Static to dynamic: an application of the two-joint link model of mono- and biarticular muscles to pedaling biomechanics

The two-joint link model of mono- and biarticular muscles in human hindlimbs has been established on the basis of biomechanical and mechanical engineering analyses of electromyographic data and testing of the results using robotic hindlimbs equipped with mono- and/or biarticular actuators. The prese...

Full description

Saved in:
Bibliographic Details
Published inJournal of Biomechanical Science and Engineering Vol. 19; no. 3; p. 24-00112
Main Authors MIYAKE, Tsutomu, HASHIMOTO, Tohru, OKABE, Masataka
Format Journal Article
LanguageEnglish
Published Tokyo The Japan Society of Mechanical Engineers 01.01.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The two-joint link model of mono- and biarticular muscles in human hindlimbs has been established on the basis of biomechanical and mechanical engineering analyses of electromyographic data and testing of the results using robotic hindlimbs equipped with mono- and/or biarticular actuators. The present review applies this model to the analysis of pedaling biomechanics and demonstrates its applicability to studies of human and non-human limb locomotion. Previously published three examples of electromyographic data on pedaling biomechanics are analyzed and reviewed in light of the two-joint link model. As comparable to published data on pedaling biomechanics, the results propose the essential parameters of the model, including activity switches and their directional changes, forces and their combined forces, all that occur in 360 degrees around the right ankle joint during the stationary and continuous pedaling activities. In addition, the co-activation of an antagonistic pair of biarticular muscles and parallel linkage function of a biarticular muscle are proposed to be tested further in both engineering and biological sciences. As biomimetics has contributed to engineering science, the models and/or hypotheses that would be generated in engineering science can be applied to biological science.
AbstractList The two-joint link model of mono- and biarticular muscles in human hindlimbs has been established on the basis of biomechanical and mechanical engineering analyses of electromyographic data and testing of the results using robotic hindlimbs equipped with mono- and/or biarticular actuators. The present review applies this model to the analysis of pedaling biomechanics and demonstrates its applicability to studies of human and non-human limb locomotion. Previously published three examples of electromyographic data on pedaling biomechanics are analyzed and reviewed in light of the two-joint link model. As comparable to published data on pedaling biomechanics, the results propose the essential parameters of the model, including activity switches and their directional changes, forces and their combined forces, all that occur in 360 degrees around the right ankle joint during the stationary and continuous pedaling activities. In addition, the co-activation of an antagonistic pair of biarticular muscles and parallel linkage function of a biarticular muscle are proposed to be tested further in both engineering and biological sciences. As biomimetics has contributed to engineering science, the models and/or hypotheses that would be generated in engineering science can be applied to biological science.
