEI on graphite. J. Electrochem. Soc. 2001, 148, A1100.
E. Peled, D. Golodnitsky, G. Ardel. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144, L208.
C. Schultz, V. Kraft, M. Pyschik, S. Weber, F. Schappacher, M. Winter, S. Nowak. Separation and quantification of organic electrolyte components in lithium-ion batteries via a developed HPLC method. J. Electrochem. Soc. 2015, 162, A629.
D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli, H. Cohen. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc. 1996, 143, 3809.
E. Peled. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems - the solid electrolyte interphase model. J. Electrochem. Soc. 1979, 127, 2047.
W. Weber, K. Kraft, M. Grützke, R. Wagner, M. Winter, S. Nowak. Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte. J. Chromatogr. A 2015, 1394, 128.
J.-M. Tarascon. Key challenges in future Li-battery research. Phil. Trans. R. Soc. A 2010, 368, 3227.
V. Kraft, W. Weber, B. Streipert, R. Wagner, C. Schultz, M. Winter, S. Nowak. Qualitative and quantitative investigation of organophosphates in an electrochemically and thermally treated lithium hexafluorophosphate based lithium ion battery electrolyte by a developed liquid chromatography-tandem quadrupole mass spectrometry method. RSC Adv. 2016, 6, 8.
C.N. McEwen, R.G. McKay, B. S. Larsen. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal. Chem. 2005, 77, 7826.
A. Zaban, D. Aurbach. Impedance spectroscopy of lithium and nickel electrodes in propylene carbonate solutions of different lithium salts - A comparative study. J. Power Sources 1995, 54, 289.
L. Gireaud, S. Grugeon, S. Pilard, P. Guenot, J.-M. Tarascon, S. Laruelle. Mass spectrometry investigations on electrolyte degradation products for the development of nanocomposite electrodes in lithium ion batteries. Anal. Chem. 2006, 78, 3688.
H. Kim, S. Grugeon, G. Gachot, M. Armand, L. Sannier, S. Laruelle. Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives. Electrochim. Acta 2014, 136, 157.
Y.-H. Liu, S. Takeda, I. Kaneko, H. Yoshitake, M. Yanagida, Y. Saito, T. Sakai. An approach of evaluating the effect of vinylene carbonate additive on graphite anode for lithium ion battery at elevated temperature. Electrochem. Commun. 2015, 61, 70.
D. Aurbach, Y. Ein-Eli, O. Chusid, Y. Carmeli, M. Babai, H. Yamin. The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable "rocking-chair" type batteries. J. Electrochem. Soc. 1994, 141, 603.
H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani, M. Yamauchi. Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging. J. Power Sources 1997, 68, 311.
V. Kraft, M. Grützke, W. Weber, M. Winter, S. Nowak. Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products. J. Chromatogr. A 2014, 1354, 92.
2015; 162
1979; 127
2005; 150
2015; 6
2005; 152
2006; 78
2003; 119‐121
2010; 368
1997; 68
1995; 54
2011; 83
1996; 143
2013; 242
2001; 148
2014; 136
2015; 1394
2015; 273
2016; 6
2015; 1409
2015; 61
1994; 141
2004; 151
1997; 144
2014; 1354
1995; 142
2008; 178
2012; 5
2005; 77
e_1_2_6_10_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 143
  start-page: 3809
  year: 1996
  article-title: A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate‐dimethyl carbonate mixtures
  publication-title: J. Electrochem. Soc.
– volume: 151
  start-page: A1202
  year: 2004
  article-title: Identification of Li‐based electrolyte degradation products through DEI and ESI high‐resolution mass spectrometry
  publication-title: J. Electrochem. Soc.
– volume: 162
  start-page: A629
  year: 2015
  article-title: Separation and quantification of organic electrolyte components in lithium‐ion batteries via a developed HPLC method
  publication-title: J. Electrochem. Soc.
– volume: 152
  start-page: A2327
  year: 2005
  article-title: Thermal decomposition of LiPF ‐based electrolytes for lithium‐ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 61
  start-page: 70
  year: 2015
  article-title: An approach of evaluating the effect of vinylene carbonate additive on graphite anode for lithium ion battery at elevated temperature
  publication-title: Electrochem. Commun.
– volume: 178
  start-page: 409
  year: 2008
  article-title: Deciphering the multi‐step degradation mechanisms of carbonate‐based electrolyte in Li batteries
  publication-title: J. Power Sources
– volume: 1394
  start-page: 128
  year: 2015
  article-title: Identification of alkylated phosphates by gas chromatography–mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte
  publication-title: J. Chromatogr. A
– volume: 127
  start-page: 2047
  year: 1979
  article-title: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems – the solid electrolyte interphase model
  publication-title: J. Electrochem. Soc.
