Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation via Cyclic Spark Plasma Sintering with Liquid Phase

The widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the performance enhancement of Bi2Te3‐based commercialized thermoelectric materials. This study highlights the importance of the synthesis process for hi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 15
Main Authors Zhuang, Hua‐Lu, Pei, Jun, Cai, Bowen, Dong, Jinfeng, Hu, Haihua, Sun, Fu‐Hua, Pan, Yu, Snyder, Gerald Jeffrey, Li, Jing‐Feng
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the performance enhancement of Bi2Te3‐based commercialized thermoelectric materials. This study highlights the importance of the synthesis process for high‐performance achievement and demonstrates that the enhancement of the thermoelectric performance of (Bi,Sb)2Te3 can be achieved by applying cyclic spark plasma sintering to BixSb2–xTe3‐Te above its eutectic temperature. This facile process results in a unique microstructure characterized by the growth of grains and plentiful nanostructures. The enlarged grains lead to high charge carrier mobility that boosts the power factor. The abundant dislocations originating from the plastic deformation during cyclic liquid phase sintering and the pinning effect by the Sb‐rich nano‐precipitates result in low lattice thermal conductivity. Therefore, a high ZT value of over 1.46 is achieved, which is 50% higher than conventionally spark‐plasma‐sintered (Bi,Sb)2Te3. The proposed cyclic spark plasma liquid phase sintering process for TE performance enhancement is validated by the representative (Bi,Sb)2Te3 thermoelectric alloy and is applicable for other telluride‐based materials. The thermoelectric power factor and figure of merit of the BiSbTe alloy are significantly improved by cyclic liquid‐phase aided spark plasma sintering process. The present proposed fabrication process modulates the microstructure in a wide range of scale from nano‐sized dislocations to micrometer grain size, leading to a synergistic control of charge carriers and phonon transport.
AbstractList The widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the performance enhancement of Bi2Te3‐based commercialized thermoelectric materials. This study highlights the importance of the synthesis process for high‐performance achievement and demonstrates that the enhancement of the thermoelectric performance of (Bi,Sb)2Te3 can be achieved by applying cyclic spark plasma sintering to BixSb2–xTe3‐Te above its eutectic temperature. This facile process results in a unique microstructure characterized by the growth of grains and plentiful nanostructures. The enlarged grains lead to high charge carrier mobility that boosts the power factor. The abundant dislocations originating from the plastic deformation during cyclic liquid phase sintering and the pinning effect by the Sb‐rich nano‐precipitates result in low lattice thermal conductivity. Therefore, a high ZT value of over 1.46 is achieved, which is 50% higher than conventionally spark‐plasma‐sintered (Bi,Sb)2Te3. The proposed cyclic spark plasma liquid phase sintering process for TE performance enhancement is validated by the representative (Bi,Sb)2Te3 thermoelectric alloy and is applicable for other telluride‐based materials. The thermoelectric power factor and figure of merit of the BiSbTe alloy are significantly improved by cyclic liquid‐phase aided spark plasma sintering process. The present proposed fabrication process modulates the microstructure in a wide range of scale from nano‐sized dislocations to micrometer grain size, leading to a synergistic control of charge carriers and phonon transport.
The widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the performance enhancement of Bi 2 Te 3 ‐based commercialized thermoelectric materials. This study highlights the importance of the synthesis process for high‐performance achievement and demonstrates that the enhancement of the thermoelectric performance of (Bi,Sb) 2 Te 3 can be achieved by applying cyclic spark plasma sintering to Bi x Sb 2– x Te 3 ‐Te above its eutectic temperature. This facile process results in a unique microstructure characterized by the growth of grains and plentiful nanostructures. The enlarged grains lead to high charge carrier mobility that boosts the power factor. The abundant dislocations originating from the plastic deformation during cyclic liquid phase sintering and the pinning effect by the Sb‐rich nano‐precipitates result in low lattice thermal conductivity. Therefore, a high ZT value of over 1.46 is achieved, which is 50% higher than conventionally spark‐plasma‐sintered (Bi,Sb) 2 Te 3 . The proposed cyclic spark plasma liquid phase sintering process for TE performance enhancement is validated by the representative (Bi,Sb) 2 Te 3 thermoelectric alloy and is applicable for other telluride‐based materials.
The widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the performance enhancement of Bi2Te3‐based commercialized thermoelectric materials. This study highlights the importance of the synthesis process for high‐performance achievement and demonstrates that the enhancement of the thermoelectric performance of (Bi,Sb)2Te3 can be achieved by applying cyclic spark plasma sintering to BixSb2–xTe3‐Te above its eutectic temperature. This facile process results in a unique microstructure characterized by the growth of grains and plentiful nanostructures. The enlarged grains lead to high charge carrier mobility that boosts the power factor. The abundant dislocations originating from the plastic deformation during cyclic liquid phase sintering and the pinning effect by the Sb‐rich nano‐precipitates result in low lattice thermal conductivity. Therefore, a high ZT value of over 1.46 is achieved, which is 50% higher than conventionally spark‐plasma‐sintered (Bi,Sb)2Te3. The proposed cyclic spark plasma liquid phase sintering process for TE performance enhancement is validated by the representative (Bi,Sb)2Te3 thermoelectric alloy and is applicable for other telluride‐based materials.
Author Pei, Jun
Cai, Bowen
Sun, Fu‐Hua
Pan, Yu
Dong, Jinfeng
Li, Jing‐Feng
Hu, Haihua
Snyder, Gerald Jeffrey
Zhuang, Hua‐Lu
Author_xml – sequence: 1
  givenname: Hua‐Lu
  orcidid: 0000-0002-5648-1187
  surname: Zhuang
  fullname: Zhuang, Hua‐Lu
  organization: Tsinghua University
– sequence: 2
  givenname: Jun
  surname: Pei
  fullname: Pei, Jun
  organization: Tsinghua University
– sequence: 3
  givenname: Bowen
  surname: Cai
  fullname: Cai, Bowen
  organization: Tsinghua University
– sequence: 4
  givenname: Jinfeng
  surname: Dong
  fullname: Dong, Jinfeng
  organization: Tsinghua University
– sequence: 5
  givenname: Haihua
  surname: Hu
  fullname: Hu, Haihua
  organization: Tsinghua University
– sequence: 6
  givenname: Fu‐Hua
  surname: Sun
  fullname: Sun, Fu‐Hua
  organization: Tsinghua University
– sequence: 7
  givenname: Yu
  surname: Pan
  fullname: Pan, Yu
  email: yu.pan@cpfs.mpg.de
  organization: Max Planck Institute for Chemical Physics of Solids
– sequence: 8
  givenname: Gerald Jeffrey
  surname: Snyder
  fullname: Snyder, Gerald Jeffrey
  organization: Northwestern University
– sequence: 9
  givenname: Jing‐Feng
  orcidid: 0000-0002-0185-0512
  surname: Li
  fullname: Li, Jing‐Feng
  email: jingfeng@mail.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkM1rGzEQxUVJoUnaa8-Cnu1oVvulo-N8NGATg13obRlrZ2ulWsnRahP2L-i_nXVdUgiUnmYY3u895p2xE-cdMfYZxBSESC6wbtppIhIhVF7CO3YKOeQTKZLy5HWH7x_YWdc9CAFFIdNT9muzo9B6sqRjMJqvKDQ-tOg08Wu3O8yWXOTG8Uuz3m6Iz6z1A98OfGl08F0MvY59IL70dW8xGu_4k0E-H7Qd_dZ7DD_5ymLXIl8bFykY94M_m7jjC_PYm5qvdtjRR_a-QdvRpz_znH27ud7Mv04W97d389liomWWwgRLITNItyrDVEktUiogA8yFqBFQ57XSDZQ1NFJCUadqW2a5bBCT8dKQKuQ5-3L03Qf_2FMXqwffBzdGVkkmVFZkJahRNT2qDh92gZpqH0yLYahAVIeyq0PZ1WvZI5C-AbSJv8uIAY39N6aO2LOxNPwnpJpd3Sz_si8gfZgR
CitedBy_id crossref_primary_10_1016_j_jpowsour_2024_235191
crossref_primary_10_1016_j_jallcom_2024_178050
crossref_primary_10_1021_acs_jpcc_1c05375
crossref_primary_10_1016_j_cej_2022_135062
crossref_primary_10_1016_j_jallcom_2023_168763
crossref_primary_10_1021_acs_nanolett_4c01304
crossref_primary_10_1088_2515_7655_ac49dc
crossref_primary_10_1002_adfm_202305686
crossref_primary_10_1002_adfm_202200307
crossref_primary_10_1016_j_pmatsci_2024_101420