The two-joint link model of mono- and biarticular muscles in human hindlimbs has been established on the basis of biomechanical and mechanical engineering analyses of electromyographic data and testing of the results using robotic hindlimbs equipped with mono- and/or biarticular actuators. The present review applies this model to the analysis of pedaling biomechanics and demonstrates its applicability to studies of human and non-human limb locomotion. Previously published three examples of electromyographic data on pedaling biomechanics are analyzed and reviewed in light of the two-joint link model. As comparable to published data on pedaling biomechanics, the results propose the essential parameters of the model, including activity switches and their directional changes, forces and their combined forces, all that occur in 360 degrees around the right ankle joint during the stationary and continuous pedaling activities. In addition, the co-activation of an antagonistic pair of biarticular muscles and parallel linkage function of a biarticular muscle are proposed to be tested further in both engineering and biological sciences. As biomimetics has contributed to engineering science, the models and/or hypotheses that would be generated in engineering science can be applied to biological science.Graphical Abstract
ArticleNumber 24-00112
Author HASHIMOTO, Tohru
OKABE, Masataka
MIYAKE, Tsutomu
Author_xml – sequence: 1
  fullname: MIYAKE, Tsutomu
  organization: Department of Anatomy, The Jikei University School of Medicine
– sequence: 2
  fullname: HASHIMOTO, Tohru
  organization: Department of Anatomy, The Jikei University School of Medicine
– sequence: 3
  fullname: OKABE, Masataka
  organization: Department of Anatomy, The Jikei University School of Medicine
BookMark eNpNkUtv1DAUhS1UJNrCkr0l1il-xQ92aASlUiUWhbV14zhTh8QOdkZV_32dGTpiY1s-3z0-8rlCFzFFj9BHSm4oM-bz2BV_w0RDCKXsDbqkWpPGaMkv_ju_Q1eljIRIqRi5RE8PK6zB4TXh_jnCHNwXDBHDskzBVSVFnAa8Pnq8PqVmTCGueArxD55T76dNm1NMTZ3pcRcgV6_DBBnPh-ImXzbfxfdQR_ZVT7N3jxCDK-_R2wGm4j_826_R7-_ffu1-NPc_b-92X-8bx1vBGmaUbB3jnWNSGGYGwgYpXUdBCWM8H0QrVe8k12A4l4PQTHREKRA900Bafo3uTr59gtEuOcyQn22CYI8XKe_tMfTkrdGGdeCBeK4EdbJTRBmhhde0pcrR6vXp5LXk9Pfgy2rHdMixxrecEqEYo4ZVqjlRLqdSsh_Or1Jit57s1pNlwh57qvzuxI9lhb0_06-xjjQ1lm_L69RZrd-ZrY_8BVgGns0
Cites_doi 10.3389/fnbot.2021.625479
10.1152/jappl.1996.81.6.2339
10.1016/j.jbmt.2017.03.012
10.3951/biomechanisms.20.197
10.3389/frspt.2022.1000788
10.1152/physiol.00049.2014
10.1113/jphysiol.1995.sp020662
10.1038/s41598-019-50995-3
10.1186/s12891-021-04905-2
10.1299/kikaic.69.3263
10.1007/s00221-022-06498-1
10.1299/transjsme.16-00010
10.1016/0021-9290(86)90192-2
10.1007/s00421-016-3428-5
10.1515/humo-2016-0005
10.3951/biomechanisms.25.167
10.1242/jeb.228221
10.1016/j.isci.2021.103075
10.1016/j.jelekin.2007.03.002
10.1123/mc.2018-0038
10.1299/jbse.17-00234
10.1002/ar.23392
10.2493/jjspe.65.1772
10.3389/fphys.2022.837611
10.3951/biomechanisms.13.181
10.1152/jn.00084.2018
10.1007/978-3-319-05539-8
10.1249/00003677-198401000-00006
10.1186/s12984-020-00747-6
10.1242/jeb.099127
10.1080/14763141.2020.1776760
10.7210/jrsj.32.190
10.1123/jab.9.4.333
10.1016/0167-9457(89)90037-7
10.1016/j.jbiomech.2023.111553
10.20965/jrm.2004.p0643
10.1088/1748-3190/abf744
10.3389/fphys.2020.609553
10.1186/s40648-022-00226-8
10.1097/00005768-200010000-00015
10.1016/j.jelekin.2007.10.010
10.2478/v10237-011-0012-0
10.1007/s00424-023-02794-z
10.3951/biomechanisms.21.167
10.1299/kikaic.63.769
10.3951/sobim.41.4_221
10.1242/jeb.124057
10.2493/jjspe.73.492
10.3389/fphys.2017.00070
10.1152/jn.01096.2010
10.1299/kikaic.71.3510
10.1163/156854290X00073
10.1007/s12551-017-0395-y
10.1093/iob/obac042
10.3389/fnins.2018.01042
10.1242/jeb.138438
10.1093/cvr/cvab328
10.3390/app10124112
10.7210/jrsj.28.678
10.1080/23267224.1903.10649915
ContentType Journal Article
Copyright 2024 by The Japan Society of Mechanical Engineers
2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by The Japan Society of Mechanical Engineers
– notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QO
7QP
7TB
8FD
FR3
P64
DOA
DOI 10.1299/jbse.24-00112
DatabaseName CrossRef
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Engineering Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1880-9863
EndPage 24-00112
ExternalDocumentID oai_doaj_org_article_9892baea0e3741c6b7079484e81517c1
10_1299_jbse_24_00112
article_jbse_19_3_19_24_00112_article_char_en
GroupedDBID 2WC
ALMA_UNASSIGNED_HOLDINGS
CS3
GROUPED_DOAJ
JSF
JSH
KQ8
M~E
OK1
P6G
RJT
RZJ
TKC
AAYXX
CITATION
7QO
7QP
7TB
8FD
FR3
P64
ID FETCH-LOGICAL-c3542-29765c23bc264929f02f66cb1a7499e3f4567dc638a9336f4824b077a4d28a053
IEDL.DBID DOA
ISSN 1880-9863
IngestDate Tue Oct 22 15:16:10 EDT 2024
Thu Oct 10 21:49:35 EDT 2024
Fri Aug 23 04:57:16 EDT 2024
Thu Jul 04 14:00:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3542-29765c23bc264929f02f66cb1a7499e3f4567dc638a9336f4824b077a4d28a053
OpenAccessLink https://doaj.org/article/9892baea0e3741c6b7079484e81517c1
PQID 3104722192
PQPubID 2048483
ParticipantIDs doaj_primary_oai_doaj_org_article_9892baea0e3741c6b7079484e81517c1
proquest_journals_3104722192
crossref_primary_10_1299_jbse_24_00112
jstage_primary_article_jbse_19_3_19_24_00112_article_char_en
PublicationCentury 2000
PublicationDate 20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Biomechanical Science and Engineering
PublicationTitleAlternate JBSE
PublicationYear 2024
Publisher The Japan Society of Mechanical Engineers
Japan Science and Technology Agency
Publisher_xml – name: The Japan Society of Mechanical Engineers
– name: Japan Science and Technology Agency
References Fujikawa, T., Oshima, T., Kumamoto, M. and Yokoi, N., Functional coordination control of pairs of antagonistic muscles. Transactions of the Japan Society of Mechanical Engineers Series C. Vol.63 (1997), pp.769-776 (in Japanese). DOI: 10.1299/kikaic.63.769.
Linke, W.A., Stretching the story of titin and muscle function. Journal of Biomechanics. Vol.152 (2023), DOI:10.1016/j.jbiomech.2023.111553.
Bini, R.R. and Hume, P., Reproducibility of lower limb motion and forces during stationary submaximal pedaling using wearable motion tracking sensors. Sports Biomechanics. Vol.22 (2020), pp.1041-1062.
Enoka, R.M., Eccentric contractions require unique activation strategies by the nervous system. Journal of Applied Physiology. Vol.81 (1996), pp.2339-2346.
Latash, M.L., Muscle coactivation: definitions, mechanisms, and functions. Journal of Neurophysiology. Vol.120 (2018), pp.88-104.
Komi, P.V., Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exercise and Sport Sciences Reviews. Vol.12 (1984), pp.81-121.
Loescher, C.M., Hobbach, A.J. and Linke, W.A., Titin (TTN): from molecule to modifications, mechanics, and medical significance. Cardiovascular Research. Vol.118 (2022), pp.2903-2918.
Oshima, T., Fujikawa, T., Kameyama, O. and Kumamoto, M., Robotic analyses of output force distribution developed by human limbs. Proceeding of the 2000 IEEE International Workshop on Robot and Human Interactive Communication, Japan. (2000), pp.229-234.
Fujikawa, T., Mechanical properties of bi-articular muscles with movement of the extremities. Journal of Japanese Society of Physical Therapy Fundamentals. Vol.19 (2016), pp.8-16 (in Japanese).
Koide, T., Manno, M., Takahama, H., Koshino, Y. and Fujikawa, T., Simulation analysis of standing up using the bi-joint link model. Journal of Physical Therapy Fundamentals. Vol.23 (2020), pp.97-106.
Herzog, W., Schappacher, G., DuVall, M., Leonard, T.R. and Herzog, J.A., Residual force enhancement following eccentric contractions: a new mechanism involving titin. Physiology. Vol.31 (2016), pp.300-312.