– volume: 119‐121
  start-page: 805
  year: 2003
  article-title: Thermal stability of lithium‐ion battery electrolytes
  publication-title: J. Power Sources
– volume: 162
  start-page: A2008
  year: 2015
  article-title: Liquid chromatography‐quadruple time of flight mass spectrometry analysis of products in degraded lithium‐ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 273
  start-page: 83
  year: 2015
  article-title: Aging investigations of a lithium‐ion battery electrolyte from a field‐tested hybrid electric vehicle
  publication-title: J. Power Sources
– volume: 54
  start-page: 289
  year: 1995
  article-title: Impedance spectroscopy of lithium and nickel electrodes in propylene carbonate solutions of different lithium salts – A comparative study
  publication-title: J. Power Sources
– volume: 1354
  start-page: 92
  year: 2014
  article-title: Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate‐based organic electrolytes and their thermal decomposition products
  publication-title: J. Chromatogr. A
– volume: 1409
  start-page: 201
  year: 2015
  article-title: Two‐dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate‐based lithium ion battery electrolytes
  publication-title: J. Chromatogr. A
– volume: 6
  start-page: 8
  year: 2016
  article-title: Qualitative and quantitative investigation of organophosphates in an electrochemically and thermally treated lithium hexafluorophosphate based lithium ion battery electrolyte by a developed liquid chromatography‐tandem quadrupole mass spectrometry method
  publication-title: RSC Adv.
– volume: 368
  start-page: 3227
  year: 2010
  article-title: Key challenges in future Li‐battery research
  publication-title: Phil. Trans. R. Soc. A
– volume: 148
  start-page: A1100
  year: 2001
  article-title: Chemical composition and morphology of the elevated temperature SEI on graphite
  publication-title: J. Electrochem. Soc.
– volume: 136
  start-page: 157
  year: 2014
  article-title: Ethylene bis‐carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives
  publication-title: Electrochim. Acta
– volume: 78
  start-page: 3688
  year: 2006
  article-title: Mass spectrometry investigations on electrolyte degradation products for the development of nanocomposite electrodes in lithium ion batteries
  publication-title: Anal. Chem.
– volume: 142
  start-page: 340
  year: 1995
  article-title: XPS analysis of lithium surfaces following immersion in various solvents containing LiBF
  publication-title: J. Electrochem. Soc.
– volume: 150
  start-page: 208
  year: 2005
  article-title: Formation mechanism of alkyl dicarbonates in Li‐ion cells
  publication-title: J. Power Sources
– volume: 242
  start-page: 832
  year: 2013
  article-title: Investigation of thermal aging and hydrolysis mechanisms in commercial lithium ion battery electrolyte
  publication-title: J. Power Sources
– volume: 77
  start-page: 7826
  year: 2005
  article-title: Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments
  publication-title: Anal. Chem.
– volume: 68
  start-page: 311
  year: 1997
  article-title: Degradation mechanism of alkyl carbonate solvents used in lithium‐ion cells during initial charging
  publication-title: J. Power Sources
– volume: 141
  start-page: 603
  year: 1994
  article-title: The correlation between the surface chemistry and the performance of Li‐carbon intercalation anodes for rechargeable "rocking‐chair" type batteries
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 7854
  year: 2012
  article-title: Electrical energy storage for transportation – approaching the limits of, and going beyond, lithium‐ion batteries
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 6950
  year: 2015
  article-title: Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium‐ion batteries
  publication-title: Nat. Commun.
– volume: 144
  start-page: L208
  year: 1997
  article-title: Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes
  publication-title: J. Electrochem. Soc.
– volume: 83
  start-page: 478
  year: 2011
  article-title: Gas chromatography/mass spectrometry as a suitable tool for the Li‐ion battery electrolyte degradation mechanisms study
  publication-title: Anal. Chem.