crossref_primary_10_1039_D2EE00119E
crossref_primary_10_1002_smll_202412574
crossref_primary_10_1021_acsami_5c01688
crossref_primary_10_1002_idm2_12009
crossref_primary_10_1016_j_solidstatesciences_2024_107609
crossref_primary_10_1360_TB_2024_0787
crossref_primary_10_1038_s41467_023_43228_9
crossref_primary_10_1002_advs_202203250
crossref_primary_10_1016_j_jmat_2022_10_002
crossref_primary_10_1016_j_ceramint_2022_10_355
crossref_primary_10_1016_j_mtphys_2022_100670
crossref_primary_10_1021_acs_inorgchem_2c01544
crossref_primary_10_1088_1361_6463_ad809e
crossref_primary_10_1016_j_jallcom_2024_177917
crossref_primary_10_1039_D4EE02008A
crossref_primary_10_1016_j_rser_2024_114719
crossref_primary_10_1007_s11431_024_2783_x
crossref_primary_10_1002_adfm_202415368
crossref_primary_10_1021_acsami_2c18575
crossref_primary_10_1007_s40243_024_00293_4
crossref_primary_10_1007_s40843_023_2498_y
crossref_primary_10_1016_j_mtphys_2021_100423
crossref_primary_10_1016_j_mtphys_2021_100544
crossref_primary_10_1002_adfm_202315591
crossref_primary_10_1016_j_nanoen_2023_108176
crossref_primary_10_1016_j_scriptamat_2024_115988
crossref_primary_10_1002_admt_202301722
crossref_primary_10_1002_adma_202210380
crossref_primary_10_1002_adfm_202214771
crossref_primary_10_1016_j_jmat_2023_08_001
crossref_primary_10_1016_j_mtphys_2023_101035
crossref_primary_10_1016_j_jeurceramsoc_2024_116942
crossref_primary_10_1039_D4EE04930F
crossref_primary_10_1002_inf2_12514
crossref_primary_10_1021_acsami_2c20778
crossref_primary_10_1021_acsami_2c17532
crossref_primary_10_1002_smsc_202300359
crossref_primary_10_1007_s11664_023_10624_2
crossref_primary_10_1063_5_0235499
crossref_primary_10_1002_adfm_202314499
crossref_primary_10_1002_smll_202306701
crossref_primary_10_1002_advs_202400870
crossref_primary_10_1016_j_ceramint_2023_07_080
crossref_primary_10_1016_j_mtphys_2023_101287
crossref_primary_10_1016_j_jallcom_2023_171136
crossref_primary_10_1021_acsaem_1c01830
crossref_primary_10_1016_j_jmat_2022_09_017
crossref_primary_10_1002_adma_202103633
crossref_primary_10_1021_acsenergylett_2c02425
crossref_primary_10_1016_j_mtphys_2022_100764
crossref_primary_10_1007_s11664_022_10041_x
crossref_primary_10_1021_acsami_4c16245
crossref_primary_10_54227_mlab_20230003
crossref_primary_10_1002_smll_202408794
crossref_primary_10_1002_aenm_202404653
crossref_primary_10_1021_acsami_1c13372
crossref_primary_10_1016_j_mtphys_2025_101697
crossref_primary_10_1016_j_mtnano_2023_100340
crossref_primary_10_1016_j_mtphys_2025_101692
crossref_primary_10_1002_adfm_202419776
crossref_primary_10_1016_j_cej_2024_154624
crossref_primary_10_1002_smll_202401070
crossref_primary_10_1016_j_ceramint_2022_09_315
crossref_primary_10_1093_nsr_nwae329
crossref_primary_10_1021_acsaem_3c02490
crossref_primary_10_1016_j_clce_2023_100101
crossref_primary_10_1016_j_mtphys_2022_100633
crossref_primary_10_1088_2515_7655_ad3983
crossref_primary_10_1039_D3MH00292F
crossref_primary_10_1038_s41467_024_53599_2
crossref_primary_10_1007_s40145_022_0657_4
crossref_primary_10_1021_acsnano_4c03926
crossref_primary_10_1002_adma_202300338
crossref_primary_10_1021_acsaelm_3c01615
crossref_primary_10_3390_ma17235751
crossref_primary_10_54227_mlab_20230015
crossref_primary_10_1007_s10853_022_07951_w
crossref_primary_10_1039_D4TA00552J
crossref_primary_10_1007_s11664_022_09748_8
crossref_primary_10_1016_j_cej_2021_131853
crossref_primary_10_1021_acsami_4c06978
