Static to dynamic: an application of the two-joint link model of mono- and biarticular muscles to pedaling biomechanics
The two-joint link model of mono- and biarticular muscles in human hindlimbs has been established on the basis of biomechanical and mechanical engineering analyses of electromyographic data and testing of the results using robotic hindlimbs equipped with mono- and/or biarticular actuators. The prese...
Saved in:
Published in | Journal of Biomechanical Science and Engineering Vol. 19; no. 3; p. 24-00112 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Japan Society of Mechanical Engineers
01.01.2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The two-joint link model of mono- and biarticular muscles in human hindlimbs has been established on the basis of biomechanical and mechanical engineering analyses of electromyographic data and testing of the results using robotic hindlimbs equipped with mono- and/or biarticular actuators. The present review applies this model to the analysis of pedaling biomechanics and demonstrates its applicability to studies of human and non-human limb locomotion. Previously published three examples of electromyographic data on pedaling biomechanics are analyzed and reviewed in light of the two-joint link model. As comparable to published data on pedaling biomechanics, the results propose the essential parameters of the model, including activity switches and their directional changes, forces and their combined forces, all that occur in 360 degrees around the right ankle joint during the stationary and continuous pedaling activities. In addition, the co-activation of an antagonistic pair of biarticular muscles and parallel linkage function of a biarticular muscle are proposed to be tested further in both engineering and biological sciences. As biomimetics has contributed to engineering science, the models and/or hypotheses that would be generated in engineering science can be applied to biological science. |
---|---|
AbstractList | The two-joint link model of mono- and biarticular muscles in human hindlimbs has been established on the basis of biomechanical and mechanical engineering analyses of electromyographic data and testing of the results using robotic hindlimbs equipped with mono- and/or biarticular actuators. The present review applies this model to the analysis of pedaling biomechanics and demonstrates its applicability to studies of human and non-human limb locomotion. Previously published three examples of electromyographic data on pedaling biomechanics are analyzed and reviewed in light of the two-joint link model. As comparable to published data on pedaling biomechanics, the results propose the essential parameters of the model, including activity switches and their directional changes, forces and their combined forces, all that occur in 360 degrees around the right ankle joint during the stationary and continuous pedaling activities. In addition, the co-activation of an antagonistic pair of biarticular muscles and parallel linkage function of a biarticular muscle are proposed to be tested further in both engineering and biological sciences. As biomimetics has contributed to engineering science, the models and/or hypotheses that would be generated in engineering science can be applied to biological science. The two-joint link model of mono- and biarticular muscles in human hindlimbs has