– ident: e_1_2_6_27_1
  doi: 10.1039/C5RA23624J
– ident: e_1_2_6_16_1
  doi: 10.1021/ac101948u
– ident: e_1_2_6_2_1
  doi: 10.1098/rsta.2010.0112
– ident: e_1_2_6_25_1
  doi: 10.1016/j.jpowsour.2014.09.064
– ident: e_1_2_6_20_1
  doi: 10.1016/j.electacta.2014.05.072
– ident: e_1_2_6_30_1
  doi: 10.1021/ac051470k
– ident: e_1_2_6_5_1
  doi: 10.1149/1.2054777
– ident: e_1_2_6_11_1
  doi: 10.1016/S0378-7753(97)02635-9
– ident: e_1_2_6_8_1
  doi: 10.1149/1.1397771
– ident: e_1_2_6_15_1
  doi: 10.1016/j.jpowsour.2007.11.110
– ident: e_1_2_6_7_1
  doi: 10.1149/1.2044000
– ident: e_1_2_6_17_1
  doi: 10.1016/S0378-7753(03)00257-X
– ident: e_1_2_6_4_1
  doi: 10.1149/1.2128859
– ident: e_1_2_6_22_1
  doi: 10.1016/j.jpowsour.2013.05.125
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jpowsour.2005.02.021
– ident: e_1_2_6_13_1
  doi: 10.1149/1.1760992
– ident: e_1_2_6_26_1
  doi: 10.1016/j.chroma.2015.03.048
– ident: e_1_2_6_19_1
  doi: 10.1038/ncomms7950
– ident: e_1_2_6_3_1
  doi: 10.1039/c2ee21892e
– ident: e_1_2_6_28_1
  doi: 10.1016/j.elecom.2015.10.008
– ident: e_1_2_6_29_1
  doi: 10.1149/2.0231510jes
– ident: e_1_2_6_18_1
  doi: 10.1149/1.2083267
– ident: e_1_2_6_10_1
  doi: 10.1149/1.1837858
– ident: e_1_2_6_24_1
  doi: 10.1016/j.chroma.2015.07.054
– ident: e_1_2_6_21_1
  doi: 10.1149/2.0401504jes
– ident: e_1_2_6_14_1
  doi: 10.1021/ac051987w
– ident: e_1_2_6_9_1
  doi: 10.1016/0378-7753(94)02086-I
– ident: e_1_2_6_6_1
  doi: 10.1149/1.1837300
– ident: e_1_2_6_23_1
  doi: 10.1016/j.chroma.2014.05.066
SSID ssj0011520
Score 2.3738682
Snippet Rationale Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The...
Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the...
Rationale Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1754
Title Identification and formation mechanism of individual degradation products in lithium-ion batteries studied by liquid chromatography/electrospray ionization mass spectrometry and atmospheric solid analysis probe mass spectrometry
URI https://api.istex.fr/ark:/67375/WNG-C5ZBDTX3-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frcm.7652
https://www.ncbi.nlm.nih.gov/pubmed/27426451
https://www.proquest.com/docview/1804804455
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pb9MwFMctNA5w4TesMJCRELe0jWOnyREKY0Jsh2kTFRws_4pWTWlL0kpsJ_4E_kYO-zv2nu0EjR8S4tRDHOe1ebY_fvX7PkJeAGKYLE9tojNTJJy5cVLCziIBsrdmAgtIaTAOuX-Q7x3z9zMxi6cqMRcm6EP0ATccGX6-xgGudDv6KRramHo4yQVOv6iahzx02CtHAecERUasIs9hY93pzo7ZqLvxykp0HX_Ur3_CzKvU6ped3dvkc2dwOG1yOtys9dCc_6Ll-H_f6A65FWmUvgruc5dcc4t75Ma0KwJ3n1yERN4qRvaoWlja5zvS2mHe8Lyt6bKi8z61i1pUoAjFmugqSMq2cJ0C8p_MN_WPb9_xivbSnrBTp60_zGipPoMmXzZzS81Js4SHRD3tUSzW064adUYxgnweDQD0pz5ZFFUXwGJvoFrX0BQTGw2FoQXdqSi9gtZo9_ttD8jx7tuj6V4SS0MkJhOcJZnRtmKlK1NwQTNRaV4wZQtjCl2Cg2nLgLxyC6ylgG9TZopMaQu4WGW2LICaHpKtxXLhtglV0EdhNLdWG85dpQF5gEnH2jmmzTgfkOedm8hVUACRQeuZSXhjEt_YgLz0_tM3UM0pnpibCPnx4J2cik-v3xzNMvlhQHY6B5NxsmhlWmBiP-dCDMij4HR9R_hPes5FCk_wrvNXE-ThdB8_H_9rwyfkJsBfjvHxVOyQrXWzcU8BsNb6mR9Kl0rKK2g