crossref_primary_10_54227_mlab_20220026
crossref_primary_10_1016_j_jallcom_2022_163933
crossref_primary_10_1002_smll_202400449
crossref_primary_10_1016_j_actamat_2025_120883
crossref_primary_10_3390_nano13020326
crossref_primary_10_1002_adfm_202301423
crossref_primary_10_1002_cnma_202200389
crossref_primary_10_1002_adma_202209119
crossref_primary_10_1016_j_cej_2024_155652
crossref_primary_10_1021_acsami_1c19893
crossref_primary_10_1016_j_actamat_2023_118926
crossref_primary_10_1016_j_mtphys_2023_101071
crossref_primary_10_1063_5_0234485
crossref_primary_10_1002_aenm_202400623
crossref_primary_10_1016_j_esci_2023_100122
crossref_primary_10_1002_advs_202104915
crossref_primary_10_1016_j_cej_2022_135968
crossref_primary_10_1002_adfm_202401240
crossref_primary_10_1016_j_mtener_2024_101643
crossref_primary_10_1016_j_cej_2021_132738
crossref_primary_10_1021_acsami_3c14750
crossref_primary_10_1016_j_jeurceramsoc_2024_03_067
crossref_primary_10_1039_D1TA10582E
crossref_primary_10_1016_j_jeurceramsoc_2022_08_043
crossref_primary_10_1126_science_abi8668
crossref_primary_10_1002_adma_202307945
crossref_primary_10_1021_acsmaterialslett_2c00027
crossref_primary_10_3390_ma15155331
crossref_primary_10_1002_admt_202302226
crossref_primary_10_1021_acsaem_1c03540
crossref_primary_10_1021_acsami_4c12307
crossref_primary_10_1038_s41467_023_37114_7
crossref_primary_10_1002_smtd_202301256
crossref_primary_10_1016_j_jallcom_2024_174744
crossref_primary_10_1021_acsami_4c06713
crossref_primary_10_1063_5_0076843
crossref_primary_10_1021_acs_chemmater_3c00229
crossref_primary_10_1038_s41598_022_14405_5
crossref_primary_10_1063_5_0071039
Cites_doi 10.1039/C7EE03326E
10.1021/acs.nanolett.8b00263
10.1063/1.4984914
10.1038/asiamat.2010.138
10.1126/science.1092963
10.1039/C8TA08238C
10.1002/adma.202001537
10.1016/j.nanoen.2019.03.031
10.1038/ncomms13828
10.1039/C8EE00290H
10.1039/c0ee00012d
10.1002/pssa.2210270202
10.1016/j.actamat.2009.01.005
10.1016/j.physb.2007.06.009
10.1016/j.scriptamat.2015.07.045
10.1016/j.nanoen.2018.10.069
10.1016/0025-5416(86)90254-5
10.1002/adma.201605884
10.1038/am.2016.67
10.1016/j.nanoen.2017.10.034
10.1039/C9EE00317G
10.1021/nl103581z
10.1002/pssb.201451088
10.1016/j.actamat.2017.06.036
10.1007/BF02669225
10.1039/C8EE03225D
10.1016/j.mseb.2015.03.011
10.1016/j.mattod.2017.02.007
10.1039/C9EE03446C
10.1103/PhysRev.120.1149
10.1016/j.nanoen.2018.12.090
10.1063/1.2188251
10.1038/am.2016.134
10.1038/nmat2090
10.1093/nsr/nwaa259
10.1002/aenm.201800065
10.1002/aenm.201300937
10.1002/adma.201802016
10.1126/science.1156446
10.1002/adma.201900108
10.1002/adma.201202919
10.1021/nl8009928
10.1016/j.nanoen.2016.10.056
10.1021/acsami.7b01473
10.1002/adma.201605140
10.1038/ncomms10766
10.1063/1.3057351
10.1063/1.4908244
10.1016/j.nanoen.2017.05.031
10.1002/aenm.201902986
10.1016/j.nanoen.2018.04.058
10.1126/sciadv.aar5606
10.1021/ja7110652
10.1002/aelm.201800904
10.1103/PhysRev.79.722
10.3390/ma10030251
10.1126/science.aaa4166
10.1016/j.jeurceramsoc.2015.11.002
10.1126/science.1158899
10.1021/acs.chemrev.6b00255
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202009681
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202009681
ADFM202009681
Genre article
GrantInformation_xml – fundername: NSFC
  funderid: 51788104
– fundername: National Key Research and Development Program of China
  funderid: 2018YFB0703603