Fukutani, A., Isaka, T. and Herzog, W., Evidence for muscle cell-based mechanisms of enhanced performance in stretch-shortening cycle in skeletal muscle. Frontiers in Physiology. Vol.11 (2020), DOI: 10.3389/fphys.2020.609553.
Banken, E. and Oeffner, J., Biomimetics for innovative and future-oriented space applications – a review. Frontiers in Space Technologies. Vol.3 (2023), DOI: 10.3389/frspt.2022.1000788.
Awad, L.N., Lewek, M. D., Kesar, T. M., Franz, J. R. and Bowden, M. G., These legs are made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits. Journal of NeuroEngineering and Rehabilitation. Vol.17 (2020), DOI:10.1186/s12984-020-00747-6.
Tomalka, A., Eccentric muscle contractions: from single muscle fibre to whole muscle mechanics. European Journal of Physiology. Vol.475 (2023), pp.421-435. DOI:10.1007/s00424-023-02794-z.
van Ingen Schenau, G.J., On the action of bi-articular muscles, a review. Netherlands Journal of Zoology. Vol.40 (1990), pp.521-540.
Wang, Z., Wu, X., Zhang, Y., Chen, C., Liu, S., Liu, Y., Peng, A. and Ma, Y., A semi-active exoskeleton based on EMGs reduces muscle fatigue when squatting. Frontiers in Neurorobotics. Vol.15 (2021), DOI: 10.3389/fnbot.2021.625479.
Garcia-Lopez, J. and del Blanco, P.A., Kinematic analysis of bicycle pedaling using 2D and 3D motion capture systems. 35th Conference of the International Society of Biomechanics in Sports. Cologne, Germany, June 14-18. (2017), pp.765-788.
Latash, M.L., The control and perception of antagonist muscle action. Experimental Brain Research. Vol.241 (2023), pp.1-12.
Levin, S., de Solorzano, S.L. and Scarr, G., The significance of closed kinematic chains to biological movement and dynamic stability. Journal of Bodywork and Movement Therapies. Vol.21 (2017), pp.664-672.
Abe, T., Koide,T., Furukawa, K., Ochi, A. and Oshima, T., Parallel linkage function of the rectus femoris when standing up. Journal of the Robotics Society of Japan. Vol.32 (2014), pp.90-207 (in Japanese).
van Ingen Schenau, G.J., Dorssers, W.M.M., Welter, T.G., Beelen, W.A., de Groot, G. and Jacobs, R., The control of mono-articular muscles in multijoint leg extensions in man. The Journal of Physiology. Vol.484 (1995), pp.247-254.
Fonda, B. and Sarabon, N., Biomechanics of cycling. Sport Science Review. Vol.XIX (2010), pp.187-210. DOI:10.2478/v10237-011-0012-0.
Lai, A.K.M., Dick, T.J.M., Brown, N.A.T., Biewener, A.A. and Wakeling, J.M., Lower-limb muscle function is influenced by changing mechanical demands in cycling. Journal Experimental Biology. Vol.224 (2021), DOI:10.1242/jeb.222821.
Bini, R.R. and Carpes, F.P. (eds.), Biomechanics of cycling. Springer. (2014).
Dorel, S., Couturier, A. and Hug, F., Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology. Vol.18 (2008), pp. 857-865.
Burgess, S., A review of linkage mechanisms in animal joints and related bioinspired designs. Bioinspiration & Biomimetics. Vol.16 (2021), DOI:10.1088/1748-3190/abf744.
Oshima, T., Fujikawa, T. and Kumamoto, M., Functional evaluation of effective muscle strength based on a muscle coordinate system consisted of bi-articular and mono-articular muscles; contractile forces and output forces of human limbs. Journal of the Japan Society for Precision Engineering. Vol.65 (1999), pp.1772-1777 (in Japanese).
Bini, R.R. and Hume, P., A comparison of static and dynamic measures of lower limb joint angles in cycling: application to bicycle fitting, Human Movement. Vol 17 (2016), pp.35-42.
Fujikawa, T., Morose, N. and Oshima, T., Analysis of human gait based on muscular coordination control pattern with the three pairs of antagonistic muscles of the thigh. Biomechanisms. Vol.20 (2010), pp.197-206 (in Japanese).
Hug, F., Turpin, N.A., Couturier, A. and Dorel, S., Consistency of muscle synergies during pedaling across different mechanical constraints. Journal of Neurophysiology. Vol.106 (2011), pp.91-103.
Sato, T. and Tokuyasu, T., Pedaling skill training system with visual feedback of muscle activity pattern. Journal of Biomechanical Science and Engineering. Vol.12 (2017), pp.1-10.
Ishikawa, Y., Nabae, H., Endo, G. and Suzumori, K., Stability analysis of multi-serial link mechanism driven by antagonistic multiarticular artificial muscles. ROBOMECH Journal. Vol.9 (2022), DOI:10.1186/s40648-002-00226-8.
Nishikawa, K., Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation. Journal Experimental Biology. Vol.219 (2016), pp.189-196. DOI:10.1242/jeb.124057.
Miyake, T. and Okabe, M., Roles of mono- and bi-articular muscles in human limbs: two-joint link model and applications. Integrative Organismal Biology. Vol.41 (2022), DOI:10.1093/iob/obac042.
Yamagata, M., Falaki, A. and Latash, M.L., Effects of voluntary agonist-antagonist coactivation on stability of vertical posture. Motor Control. Vol.23 (2019), pp.304-326. DOI:10.1123/mc.2018-0038.
Gravish, N., and Lauder G.V., Robotics-inspired biology. Journal of Experimental Biology. Vol.221 (2018), DOI:10.1242/jeb.138438.
Komi, P.V., Stretch-shortening cycle. In: Komi, P.V. (edd.). Strength and power in sport. (1992), pp.169-265. Blackwell Scientific, Oxford.
Toriumi, K., Oshima, T., Fujikawa, T., Kumamoto, M. and Momose, N., Effects of the bi-articular gastrocinemius muscle of human on the jump movement of the model. Transactions of the Japan Society of Mechanical Engineering, Part C. Vol.69 (2003), pp.123-128 (in Japanese).
Miyake, T., Kumamoto, M., Iwata, M., Sato, R., Okabe, M., Koie, H. K., Kumai, N., Fujii, K., Matsuzaki, K., Nakamura, C., Yamauchi, S., Yoshida, K., Yoshimura, K., Komada, A., Uyeno, T. and Abe, Y., The pectoral fin muscles of the coelacanth Latimeria chalumnae; functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods. The Anatomical Record. Vol.299 (2016), pp.1203-1223.
Kanayama, H., Oshima, T., Momose, N., Fujikawa, T. and Kumamoto, M., Proposal of a humanlike two-joint link mechanism provided with the bi-articular and the mono-articular actuators: Part 3: postural stability of jumping robot. Mechtronics’01 5th Franco-Japanese Congress & 3rd European-Asian Congress France. (2001), pp.160-163.
van Ingen Schenau, G.J., From rotation to translation: constraints on multi-joint movements and the unique action of biarticular muscles. Human Movement Science. Vol.8 (1989), pp.301-337.
Fujikawa, T., Momose, N., Toriumi, K. and Oshima, T., Mechanical properties of link model with lower extremity muscle arrangement. Biomechanisms. Vol.21 (2012), pp.167-177 (in Japanese).
Lombard, W.P., The action of two-joint muscle. American Physical Education Review. Vol.8 (1903), pp.141-151.
Manno, M., Koide, T., Takahama, H. and Fujikawa, T., Function of antagonistic pair of the bi-articular muscle of lower limb during toe contact. Biomechanisms. Vol.25 (2020), pp.167-177 (in Japanese).
Perry J. and Burnfield, J. M., Gait Analysis: Normal and Pathological Function. 2nd Edition. SLACK Incorporated. (2010), New Jersey.
van Ingen Schenau, G.J., Bobbert, M.F. and Rozendal, R.H., The unique action of bi-articular muscles in complex movements. Journal of Anatomy. Vol.155 (1987), pp.1-5.
Herzog W., The multiple roles of titin in muscle contraction and force production. Biophysical Reviews. Vol.10 (2018), pp.1187-1199.
Tsumugiwa, T., Hommoto, Y. and Yokogawa, R., Development of motion analysis system for cyclists based on surface EMG and pedal force measurements. Transactions of the JSME. Vol.82 (2016), pp.1-13 (in Japanese).
da Silva, J.C.L., Tarassova, O., Ekblom, M.M., Andersson, E., Rönquiest, G. and Arndt, A., Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography. European Journal of Applied Physiology. Vol.116 (2016), pp.1807-1817. DOI:10.1007/s00421-016-3428-5.
Fujikawa,
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
67
24
68
25
69
26
27
28
29
70
71
72
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 64
– ident: 68
  doi: 10.3389/fnbot.2021.625479
– ident: 10
  doi: 10.1152/jappl.1996.81.6.2339
– ident: 40
  doi: 10.1016/j.jbmt.2017.03.012
– ident: 15
  doi: 10.3951/biomechanisms.20.197
– ident: 3
  doi: 10.3389/frspt.2022.1000788
– ident: 25
  doi: 10.1152/physiol.00049.2014
– ident: 67
  doi: 10.1113/jphysiol.1995.sp020662
– ident: 35
– ident: 59
  doi: 10.1038/s41598-019-50995-3
– ident: 71
  doi: 10.1186/s12891-021-04905-2
– ident: 31
– ident: 61
  doi: 10.1299/kikaic.69.3263
– ident: 39
  doi: 10.1007/s00221-022-06498-1
– ident: 62
  doi: 10.1299/transjsme.16-00010
– ident: 30
  doi: 10.1016/0021-9290(86)90192-2
– ident: 8
  doi: 10.1007/s00421-016-3428-5
– ident: 5
  doi: 10.1515/humo-2016-0005
– ident: 49
– ident: 44
  doi: 10.3951/biomechanisms.25.167
– ident: 37
  doi: 10.1242/jeb.228221
– ident: 57
  doi: 10.1016/j.isci.2021.103075
– ident: 9
  doi: 10.1016/j.jelekin.2007.03.002
– ident: 69
  doi: 10.1123/mc.2018-0038
– ident: 58
  doi: 10.1299/jbse.17-00234
– ident: 45
  doi: 10.1002/ar.23392
– ident: 48
  doi: 10.2493/jjspe.65.1772
– ident: 24
  doi: 10.3389/fphys.2022.837611
– ident: 50
– ident: 12
  doi: 10.3951/biomechanisms.13.181
– ident: 54
– ident: 38
  doi: 10.1152/jn.00084.2018
– ident: 4
  doi: 10.1007/978-3-319-05539-8
– ident: 34
  doi: 10.1249/00003677-198401000-00006
– ident: 2
  doi: 10.1186/s12984-020-00747-6
– ident: 18
– ident: 22
  doi: 10.1242/jeb.099127
– ident: 6
  doi: 10.1080/14763141.2020.1776760
– ident: 1
  doi: 10.7210/jrsj.32.190
– ident: 33
– ident: 72
  doi: 10.1123/jab.9.4.333
– ident: 14
– ident: 65
  doi: 10.1016/0167-9457(89)90037-7
– ident: 41
  doi: 10.1016/j.jbiomech.2023.111553
– ident: 51
  doi: 10.20965/jrm.2004.p0643
– ident: 7
  doi: 10.1088/1748-3190/abf744
– ident: 19
  doi: 10.3389/fphys.2020.609553
– ident: 20
– ident: 29
  doi: 10.1186/s40648-022-00226-8
– ident: 36
  doi: 10.1097/00005768-200010000-00015
– ident: 27
  doi: 10.1016/j.jelekin.2007.10.010
– ident: 11
  doi: 10.2478/v10237-011-0012-0
– ident: 60
  doi: 10.1007/s00424-023-02794-z
– ident: 17
  doi: 10.3951/biomechanisms.21.167
– ident: 32
– ident: 13
  doi: 10.1299/kikaic.63.769
– ident: 55
  doi: 10.3951/sobim.41.4_221
– ident: 47
  doi: 10.1242/jeb.124057
– ident: 56
– ident: 53
  doi: 10.2493/jjspe.73.492
– ident: 26
  doi: 10.3389/fphys.2017.00070
– ident: 28
  doi: 10.1152/jn.01096.2010
– ident: 52
  doi: 10.1299/kikaic.71.3510
– ident: 66
  doi: 10.1163/156854290X00073
– ident: 23
  doi: 10.1007/s12551-017-0395-y
– ident: 46
  doi: 10.1093/iob/obac042
– ident: 70
  doi: 10.3389/fnins.2018.01042
– ident: 21
  doi: 10.1242/jeb.138438
– ident: 42
  doi: 10.1093/cvr/cvab328
– ident: 63
  doi: 10.3390/app10124112
– ident: 16
  doi: 10.7210/jrsj.28.678
– ident: 43
  doi: 10.1080/23267224.1903.10649915
SSID ssj0066720
Score 2.3198571
Snippet The two-joint link model of mono- and biarticular muscles in human hindlimbs has been established on the basis of biomechanical and mechanical engineering...
SourceID doaj
proquest
crossref
jstage
SourceType Open Website
Aggregation Database
Publisher
StartPage 24-00112
SubjectTerms Actuators
Ankle
Biomechanical engineering
Biomechanics
Biomimetics
Data analysis
Electromyography
Engineering
Joints (anatomy)
Limbs
Locomotion
Mechanical engineering
Mechanical properties
Mono- and biarticular muscles
Muscles
Parallel linkage function
Pedaling
Stretch shortening cycle
Two-joint link model
Title Static to dynamic: an application of the two-joint link model of mono- and biarticular muscles to pedaling biomechanics
URI https://www.jstage.jst.go.jp/article/jbse/19/3/19_24-00112/_article/-char/en
https://www.proquest.com/docview/3104722192
https://doaj.org/article/9892baea0e3741c6b7079484e81517c1
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Biomechanical Science and Engineering, 2024, Vol.19(3), pp.24-00112-24-00112
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVQT8sBsQuIQFn5gLiZOrbjOIgLu9pqhQQnVurNsh0HtRJJRVL17--Mk1RFHLhwySGJPzRje97YnjeEvG-UUzK4guWF8UxVUbIqaM7qMhgdq1i4gBv6377r-wf1dVNszlJ94Z2wkR54FNyqMpXwLjoeJRi_oD1SuimjogFbVYbR8eHV7EyNa7DWpeAToyast6ud7-NHoRgCIPGHBUpE_WB9doDFfv69ICcrs35Onk3wkH4Zu3VJnsT2ijw9Iw18QY6ID7eBDh2tx3Tyn6hr6dlJNO0aCriODseO7bptO1A8pqUp6Q1-g5HXMShTU79NAsCrqPTXoccbcljvPtYOw9RpCs7H2OBt6F-Sh_Xdj9t7NqVPYEEWGHQDSKMIQvoAoAdQUMNFo3XwuSvBzYmyAexU1gEmoKuk1I0yQnlelk7VwjiYnK_Iou3a-JrQRoGjaExUyLAGAALqkF5zVysTuPZ5Rj7MIrX7kSXDoncBsrcoeytUujwnMnKDAj_9hOTW6QWo3E4qt_9SeUY-j-o6VTOXTG3llZX4mNs8fcU4NlgMMrKclWynCdtbmSfaTMC7b_5HF9-SC8FxwOFezZIsht-H-A7Qy-Cv00B9BEB97FQ
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Static+to+dynamic%3A+an+application+of+the+two-joint+link+model+of+mono-+and+biarticular+muscles+to+pedaling+biomechanics&rft.jtitle=Journal+of+biomechanical+science+and+engineering&rft.au=MIYAKE%2C+Tsutomu&rft.au=HASHIMOTO%2C+Tohru&rft.au=OKABE%2C+Masataka&rft.date=2024-01-01&rft.pub=Japan+Science+and+Technology+Agency&rft.eissn=1880-9863&rft.volume=19&rft.issue=3&rft_id=info:doi/10.1299%2Fjbse.24-00112&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-9863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-9863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-9863&client=summon