link.rule.ids 315,782,786,1377,27931,27932,46301,46725
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWu4flwvtRWMBIiFvaxnHSRJygy1Kg7WHVFRVCsvyKtlqlLUkrsXviJ_AbOfA7mLGToOUhIU45-DWJZ-zPE883hDwFiKGjJDSBinQacGb7QQYniwCQvdED2EAyjX7IyTQZnfC383i-Q543sTCeH6J1uKFluPUaDRwd0r2frKGlLrqDJIb1dw-sneF9vsPjljsKkI7nZMQ88hyO1g3zbJ_1mpaX9qI9_Kyf_wQ0L-NWt_EcXSMfG5H9fZOz7najuvriFzbH_3yn6-RqDUjpC69BN8iOXd4k-8MmD9wt8t3H8ua1c4_KpaFtyCMtLIYOL6qCrnK6aKO7qEESCp-via49q2wF5RRQ_-liW3z78hVLlGP3hMM6rdx9RkPVOVT5tF0Yqk_LFQxSU2r36nw91bqU5xSdyBe1AID-qYsXReIFkNgJKDcFVMXYRk3BuqA7WbOvoDTK_t7sNjk5ejUbjoI6O0Sgo5izINLK5CyzWQhaqAcyTFImTap1qjLQMWUYgK_EANySAHFDptNIKgOIMY9MlgJwukN2l6ulvUeohD5SrbgxSnNucwWoB2BpX1nLlO4nHfKk0ROx9iQgwtM9MwEzJnDGOuSZU6C2gizP8NLcIBbvp6_FMP7w8nA2j8S4Qw4aDRP1elGJMMXYfs7juEPueq1rO8Kf6QmPQxjB6c5fRRDHwwk-7_9rxcdkfzSbjMX4zfTdA3IFsGCC7vIwPiC7m3JrHwLe2qhHzq5-AMIQL4U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXqJWAC29KaIFFQtycxOu1Yx9LSijQRqhqRQSH1b6sRpWTYCcS7akfoZ-xh34OZrxro_KQEKccvF5P4tnd3052_kPIK0AMHSWhCVSk04Az2w8y2FkEQPZGD2AByTTGIffHye4R_zCJJ_5UJebCOH2INuCGI6Oer3GAL0ze-ykaWuqiO0himH7XeQJuikB00EpHAeg4SUYsI89hZ90Iz_ZZr7nz2lK0jr_q9z9x5nVsrded0V3ytbHYHTc56a6WqqvPfhFz_L-vdI_c8ThKt53_3Cc37OwBuTVsqsA9JFcukzf3oT0qZ4a2CY-0sJg4PK0KOs_ptM3togYlKFy1JrpwmrIVXKfA_MfTVXF5foFXVK3tCVt1WtWnGQ1Vp9Dk22pqqD4u5_AQL6jd89V6qkUpTymGkM-8AcD-tM4WRdkFsLg2UC4LaIqZjZrC2ILupNdeQWuU_f22R-Ro9PZwuBv42hCBjmLOgkgrk7PMZiH4oB7IMEmZNKnWqcrAw5RhgF6JAdiSALgh02kklQFezCOTpYBNj8nabD6zTwiV0EeqFTdGac5troB5AEr7ylqmdD_pkJeNm4iFkwARTuyZCXhjAt9Yh7yu_adtIMsTPDI3iMXn8TsxjL-82TmcRGKvQ7YaBxN-tqhEmGJmP-dx3CEbzunajvCv9ITHITyhdp2_miAOhvv4-fRfG74gNz_tjMTe-_HHTXIbQDDBWHkYb5G1ZbmyzwC2lup5Pap-ABGMLis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+formation+mechanism+of+individual+degradation+products+in+lithium%E2%80%90ion+batteries+studied+by+liquid+chromatography%2Felectrospray+ionization+mass+spectrometry+and+atmospheric+solid+analysis+probe+mass+spectrometry&rft.jtitle=Rapid+communications+in+mass+spectrometry&rft.au=Takeda%2C+Sahori&rft.au=Morimura%2C+Wataru&rft.au=Liu%2C+Yi%E2%80%90Hung&rft.au=Sakai%2C+Tetsuo&rft.date=2016-08-15&rft.issn=0951-4198&rft.eissn=1097-0231&rft.volume=30&rft.issue=15&rft.spage=1754&rft.epage=1762&rft_id=info:doi/10.1002%2Frcm.7652&rft.externalDBID=10.1002%252Frcm.7652&rft.externalDocID=RCM7652
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-4198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-4198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-4198&client=summon