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3541-a803514b95a493c04e7151a600da1ac6d9cf18d1f3317d49b8563faa21f3fe973
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 09:23:25 EDT 2025
Tue Jul 01 04:12:24 EDT 2025
Thu Apr 24 23:09:02 EDT 2025
Wed Jan 22 16:29:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3541-a803514b95a493c04e7151a600da1ac6d9cf18d1f3317d49b8563faa21f3fe973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5648-1187
0000-0002-0185-0512
PQID 2509575819
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2509575819
crossref_primary_10_1002_adfm_202009681
crossref_citationtrail_10_1002_adfm_202009681
wiley_primary_10_1002_adfm_202009681_ADFM202009681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 42
2017; 8
2019; 55
2019; 57
2019; 12
2008; 7
2011; 11
2016; 30
2008; 8
2020; 13
2015; 348
2020; 10
2014; 251
2017; 9
2016; 36
2018; 49
2018; 6
2020; 7
2009; 57
2018; 8
2019; 60
1986; 81
2014; 4
1950; 79
2018; 4
2017; 37
1960; 120
2016; 111
2018; 30
2016; 116
2017; 121
2010; 3
2010; 2
2012; 24
1994; 30
1968; 11
2007; 400
2017; 20
2004; 303
2019; 5
2015; 3
2019; 31
2006; 99
2006
2017; 29
2004
2020; 32
2008; 321
2008; 320
2017; 135
1961; 14
2018; 18
2016; 7
1975; 27
2017; 10
2015; 197
1994; 15
2018; 12
2018; 11
2008; 130
2016; 8
Chizhevskaya S. N. (e_1_2_7_52_1) 1994; 30
e_1_2_7_5_1
Hogan T. P. (e_1_2_7_40_1) 2006
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
Matsumura A. (e_1_2_7_51_1) 1968; 11
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Kang S.‐J. L. (e_1_2_7_44_1) 2004
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 11
  start-page: 429
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 225
  year: 2011
  publication-title: Nano Lett.
– volume: 111
  start-page: 3
  year: 2016
  publication-title: Scr. Mater.
– volume: 57
  start-page: 835
  year: 2019
  publication-title: Nano Energy
– volume: 14
  start-page: 72
  year: 1961
  publication-title: Physics Today
– volume: 81
  start-page: 61
  year: 1986
  publication-title: Mater. Sci. Eng.
– volume: 400
  start-page: 11
  year: 2007
  publication-title: Phys. B Condens. Matter
– volume: 11
  start-page: 103
  year: 1968
  publication-title: Tech. Rev
– volume: 8
  year: 2016
  publication-title: NPG Asia Mater.
– volume: 57
  start-page: 2128
  year: 2009
  publication-title: Acta Mater
– volume: 11
  start-page: 1520
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 152
  year: 2010
  publication-title: NPG Asia Mater.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 49
  start-page: 267
  year: 2018
  publication-title: Nano Energy
– volume: 12
  start-page: 624
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 1
  year: 1994
  publication-title: Inorg. Mater.
– volume: 3
  year: 2015
  publication-title: APL Mater.
– volume: 20
  start-page: 452
  year: 2017
  publication-title: Mater. Today
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 79
  start-page: 722
  year: 1950
  publication-title: Phys. Rev.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 55
  start-page: 486
  year: 2019
  publication-title: Nano Energy
– year: 2004
– volume: 135
  start-page: 297
  year: 2017
  publication-title: Acta Mater
– volume: 197
  start-page: 75
  year: 2015
  publication-title: Mater. Sci. Eng. B Solid‐State Mater. Adv. Technol.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 36
  start-page: 541
  year: 2016
  publication-title: J. Eur. Ceram. Soc.