been established on the basis of biomechanical and mechanical engineering analyses of electromyographic data and testing of the results using robotic hindlimbs equipped with mono- and/or biarticular actuators. The present review applies this model to the analysis of pedaling biomechanics and demonstrates its applicability to studies of human and non-human limb locomotion. Previously published three examples of electromyographic data on pedaling biomechanics are analyzed and reviewed in light of the two-joint link model. As comparable to published data on pedaling biomechanics, the results propose the essential parameters of the model, including activity switches and their directional changes, forces and their combined forces, all that occur in 360 degrees around the right ankle joint during the stationary and continuous pedaling activities. In addition, the co-activation of an antagonistic pair of biarticular muscles and parallel linkage function of a biarticular muscle are proposed to be tested further in both engineering and biological sciences. As biomimetics has contributed to engineering science, the models and/or hypotheses that would be generated in engineering science can be applied to biological science.Graphical Abstract |
ArticleNumber | 24-00112 |
Author | HASHIMOTO, Tohru OKABE, Masataka MIYAKE, Tsutomu |
Author_xml | – sequence: 1 fullname: MIYAKE, Tsutomu organization: Department of Anatomy, The Jikei University School of Medicine – sequence: 2 fullname: HASHIMOTO, Tohru organization: Department of Anatomy, The Jikei University School of Medicine – sequence: 3 fullname: OKABE, Masataka organization: Department of Anatomy, The Jikei University School of Medicine |
BookMark | eNpNkUtv1DAUhS1UJNrCkr0l1il-xQ92aASlUiUWhbV14zhTh8QOdkZV_32dGTpiY1s-3z0-8rlCFzFFj9BHSm4oM-bz2BV_w0RDCKXsDbqkWpPGaMkv_ju_Q1eljIRIqRi5RE8PK6zB4TXh_jnCHNwXDBHDskzBVSVFnAa8Pnq8PqVmTCGueArxD55T76dNm1NMTZ3pcRcgV6_DBBnPh-ImXzbfxfdQR_ZVT7N3jxCDK-_R2wGm4j_826_R7-_ffu1-NPc_b-92X-8bx1vBGmaUbB3jnWNSGGYGwgYpXUdBCWM8H0QrVe8k12A4l4PQTHREKRA900Bafo3uTr59gtEuOcyQn22CYI8XKe_tMfTkrdGGdeCBeK4EdbJTRBmhhde0pcrR6vXp5LXk9Pfgy2rHdMixxrecEqEYo4ZVqjlRLqdSsh_Or1Jit57s1pNlwh57qvzuxI9lhb0_06-xjjQ1lm_L69RZrd-ZrY_8BVgGns0 |
Cites_doi | 10.3389/fnbot.2021.625479 10.1152/jappl.1996.81.6.2339 10.1016/j.jbmt.2017.03.012 10.3951/biomechanisms.20.197 10.3389/frspt.2022.1000788 10.1152/physiol.00049.2014 10.1113/jphysiol.1995.sp020662 10.1038/s41598-019-50995-3 10.1186/s12891-021-04905-2 10.1299/kikaic.69.3263 10.1007/s00221-022-06498-1 10.1299/transjsme.16-00010 10.1016/0021-9290(86)90192-2 10.1007/s00421-016-3428-5 10.1515/humo-2016-0005 10.3951/biomechanisms.25.167 10.1242/jeb.228221 10.1016/j.isci.2021.103075 10.1016/j.jelekin.2007.03.002 10.1123/mc.2018-0038 10.1299/jbse.17-00234 10.1002/ar.23392 10.2493/jjspe.65.1772 10.3389/fphys.2022.837611 10.3951/biomechanisms.13.181 10.1152/jn.00084.2018 10.1007/978-3-319-05539-8 10.1249/00003677-198401000-00006 10.1186/s12984-020-00747-6 10.1242/jeb.099127 10.1080/14763141.2020.1776760 10.7210/jrsj.32.190 10.1123/jab.9.4.333 10.1016/0167-9457(89)90037-7 10.1016/j.jbiomech.2023.111553 10.20965/jrm.2004.p0643 10.1088/1748-3190/abf744 10.3389/fphys.2020.609553 10.1186/s40648-022-00226-8 10.1097/00005768-200010000-00015 10.1016/j.jelekin.2007.10.010 10.2478/v10237-011-0012-0 10.1007/s00424-023-02794-z 10.3951/biomechanisms.21.167 10.1299/kikaic.63.769 10.3951/sobim.41.4_221 10.1242/jeb.124057 10.2493/jjspe.73.492 10.3389/fphys.2017.00070 10.1152/jn.01096.2010 10.1299/kikaic.71.3510 10.1163/156854290X00073 10.1007/s12551-017-0395-y 10.1093/iob/obac042 10.3389/fnins.2018.01042 10.1242/jeb.138438 10.1093/cvr/cvab328 10.3390/app10124112 10.7210/jrsj.28.678 10.1080/23267224.1903.10649915 |
ContentType | Journal Article |
Copyright | 2024 by The Japan Society of Mechanical Engineers 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by The Japan Society of Mechanical Engineers – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QO 7QP 7TB 8FD FR3 P64 DOA |
DOI | 10.1299/jbse.24-00112 |
DatabaseName | CrossRef Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1880-9863 |
EndPage | 24-00112 |
ExternalDocumentID | oai_doaj_org_article_9892baea0e3741c6b7079484e81517c1 10_1299_jbse_24_00112 article_jbse_19_3_19_24_00112_article_char_en |
GroupedDBID | 2WC ALMA_UNASSIGNED_HOLDINGS CS3 GROUPED_DOAJ JSF JSH KQ8 M~E OK1 P6G RJT RZJ TKC AAYXX CITATION 7QO 7QP 7TB 8FD FR3 P64 |
ID | FETCH-LOGICAL-c3542-29765c23bc264929f02f66cb1a7499e3f4567dc638a9336f4824b077a4d28a053 |
IEDL.DBID | DOA |
ISSN | 1880-9863 |
IngestDate | Tue Oct 22 15:16:10 EDT 2024 Thu Oct 10 21:49:35 EDT 2024 Fri Aug 23 04:57:16 EDT 2024 Thu Jul 04 14:00:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3542-29765c23bc264929f02f66cb1a7499e3f4567dc638a9336f4824b077a4d28a053 |
OpenAccessLink | https://doaj.org/article/9892baea0e3741c6b7079484e81517c1 |
PQID | 3104722192 |
PQPubID | 2048483 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9892baea0e3741c6b7079484e81517c1 proquest_journals_3104722192 crossref_primary_10_1299_jbse_24_00112 jstage_primary_article_jbse_19_3_19_24_00112_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 20240101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Biomechanical Science and Engineering |
PublicationTitleAlternate | JBSE |
PublicationYear | 2024 |
Publisher | The Japan Society of Mechanical Engineers Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Society of Mechanical Engineers – name: Japan Science and Technology Agency |
References | Fujikawa, T., Oshima, T., Kumamoto, M. and Yokoi, N., Functional coordination control of pairs of antagonistic muscles. Transactions of the Japan Society of Mechanical Engineers Series C. Vol.63 (1997), pp.769-776 (in Japanese). DOI: 10.1299/kikaic.63.769. Linke, W.A., Stretching the story of titin and muscle function. Journal of Biomechanics. Vol.152 (2023), DOI:10.1016/j.jbiomech.2023.111553. Bini, R.R. and Hume, P., Reproducibility of lower limb motion and forces during stationary submaximal pedaling using wearable motion tracking sensors. Sports Biomechanics. Vol.22 (2020), pp.1041-1062. Enoka, R.M., Eccentric contractions require unique activation strategies by the nervous system. Journal of Applied Physiology. Vol.81 (1996), pp.2339-2346. Latash, M.L., Muscle coactivation: definitions, mechanisms, and functions. Journal of Neurophysiology. Vol.120 (2018), pp.88-104. Komi, P.V., Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exercise and Sport Sciences Reviews. Vol.12 (1984), pp.81-121. Loescher, C.M., Hobbach, A.J. and Linke, W.A., Titin (TTN): from molecule to modifications, mechanics, and medical significance. Cardiovascular Research. Vol.118 (2022), pp.2903-2918. Oshima, T., Fujikawa, T., Kameyama, O. and Kumamoto, M., Robotic analyses of output force distribution developed by human limbs. Proceeding of the 2000 IEEE International Workshop on Robot and Human Interactive Communication, Japan. (2000), pp.229-234. Fujikawa, T., Mechanical properties of bi-articular muscles with movement of the extremities. Journal of Japanese Society of Physical Therapy Fundamentals. Vol.19 (2016), pp.8-16 (in Japanese). Koide, T., Manno, M., Takahama, H., Koshino, Y. and Fujikawa, T., Simulation analysis of standing up using the bi-joint link model. Journal of Physical Therapy Fundamentals. Vol.23 (2020), pp.97-106. Herzog, W., Schappacher, G., DuVall, M., Leonard, T.R. and Herzog, J.A., Residual force enhancement following eccentric contractions: a new mechanism involving titin. Physiology. Vol.31 (2016), pp.300-312. Fukutani, A., Isaka, T. and Herzog, W., Evidence for muscle cell-based mechanisms of enhanced performance in stretch-shortening cycle in skeletal muscle. Frontiers in Physiology. Vol.11 (2020), DOI: 10.3389/fphys.2020.609553. Banken, E. and Oeffner, J., Biomimetics for innovative and future-oriented space applications – a review. Frontiers in Space Technologies. Vol.3 (2023), DOI: 10.3389/frspt.2022.1000788. Awad, L.N., Lewek, M. D., Kesar, T. M., Franz, J. R. and Bowden, M. G., These legs are made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits. Journal of NeuroEngineering and Rehabilitation. Vol.17 (2020), DOI:10.1186/s12984-020-00747-6. Tomalka, A., Eccentric muscle contractions: from single muscle fibre to whole muscle mechanics. European Journal of Physiology. Vol.475 (2023), pp.421-435. DOI:10.1007/s00424-023-02794-z. van Ingen Schenau, G.J., On the action of bi-articular muscles, a review. Netherlands Journal of Zoology. Vol.40 (1990), pp.521-540. Wang, Z., Wu, X., Zhang, Y., Chen, C., Liu, S., Liu, Y., Peng, A. and Ma, Y., A semi-active exoskeleton based on EMGs reduces muscle fatigue when squatting. Frontiers in Neurorobotics. Vol.15 (2021), DOI: 10.3389/fnbot.2021.625479. Garcia-Lopez, J. and del Blanco, P.A., Kinematic analysis of bicycle pedaling using 2D and 3D motion capture systems. 35th Conference of the International Society of Biomechanics in Sports. Cologne, Germany, June 14-18. (2017), pp.765-788. Latash, M.L., The control and perception of antagonist muscle action. Experimental Brain Research. Vol.241 (2023), pp.1-12. Levin, S., de Solorzano, S.L. and Scarr, G., The significance of closed kinematic chains to biological movement and dynamic stability. Journal of Bodywork and Movement Therapies. Vol.21 (2017), pp.664-672. Abe, T., Koide,T., Furukawa, K., Ochi, A. and Oshima, T., Parallel linkage function of the rectus femoris when standing up. Journal of the Robotics Society of Japan. Vol.32 (2014), pp.90-207 (in Japanese). van Ingen Schenau, G.J., Dorssers, W.M.M., Welter, T.G., Beelen, W.A., de Groot, G. and Jacobs, R., The control of mono-articular muscles in multijoint leg extensions in man. The Journal of Physiology. Vol.484 (1995), pp.247-254. Fonda, B. and Sarabon, N., Biomechanics of cycling. Sport Science Review. Vol.XIX (2010), pp.187-210. DOI:10.2478/v10237-011-0012-0. Lai, A.K.M., Dick, T.J.M., Brown, N.A.T., Biewener, A.A. and Wakeling, J.M., Lower-limb muscle function is influenced by changing mechanical demands in cycling. Journal Experimental Biology. Vol.224 (2021), DOI:10.1242/jeb.222821. Bini, R.R. and Carpes, F.P. (eds.), Biomechanics of cycling. Springer. (2014). Dorel, S., Couturier, A. and Hug, F., Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology. Vol.18 (2008), pp. 857-865. Burgess, S., A review of linkage mechanisms in animal joints and related bioinspired designs. Bioinspiration & Biomimetics. Vol.16 (2021), DOI:10.1088/1748-3190/abf744. Oshima, T., Fujikawa, T. and Kumamoto, M., Functional evaluation of effective muscle strength based on a muscle coordinate system consisted of bi-articular and mono-articular muscles; contractile forces and output forces of human limbs. Journal of the Japan Society for Precision Engineering. Vol.65 (1999), pp.1772-1777 (in Japanese). Bini, R.R. and Hume, P., A comparison of static and dynamic measures of lower limb joint angles in cycling: application to bicycle fitting, Human Movement. Vol 17 (2016), pp.35-42. Fujikawa, T., Morose, N. and Oshima, T., Analysis of human gait based on muscular coordination control pattern with the three pairs of antagonistic muscles of the thigh. Biomechanisms. Vol.20 (2010), pp.197-206 (in Japanese). Hug, F., Turpin, N.A., Couturier, A. and Dorel, S., Consistency of muscle synergies during pedaling across different mechanical constraints. Journal of Neurophysiology. Vol.106 (2011), pp.91-103. Sato, T. and Tokuyasu, T., Pedaling skill training system with visual feedback of muscle activity pattern. Journal of Biomechanical Science and Engineering. Vol.12 (2017), pp.1-10. Ishikawa, Y., Nabae, H., Endo, G. and Suzumori, K., Stability analysis of multi-serial link mechanism driven by antagonistic multiarticular artificial muscles. ROBOMECH Journal. Vol.9 (2022), DOI:10.1186/s40648-002-00226-8. Nishikawa, K., Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation. Journal Experimental Biology. Vol.219 (2016), pp.189-196. DOI:10.1242/jeb.124057. Miyake, T. and Okabe, M., Roles of mono- and bi-articular muscles in human limbs: two-joint link model and applications. Integrative Organismal Biology. Vol.41 (2022), DOI:10.1093/iob/obac042. Yamagata, M., Falaki, A. and Latash, M.L., Effects of voluntary agonist-antagonist coactivation on stability of vertical posture. Motor Control. Vol.23 (2019), pp.304-326. DOI:10.1123/mc.2018-0038. Gravish, N., and Lauder G.V., Robotics-inspired biology. Journal of Experimental Biology. Vol.221 (2018), DOI:10.1242/jeb.138438. Komi, P.V., Stretch-shortening cycle. In: Komi, P.V. (edd.). Strength and power in sport. (1992), pp.169-265. Blackwell Scientific, Oxford. Toriumi, K., Oshima, T., Fujikawa, T., Kumamoto, M. and Momose, N., Effects of the bi-articular gastrocinemius muscle of human on the jump movement of the model. Transactions of the Japan Society of Mechanical Engineering, Part C. Vol.69 (2003), pp.123-128 (in Japanese). Miyake, T., Kumamoto, M., Iwata, M., Sato, R., Okabe, M., Koie, H. K., Kumai, N., Fujii, K., Matsuzaki, K., Nakamura, C., Yamauchi, S., Yoshida, K., Yoshimura, K., Komada, A., Uyeno, T. and Abe, Y., The pectoral fin muscles of the coelacanth Latimeria chalumnae; functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods. The Anatomical Record. Vol.299 (2016), pp.1203-1223. Kanayama, H., Oshima, T., Momose, N., Fujikawa, T. and Kumamoto, M., Proposal of a humanlike two-joint link mechanism provided with the bi-articular and the mono-articular actuators: Part 3: postural stability of jumping robot. Mechtronics’01 5th Franco-Japanese Congress & 3rd European-Asian Congress France. (2001), pp.160-163. van Ingen Schenau, G.J., From rotation to translation: constraints on multi-joint movements and the unique action of biarticular muscles. Human Movement Science. Vol.8 (1989), pp.301-337. Fujikawa, T., Momose, N., Toriumi, K. and Oshima, T., Mechanical properties of link model with lower extremity muscle arrangement. Biomechanisms. Vol.21 (2012), pp.167-177 (in Japanese). Lombard, W.P., The action of two-joint muscle. American Physical Education Review. Vol.8 (1903), pp.141-151. Manno, M., Koide, T., Takahama, H. and Fujikawa, T., Function of antagonistic pair of the bi-articular muscle of lower limb during toe contact. Biomechanisms. Vol.25 (2020), pp.167-177 (in Japanese). Perry J. and Burnfield, J. M., Gait Analysis: Normal and Pathological Function. 2nd Edition. SLACK Incorporated. (2010), New Jersey. van Ingen Schenau, G.J., Bobbert, M.F. and Rozendal, R.H., The unique action of bi-articular muscles in complex movements. Journal of Anatomy. Vol.155 (1987), pp.1-5. Herzog W., The multiple roles of titin in muscle contraction and force production. Biophysical Reviews. Vol.10 (2018), pp.1187-1199. Tsumugiwa, T., Hommoto, Y. and Yokogawa, R., Development of motion analysis system for cyclists based on surface EMG and pedal force measurements. Transactions of the JSME. Vol.82 (2016), pp.1-13 (in Japanese). da Silva, J.C.L., Tarassova, O., Ekblom, M.M., Andersson, E., Rönquiest, G. and Arndt, A., Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography. European Journal of Applied Physiology. Vol.116 (2016), pp.1807-1817. DOI:10.1007/s00421-016-3428-5. Fujikawa, 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 68 25 69 26 27 28 29 70 71 72 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – ident: 64 – ident: 68 doi: 10.3389/fnbot.2021.625479 – ident: 10 doi: 10.1152/jappl.1996.81.6.2339 – ident: 40 doi: 10.1016/j.jbmt.2017.03.012 – ident: 15 doi: 10.3951/biomechanisms.20.197 – ident: 3 doi: 10.3389/frspt.2022.1000788 – ident: 25 doi: 10.1152/physiol.00049.2014 – ident: 67 doi: 10.1113/jphysiol.1995.sp020662 – ident: 35 – ident: 59 doi: 10.1038/s41598-019-50995-3 – ident: 71 doi: 10.1186/s12891-021-04905-2 – ident: 31 – ident: 61 doi: 10.1299/kikaic.69.3263 – ident: 39 doi: 10.1007/s00221-022-06498-1 – ident: 62 doi: 10.1299/transjsme.16-00010 – ident: 30 doi: 10.1016/0021-9290(86)90192-2 – ident: 8 doi: 10.1007/s00421-016-3428-5 – ident: 5 doi: 10.1515/humo-2016-0005 – ident: 49 – ident: 44 doi: 10.3951/biomechanisms.25.167 – ident: 37 doi: 10.1242/jeb.228221 – ident: 57 doi: 10.1016/j.isci.2021.103075 – ident: 9 doi: 10.1016/j.jelekin.2007.03.002 – ident: 69 doi: 10.1123/mc.2018-0038 – ident: 58 doi: 10.1299/jbse.17-00234 – ident: 45 doi: 10.1002/ar.23392 – ident: 48 doi: 10.2493/jjspe.65.1772 – ident: 24 doi: 10.3389/fphys.2022.837611 – ident: 50 – ident: 12 doi: 10.3951/biomechanisms.13.181 – ident: 54 – ident: 38 doi: 10.1152/jn.00084.2018 – ident: 4 doi: 10.1007/978-3-319-05539-8 – ident: 34 doi: 10.1249/00003677-198401000-00006 – ident: 2 doi: 10.1186/s12984-020-00747-6 – ident: 18 – ident: 22 doi: 10.1242/jeb.099127 – ident: 6 doi: 10.1080/14763141.2020.1776760 – ident: 1 doi: 10.7210/jrsj.32.190 – ident: 33 – ident: 72 doi: 10.1123/jab.9.4.333 – ident: 14 – ident: 65 doi: 10.1016/0167-9457(89)90037-7 – ident: 41 doi: 10.1016/j.jbiomech.2023.111553 – ident: 51 doi: 10.20965/jrm.2004.p0643 – ident: 7 doi: 10.1088/1748-3190/abf744 – ident: 19 doi: 10.3389/fphys.2020.609553 – ident: 20 – ident: 29 doi: 10.1186/s40648-022-00226-8 – ident: 36 doi: 10.1097/00005768-200010000-00015 – ident: 27 doi: 10.1016/j.jelekin.2007.10.010 – ident: 11 doi: 10.2478/v10237-011-0012-0 – ident: 60 doi: 10.1007/s00424-023-02794-z – ident: 17 doi: 10.3951/biomechanisms.21.167 – ident: 32 – ident: 13 doi: 10.1299/kikaic.63.769 – ident: 55 doi: 10.3951/sobim.41.4_221 – ident: 47 doi: 10.1242/jeb.124057 – ident: 56 – ident: 53 doi: 10.2493/jjspe.73.492 – ident: 26 doi: 10.3389/fphys.2017.00070 – ident: 28 doi: 10.1152/jn.01096.2010 – ident: 52 doi: 10.1299/kikaic.71.3510 – ident: 66 doi: 10.1163/156854290X00073 – ident: 23 doi: 10.1007/s12551-017-0395-y – ident: 46 doi: 10.1093/iob/obac042 – ident: 70 doi: 10.3389/fnins.2018.01042 – ident: 21 doi: 10.1242/jeb.138438 – ident: 42 doi: 10.1093/cvr/cvab328 – ident: 63 doi: 10.3390/app10124112 – ident: 16 doi: 10.7210/jrsj.28.678 – ident: 43 doi: 10.1080/23267224.1903.10649915 |
SSID | ssj0066720 |
Score | 2.3198571 |
Snippet | The two-joint link model of mono- and biarticular muscles in human hindlimbs has been established on the basis of biomechanical and mechanical engineering... |
SourceID | doaj proquest crossref jstage |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 24-00112 |
SubjectTerms | Actuators Ankle Biomechanical engineering Biomechanics Biomimetics Data analysis Electromyography Engineering Joints (anatomy) Limbs Locomotion Mechanical engineering Mechanical properties Mono- and biarticular muscles Muscles Parallel linkage function Pedaling Stretch shortening cycle Two-joint link model |
Title | Static to dynamic: an application of the two-joint link model of mono- and biarticular muscles to pedaling biomechanics |
URI | https://www.jstage.jst.go.jp/article/jbse/19/3/19_24-00112/_article/-char/en https://www.proquest.com/docview/3104722192 https://doaj.org/article/9892baea0e3741c6b7079484e81517c1 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Biomechanical Science and Engineering, 2024, Vol.19(3), pp.24-00112-24-00112 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVQT8sBsQuIQFn5gLiZOrbjOIgLu9pqhQQnVurNsh0HtRJJRVL17--Mk1RFHLhwySGJPzRje97YnjeEvG-UUzK4guWF8UxVUbIqaM7qMhgdq1i4gBv6377r-wf1dVNszlJ94Z2wkR54FNyqMpXwLjoeJRi_oD1SuimjogFbVYbR8eHV7EyNa7DWpeAToyast6ud7-NHoRgCIPGHBUpE_WB9doDFfv69ICcrs35Onk3wkH4Zu3VJnsT2ijw9Iw18QY6ID7eBDh2tx3Tyn6hr6dlJNO0aCriODseO7bptO1A8pqUp6Q1-g5HXMShTU79NAsCrqPTXoccbcljvPtYOw9RpCs7H2OBt6F-Sh_Xdj9t7NqVPYEEWGHQDSKMIQvoAoAdQUMNFo3XwuSvBzYmyAexU1gEmoKuk1I0yQnlelk7VwjiYnK_Iou3a-JrQRoGjaExUyLAGAALqkF5zVysTuPZ5Rj7MIrX7kSXDoncBsrcoeytUujwnMnKDAj_9hOTW6QWo3E4qt_9SeUY-j-o6VTOXTG3llZX4mNs8fcU4NlgMMrKclWynCdtbmSfaTMC7b_5HF9-SC8FxwOFezZIsht-H-A7Qy-Cv00B9BEB97FQ |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Static+to+dynamic%3A+an+application+of+the+two-joint+link+model+of+mono-+and+biarticular+muscles+to+pedaling+biomechanics&rft.jtitle=Journal+of+biomechanical+science+and+engineering&rft.au=MIYAKE%2C+Tsutomu&rft.au=HASHIMOTO%2C+Tohru&rft.au=OKABE%2C+Masataka&rft.date=2024-01-01&rft.pub=Japan+Science+and+Technology+Agency&rft.eissn=1880-9863&rft.volume=19&rft.issue=3&rft_id=info:doi/10.1299%2Fjbse.24-00112&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-9863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-9863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-9863&client=summon |