– volume: 15
  start-page: 349
  year: 1994
  publication-title: J. Phase Equilibria
– volume: 18
  start-page: 2557
  year: 2018
  publication-title: Nano Lett.
– volume: 320
  start-page: 634
  year: 2008
  publication-title: Science
– volume: 10
  start-page: 251
  year: 2017
  publication-title: Materials
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2016
  publication-title: NPG Asia Mater
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 13
  start-page: 535
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 6125
  year: 2012
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1856
  year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1519
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 7
  start-page: 105
  year: 2008
  publication-title: Nat. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 120
  start-page: 1149
  year: 1960
  publication-title: Phys. Rev.
– volume: 8
  start-page: 2580
  year: 2008
  publication-title: Nano Lett.
– volume: 60
  start-page: 1
  year: 2019
  publication-title: Nano Energy
– volume: 348
  start-page: 109
  year: 2015
  publication-title: Science
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 99
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– start-page: 12
  year: 2006
  end-page: 1
– volume: 30
  start-page: 630
  year: 2016
  publication-title: Nano Energy
– volume: 12
  start-page: 1396
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 321
  start-page: 1457
  year: 2008
  publication-title: Science
– volume: 303
  start-page: 818
  year: 2004
  publication-title: Science
– volume: 37
  start-page: 203
  year: 2017
  publication-title: Nano Energy
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 251
  start-page: 1431
  year: 2014
  publication-title: Phys. Status Solidi B Basic Solid State Phys.
– volume: 42
  start-page: 8
  year: 2017
  publication-title: Nano Energy
– volume: 27
  start-page: 329
  year: 1975
  publication-title: Phys. Status Solidi
– volume: 130
  start-page: 4527
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 121
  year: 2017
  publication-title: J. Appl. Phys.
– ident: e_1_2_7_43_1
  doi: 10.1039/C7EE03326E
– ident: e_1_2_7_34_1
  doi: 10.1021/acs.nanolett.8b00263
– ident: e_1_2_7_21_1
  doi: 10.1063/1.4984914
– ident: e_1_2_7_5_1
  doi: 10.1038/asiamat.2010.138
– ident: e_1_2_7_8_1
  doi: 10.1126/science.1092963
– ident: e_1_2_7_20_1
  doi: 10.1039/C8TA08238C
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.202001537
– ident: e_1_2_7_17_1
  doi: 10.1016/j.nanoen.2019.03.031
– volume: 30
  start-page: 1
  year: 1994
  ident: e_1_2_7_52_1
  publication-title: Inorg. Mater.
– ident: e_1_2_7_48_1
  doi: 10.1038/ncomms13828
– ident: e_1_2_7_58_1
  doi: 10.1039/C8EE00290H
– ident: e_1_2_7_35_1
  doi: 10.1039/c0ee00012d
– ident: e_1_2_7_42_1
  doi: 10.1002/pssa.2210270202
– ident: e_1_2_7_46_1
  doi: 10.1016/j.actamat.2009.01.005
– ident: e_1_2_7_25_1
  doi: 10.1016/j.physb.2007.06.009
– ident: e_1_2_7_3_1
  doi: 10.1016/j.scriptamat.2015.07.045
– ident: e_1_2_7_61_1
  doi: 10.1016/j.nanoen.2018.10.069
– ident: e_1_2_7_50_1
  doi: 10.1016/0025-5416(86)90254-5
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201605884
– ident: e_1_2_7_28_1
  doi: 10.1038/am.2016.67
– ident: e_1_2_7_55_1
  doi: 10.1016/j.nanoen.2017.10.034
– ident: e_1_2_7_29_1
  doi: 10.1039/C9EE00317G
– ident: e_1_2_7_4_1
  doi: 10.1021/nl103581z
– ident: e_1_2_7_6_1
  doi: 10.1002/pssb.201451088
– ident: e_1_2_7_37_1
  doi: 10.1016/j.actamat.2017.06.036
– ident: e_1_2_7_53_1
  doi: 10.1007/BF02669225
– ident: e_1_2_7_13_1
  doi: 10.1039/C8EE03225D
– ident: e_1_2_7_24_1
  doi: 10.1016/j.mseb.2015.03.011
– ident: e_1_2_7_27_1
  doi: 10.1016/j.mattod.2017.02.007
– ident: e_1_2_7_59_1
  doi: 10.1039/C9EE03446C
– ident: e_1_2_7_54_1
  doi: 10.1103/PhysRev.120.1149
– ident: e_1_2_7_22_1
  doi: 10.1016/j.nanoen.2018.12.090
– ident: e_1_2_7_56_1
  doi: 10.1063/1.2188251
– ident: e_1_2_7_16_1
  doi: 10.1038/am.2016.134
– start-page: 12
  volume-title: Thermoelectrics Handbook: Macro to Nano
  year: 2006
  ident: e_1_2_7_40_1
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat2090
– ident: e_1_2_7_23_1
  doi: 10.1093/nsr/nwaa259
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.201800065
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.201300937
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201802016
– ident: e_1_2_7_19_1
  doi: 10.1126/science.1156446
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201900108
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201202919
– ident: e_1_2_7_18_1
  doi: 10.1021/nl8009928
– ident: e_1_2_7_11_1
  doi: 10.1016/j.nanoen.2016.10.056
– ident: e_1_2_7_36_1
  doi: 10.1021/acsami.7b01473
– volume: 11
  start-page: 103
  year: 1968
  ident: e_1_2_7_51_1
  publication-title: Tech. Rev
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201605140
– ident: e_1_2_7_10_1
  doi: 10.1038/ncomms10766
– ident: e_1_2_7_39_1
  doi: 10.1063/1.3057351
– ident: e_1_2_7_64_1
  doi: 10.1063/1.4908244
– ident: e_1_2_7_38_1
  doi: 10.1016/j.nanoen.2017.05.031
– ident: e_1_2_7_62_1
  doi: 10.1002/aenm.201902986
– volume-title: Sintering: Densification, Grain Growth and Microstructure
  year: 2004
  ident: e_1_2_7_44_1
– ident: e_1_2_7_60_1
  doi: 10.1016/j.nanoen.2018.04.058
– ident: e_1_2_7_57_1
  doi: 10.1126/sciadv.aar5606
– ident: e_1_2_7_14_1
  doi: 10.1021/ja7110652
– ident: e_1_2_7_26_1
  doi: 10.1002/aelm.201800904
– ident: e_1_2_7_47_1
  doi: 10.1103/PhysRev.79.722
– ident: e_1_2_7_63_1
  doi: 10.3390/ma10030251
– ident: e_1_2_7_32_1
  doi: 10.1126/science.aaa4166
– ident: e_1_2_7_45_1
  doi: 10.1016/j.jeurceramsoc.2015.11.002
– ident: e_1_2_7_2_1
  doi: 10.1126/science.1158899
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.chemrev.6b00255
SSID ssj0017734
Score 2.650397
Snippet The widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Antimony
bismuth telluride
Bismuth tellurides
Carrier mobility
Commercialization
Current carriers
Deformation effects
Dislocations
Eutectic temperature
Grains
Liquid phase sintering
Liquid phases
Materials science
Microstructure
Performance enhancement
Phase (cyclic)
Plasma sintering
Plastic deformation
Power factor
Precipitates
Spark plasma sintering
Thermal conductivity
thermoelectric
Thermoelectric materials
Title Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation via Cyclic Spark Plasma Sintering with Liquid Phase
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202009681
https://www.proquest.com/docview/2509575819
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VcGkPbSlUDS_NoVJPBq-9fh1TIEIIVxEBKTdr9mFhJTgQSKXwB_jb7NiOEyohJHqybO2u7Z1Zz-fZmW8Y-2lFzrn2YicPtXKE0IkTBypyiFfFKC6CPKAE5_RPeHolzobBcCWLv-aHaB1utDKq7zUtcJT3h0vSUNQ5ZZKTdz-scq8pYItQ0UXLH8WjqN5WDjkFePHhgrXR9Q5fdn9plZZQcxWwVhan94Xh4lnrQJPRwexBHqjHf2gc_-dlvrLPDRyFbq0_G-yDKb-xTyskhZvsyWrS9GZS18spFPSXqQZwUl7TkTyMUJTwuxjISwPd8XgyBzmHlKL9aoba2dRAOtFNsTD4WyAczdXYjje4xekI-hbF3yAMiL6C7gvkIIbz4m5WaOhfW1u7xa56J5dHp05TvsFRfiC4gzHtUgqZBCgSX7nCRBZeoEVYGjmqUCcq57HmuW8xjBaJjIPQzxE9eyU3SeR_Z2vlpDQ_GLgYeNJIERn7-6ZRSZQiRx2hta4qcd0Ocxbiy1TDbU4lNsZZzcrsZTTBWTvBHfarbX9bs3q82nJ3oQ1Zs7rvMwsbEwtzLZjqMK8S6xujZN3jXtqebb-n0w776FE4TRU0tMvWrOzMnsVDD3KfrXeP0_PBfqX7z3_rBQY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hegAOpbzUAC1zqMTJ4LXXr2N4RCmNUUSCxM3al4VFcCAQpPQP9G93x68AEkKCk2Vr14-dHc-3szPfEPLLiJxS5YRW6itpMaYiK_RkYCGvipaUeamHCc7xud-9ZGdXXh1NiLkwJT9E43BDzSj-16jg6JA-nLOGcpViKjm6931Mvv6CZb2LVdVFwyBFg6DcWPYphnjRq5q30XYOX_Z_aZfmYPM5ZC1sTmeViPpty1CTm4PpoziQf18ROX7qc76RrxUihXY5hdbIgs7XycoznsIN8s9MpsntuCyZk0noz7MN4DS_xiM6GSHL4SgbiKGG9mg0noGYQYwBfyVJ7XSiIR6rql4YPGUcjmdyZO43uOOTG-gbIH_LYYAMFvhcQB8x9LL7aaagf23M7Sa57JwOj7tWVcHBkq7HqMVD3KhkIvI4i1xpMx0YhMENyFKccumrSKY0VDR1DYxRLBKh57sp5465kuoocLfIYj7O9XcCNvccoQULtFnBKS4FFyzlKuDGwMrItlvEquWXyIreHKtsjJKSmNlJcICTZoBbZL9pf1cSe7zZcreeDkml4A-JQY6RQboGT7WIU8j1nbsk7ZNO3Jxtf6TTHlnqDuNe0vt9_meHLDsYXVPEEO2SRSNH_cPAo0fxs1CA_4_0B40
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5KCqU99F3iJG3nUOhJiVZavY5uHJO2cTB1Ar6J2RcRcWTXiQPOH8jf7o4ky06hFNqTkNhdSTuzmk-zM98w9smJnHMdpJ6NtfKE0JmXRirxiFfFKC4iG1GC8-A0Pj4X38bReCOLv-aHaB1utDKq7zUt8Jm2B2vSUNSWMsnJux9T7vVjEfsp6XXvR0sgxZOk3leOOUV48fGKttEPDh72f2iW1lhzE7FWJqf_guHqYetIk8v9xY3cV3e_8Tj-z9u8ZM8bPArdWoFesUemfM2ebbAUvmH3TpXmV9O6YE6hYLjONYCj8oKO5GKEooQvxUieGehOJtMlyCUMKNyvpqhdzA0MprqpFga3BcLhUk3ceKMZzi9h6GD8FcKI-CvovkAeYjgpfi4KDcMLZ2zfsvP-0dnhsdfUb_BUGAnuYUrblEJmEYosVL4wicMX6CCWRo4q1pmyPNXchg7EaJHJNIpDixi4K9ZkSfiObZXT0mwz8DEKpJEiMe7_TaOSKIVFnaAzryrz_Q7zVuLLVUNuTjU2JnlNyxzkNMF5O8Ed9rltP6tpPf7Ycm-lDXmzvK9zhxszh3MdmuqwoBLrX0bJu73-oD3b-ZdOH9mTYa-fn3w9_b7LngYUWlMFEO2xLSdG895hoxv5oVL_X40KBkU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoelectric+Performance+Enhancement+in+BiSbTe+Alloy+by+Microstructure+Modulation+via+Cyclic+Spark+Plasma+Sintering+with+Liquid+Phase&rft.jtitle=Advanced+functional+materials&rft.au=Hua%E2%80%90Lu+Zhuang&rft.au=Pei%2C+Jun&rft.au=Bowen%2C+Cai&rft.au=Dong%2C+Jinfeng&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=15&rft_id=info:doi/10.1002%2Fadfm.202009681&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon