Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation via Cyclic Spark Plasma Sintering with Liquid Phase
The widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the performance enhancement of Bi2Te3‐based commercialized thermoelectric materials. This study highlights the importance of the synthesis process for hi...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 15 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the performance enhancement of Bi2Te3‐based commercialized thermoelectric materials. This study highlights the importance of the synthesis process for high‐performance achievement and demonstrates that the enhancement of the thermoelectric performance of (Bi,Sb)2Te3 can be achieved by applying cyclic spark plasma sintering to BixSb2–xTe3‐Te above its eutectic temperature. This facile process results in a unique microstructure characterized by the growth of grains and plentiful nanostructures. The enlarged grains lead to high charge carrier mobility that boosts the power factor. The abundant dislocations originating from the plastic deformation during cyclic liquid phase sintering and the pinning effect by the Sb‐rich nano‐precipitates result in low lattice thermal conductivity. Therefore, a high ZT value of over 1.46 is achieved, which is 50% higher than conventionally spark‐plasma‐sintered (Bi,Sb)2Te3. The proposed cyclic spark plasma liquid phase sintering process for TE performance enhancement is validated by the representative (Bi,Sb)2Te3 thermoelectric alloy and is applicable for other telluride‐based materials.
The thermoelectric power factor and figure of merit of the BiSbTe alloy are significantly improved by cyclic liquid‐phase aided spark plasma sintering process. The present proposed fabrication process modulates the microstructure in a wide range of scale from nano‐sized dislocations to micrometer grain size, leading to a synergistic control of charge carriers and phonon transport. |
---|---|
AbstractList | The widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the performance enhancement of Bi2Te3‐based commercialized thermoelectric materials. This study highlights the importance of the synthesis process for high‐performance achievement and demonstrates that the enhancement of the thermoelectric performance of (Bi,Sb)2Te3 can be achieved by applying cyclic spark plasma sintering to BixSb2–xTe3‐Te above its eutectic temperature. This facile process results in a unique microstructure characterized by the growth of grains and plentiful nanostructures. The enlarged grains lead to high charge carrier mobility that boosts the power factor. The abundant dislocations originating from the plastic deformation during cyclic liquid phase sintering and the pinning effect by the Sb‐rich nano‐precipitates result in low lattice thermal conductivity. Therefore, a high ZT value of over 1.46 is achieved, which is 50% higher than conventionally spark‐plasma‐sintered (Bi,Sb)2Te3. The proposed cyclic spark plasma liquid phase sintering process for TE performance enhancement is validated by the representative (Bi,Sb)2Te3 thermoelectric alloy and is applicable for other telluride‐based materials.
The thermoelectric power factor and figure of merit of the BiSbTe alloy are significantly improved by cyclic liquid‐phase aided spark plasma sintering process. The present proposed fabrication process modulates the microstructure in a wide range of scale from nano‐sized dislocations to micrometer grain size, leading to a synergistic control of charge carriers and phonon transport. The widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the performance enhancement of Bi 2 Te 3 ‐based commercialized thermoelectric materials. This study highlights the importance of the synthesis process for high‐performance achievement and demonstrates that the enhancement of the thermoelectric performance of (Bi,Sb) 2 Te 3 can be achieved by applying cyclic spark plasma sintering to Bi x Sb 2– x Te 3 ‐Te above its eutectic temperature. This facile process results in a unique microstructure characterized by the growth of grains and plentiful nanostructures. The enlarged grains lead to high charge carrier mobility that boosts the power factor. The abundant dislocations originating from the plastic deformation during cyclic liquid phase sintering and the pinning effect by the Sb‐rich nano‐precipitates result in low lattice thermal conductivity. Therefore, a high ZT value of over 1.46 is achieved, which is 50% higher than conventionally spark‐plasma‐sintered (Bi,Sb) 2 Te 3 . The proposed cyclic spark plasma liquid phase sintering process for TE performance enhancement is validated by the representative (Bi,Sb) 2 Te 3 thermoelectric alloy and is applicable for other telluride‐based materials. The widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the performance enhancement of Bi2Te3‐based commercialized thermoelectric materials. This study highlights the importance of the synthesis process for high‐performance achievement and demonstrates that the enhancement of the thermoelectric performance of (Bi,Sb)2Te3 can be achieved by applying cyclic spark plasma sintering to BixSb2–xTe3‐Te above its eutectic temperature. This facile process results in a unique microstructure characterized by the growth of grains and plentiful nanostructures. The enlarged grains lead to high charge carrier mobility that boosts the power factor. The abundant dislocations originating from the plastic deformation during cyclic liquid phase sintering and the pinning effect by the Sb‐rich nano‐precipitates result in low lattice thermal conductivity. Therefore, a high ZT value of over 1.46 is achieved, which is 50% higher than conventionally spark‐plasma‐sintered (Bi,Sb)2Te3. The proposed cyclic spark plasma liquid phase sintering process for TE performance enhancement is validated by the representative (Bi,Sb)2Te3 thermoelectric alloy and is applicable for other telluride‐based materials. |
Author | Pei, Jun Cai, Bowen Sun, Fu‐Hua Pan, Yu Dong, Jinfeng Li, Jing‐Feng Hu, Haihua Snyder, Gerald Jeffrey Zhuang, Hua‐Lu |
Author_xml | – sequence: 1 givenname: Hua‐Lu orcidid: 0000-0002-5648-1187 surname: Zhuang fullname: Zhuang, Hua‐Lu organization: Tsinghua University – sequence: 2 givenname: Jun surname: Pei fullname: Pei, Jun organization: Tsinghua University – sequence: 3 givenname: Bowen surname: Cai fullname: Cai, Bowen organization: Tsinghua University – sequence: 4 givenname: Jinfeng surname: Dong fullname: Dong, Jinfeng organization: Tsinghua University – sequence: 5 givenname: Haihua surname: Hu fullname: Hu, Haihua organization: Tsinghua University – sequence: 6 givenname: Fu‐Hua surname: Sun fullname: Sun, Fu‐Hua organization: Tsinghua University – sequence: 7 givenname: Yu surname: Pan fullname: Pan, Yu email: yu.pan@cpfs.mpg.de organization: Max Planck Institute for Chemical Physics of Solids – sequence: 8 givenname: Gerald Jeffrey surname: Snyder fullname: Snyder, Gerald Jeffrey organization: Northwestern University – sequence: 9 givenname: Jing‐Feng orcidid: 0000-0002-0185-0512 surname: Li fullname: Li, Jing‐Feng email: jingfeng@mail.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkM1rGzEQxUVJoUnaa8-Cnu1oVvulo-N8NGATg13obRlrZ2ulWsnRahP2L-i_nXVdUgiUnmYY3u895p2xE-cdMfYZxBSESC6wbtppIhIhVF7CO3YKOeQTKZLy5HWH7x_YWdc9CAFFIdNT9muzo9B6sqRjMJqvKDQ-tOg08Wu3O8yWXOTG8Uuz3m6Iz6z1A98OfGl08F0MvY59IL70dW8xGu_4k0E-H7Qd_dZ7DD_5ymLXIl8bFykY94M_m7jjC_PYm5qvdtjRR_a-QdvRpz_znH27ud7Mv04W97d389liomWWwgRLITNItyrDVEktUiogA8yFqBFQ57XSDZQ1NFJCUadqW2a5bBCT8dKQKuQ5-3L03Qf_2FMXqwffBzdGVkkmVFZkJahRNT2qDh92gZpqH0yLYahAVIeyq0PZ1WvZI5C-AbSJv8uIAY39N6aO2LOxNPwnpJpd3Sz_si8gfZgR |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2024_235191 crossref_primary_10_1016_j_jallcom_2024_178050 crossref_primary_10_1021_acs_jpcc_1c05375 crossref_primary_10_1016_j_cej_2022_135062 crossref_primary_10_1016_j_jallcom_2023_168763 crossref_primary_10_1021_acs_nanolett_4c01304 crossref_primary_10_1088_2515_7655_ac49dc crossref_primary_10_1002_adfm_202305686 crossref_primary_10_1002_adfm_202200307 crossref_primary_10_1016_j_pmatsci_2024_101420 crossref_primary_10_1039_D2EE00119E crossref_primary_10_1002_smll_202412574 crossref_primary_10_1021_acsami_5c01688 crossref_primary_10_1002_idm2_12009 crossref_primary_10_1016_j_solidstatesciences_2024_107609 crossref_primary_10_1360_TB_2024_0787 crossref_primary_10_1038_s41467_023_43228_9 crossref_primary_10_1002_advs_202203250 crossref_primary_10_1016_j_jmat_2022_10_002 crossref_primary_10_1016_j_ceramint_2022_10_355 crossref_primary_10_1016_j_mtphys_2022_100670 crossref_primary_10_1021_acs_inorgchem_2c01544 crossref_primary_10_1088_1361_6463_ad809e crossref_primary_10_1016_j_jallcom_2024_177917 crossref_primary_10_1039_D4EE02008A crossref_primary_10_1016_j_rser_2024_114719 crossref_primary_10_1007_s11431_024_2783_x crossref_primary_10_1002_adfm_202415368 crossref_primary_10_1021_acsami_2c18575 crossref_primary_10_1007_s40243_024_00293_4 crossref_primary_10_1007_s40843_023_2498_y crossref_primary_10_1016_j_mtphys_2021_100423 crossref_primary_10_1016_j_mtphys_2021_100544 crossref_primary_10_1002_adfm_202315591 crossref_primary_10_1016_j_nanoen_2023_108176 crossref_primary_10_1016_j_scriptamat_2024_115988 crossref_primary_10_1002_admt_202301722 crossref_primary_10_1002_adma_202210380 crossref_primary_10_1002_adfm_202214771 crossref_primary_10_1016_j_jmat_2023_08_001 crossref_primary_10_1016_j_mtphys_2023_101035 crossref_primary_10_1016_j_jeurceramsoc_2024_116942 crossref_primary_10_1039_D4EE04930F crossref_primary_10_1002_inf2_12514 crossref_primary_10_1021_acsami_2c20778 crossref_primary_10_1021_acsami_2c17532 crossref_primary_10_1002_smsc_202300359 crossref_primary_10_1007_s11664_023_10624_2 crossref_primary_10_1063_5_0235499 crossref_primary_10_1002_adfm_202314499 crossref_primary_10_1002_smll_202306701 crossref_primary_10_1002_advs_202400870 crossref_primary_10_1016_j_ceramint_2023_07_080 crossref_primary_10_1016_j_mtphys_2023_101287 crossref_primary_10_1016_j_jallcom_2023_171136 crossref_primary_10_1021_acsaem_1c01830 crossref_primary_10_1016_j_jmat_2022_09_017 crossref_primary_10_1002_adma_202103633 crossref_primary_10_1021_acsenergylett_2c02425 crossref_primary_10_1016_j_mtphys_2022_100764 crossref_primary_10_1007_s11664_022_10041_x crossref_primary_10_1021_acsami_4c16245 crossref_primary_10_54227_mlab_20230003 crossref_primary_10_1002_smll_202408794 crossref_primary_10_1002_aenm_202404653 crossref_primary_10_1021_acsami_1c13372 crossref_primary_10_1016_j_mtphys_2025_101697 crossref_primary_10_1016_j_mtnano_2023_100340 crossref_primary_10_1016_j_mtphys_2025_101692 crossref_primary_10_1002_adfm_202419776 crossref_primary_10_1016_j_cej_2024_154624 crossref_primary_10_1002_smll_202401070 crossref_primary_10_1016_j_ceramint_2022_09_315 crossref_primary_10_1093_nsr_nwae329 crossref_primary_10_1021_acsaem_3c02490 crossref_primary_10_1016_j_clce_2023_100101 crossref_primary_10_1016_j_mtphys_2022_100633 crossref_primary_10_1088_2515_7655_ad3983 crossref_primary_10_1039_D3MH00292F crossref_primary_10_1038_s41467_024_53599_2 crossref_primary_10_1007_s40145_022_0657_4 crossref_primary_10_1021_acsnano_4c03926 crossref_primary_10_1002_adma_202300338 crossref_primary_10_1021_acsaelm_3c01615 crossref_primary_10_3390_ma17235751 crossref_primary_10_54227_mlab_20230015 crossref_primary_10_1007_s10853_022_07951_w crossref_primary_10_1039_D4TA00552J crossref_primary_10_1007_s11664_022_09748_8 crossref_primary_10_1016_j_cej_2021_131853 crossref_primary_10_1021_acsami_4c06978 crossref_primary_10_54227_mlab_20220026 crossref_primary_10_1016_j_jallcom_2022_163933 crossref_primary_10_1002_smll_202400449 crossref_primary_10_1016_j_actamat_2025_120883 crossref_primary_10_3390_nano13020326 crossref_primary_10_1002_adfm_202301423 crossref_primary_10_1002_cnma_202200389 crossref_primary_10_1002_adma_202209119 crossref_primary_10_1016_j_cej_2024_155652 crossref_primary_10_1021_acsami_1c19893 crossref_primary_10_1016_j_actamat_2023_118926 crossref_primary_10_1016_j_mtphys_2023_101071 crossref_primary_10_1063_5_0234485 crossref_primary_10_1002_aenm_202400623 crossref_primary_10_1016_j_esci_2023_100122 crossref_primary_10_1002_advs_202104915 crossref_primary_10_1016_j_cej_2022_135968 crossref_primary_10_1002_adfm_202401240 crossref_primary_10_1016_j_mtener_2024_101643 crossref_primary_10_1016_j_cej_2021_132738 crossref_primary_10_1021_acsami_3c14750 crossref_primary_10_1016_j_jeurceramsoc_2024_03_067 crossref_primary_10_1039_D1TA10582E crossref_primary_10_1016_j_jeurceramsoc_2022_08_043 crossref_primary_10_1126_science_abi8668 crossref_primary_10_1002_adma_202307945 crossref_primary_10_1021_acsmaterialslett_2c00027 crossref_primary_10_3390_ma15155331 crossref_primary_10_1002_admt_202302226 crossref_primary_10_1021_acsaem_1c03540 crossref_primary_10_1021_acsami_4c12307 crossref_primary_10_1038_s41467_023_37114_7 crossref_primary_10_1002_smtd_202301256 crossref_primary_10_1016_j_jallcom_2024_174744 crossref_primary_10_1021_acsami_4c06713 crossref_primary_10_1063_5_0076843 crossref_primary_10_1021_acs_chemmater_3c00229 crossref_primary_10_1038_s41598_022_14405_5 crossref_primary_10_1063_5_0071039 |
Cites_doi | 10.1039/C7EE03326E 10.1021/acs.nanolett.8b00263 10.1063/1.4984914 10.1038/asiamat.2010.138 10.1126/science.1092963 10.1039/C8TA08238C 10.1002/adma.202001537 10.1016/j.nanoen.2019.03.031 10.1038/ncomms13828 10.1039/C8EE00290H 10.1039/c0ee00012d 10.1002/pssa.2210270202 10.1016/j.actamat.2009.01.005 10.1016/j.physb.2007.06.009 10.1016/j.scriptamat.2015.07.045 10.1016/j.nanoen.2018.10.069 10.1016/0025-5416(86)90254-5 10.1002/adma.201605884 10.1038/am.2016.67 10.1016/j.nanoen.2017.10.034 10.1039/C9EE00317G 10.1021/nl103581z 10.1002/pssb.201451088 10.1016/j.actamat.2017.06.036 10.1007/BF02669225 10.1039/C8EE03225D 10.1016/j.mseb.2015.03.011 10.1016/j.mattod.2017.02.007 10.1039/C9EE03446C 10.1103/PhysRev.120.1149 10.1016/j.nanoen.2018.12.090 10.1063/1.2188251 10.1038/am.2016.134 10.1038/nmat2090 10.1093/nsr/nwaa259 10.1002/aenm.201800065 10.1002/aenm.201300937 10.1002/adma.201802016 10.1126/science.1156446 10.1002/adma.201900108 10.1002/adma.201202919 10.1021/nl8009928 10.1016/j.nanoen.2016.10.056 10.1021/acsami.7b01473 10.1002/adma.201605140 10.1038/ncomms10766 10.1063/1.3057351 10.1063/1.4908244 10.1016/j.nanoen.2017.05.031 10.1002/aenm.201902986 10.1016/j.nanoen.2018.04.058 10.1126/sciadv.aar5606 10.1021/ja7110652 10.1002/aelm.201800904 10.1103/PhysRev.79.722 10.3390/ma10030251 10.1126/science.aaa4166 10.1016/j.jeurceramsoc.2015.11.002 10.1126/science.1158899 10.1021/acs.chemrev.6b00255 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202009681 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202009681 ADFM202009681 |
Genre | article |
GrantInformation_xml | – fundername: NSFC funderid: 51788104 – fundername: National Key Research and Development Program of China funderid: 2018YFB0703603 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3541-a803514b95a493c04e7151a600da1ac6d9cf18d1f3317d49b8563faa21f3fe973 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 09:23:25 EDT 2025 Tue Jul 01 04:12:24 EDT 2025 Thu Apr 24 23:09:02 EDT 2025 Wed Jan 22 16:29:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3541-a803514b95a493c04e7151a600da1ac6d9cf18d1f3317d49b8563faa21f3fe973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5648-1187 0000-0002-0185-0512 |
PQID | 2509575819 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2509575819 crossref_primary_10_1002_adfm_202009681 crossref_citationtrail_10_1002_adfm_202009681 wiley_primary_10_1002_adfm_202009681_ADFM202009681 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 42 2017; 8 2019; 55 2019; 57 2019; 12 2008; 7 2011; 11 2016; 30 2008; 8 2020; 13 2015; 348 2020; 10 2014; 251 2017; 9 2016; 36 2018; 49 2018; 6 2020; 7 2009; 57 2018; 8 2019; 60 1986; 81 2014; 4 1950; 79 2018; 4 2017; 37 1960; 120 2016; 111 2018; 30 2016; 116 2017; 121 2010; 3 2010; 2 2012; 24 1994; 30 1968; 11 2007; 400 2017; 20 2004; 303 2019; 5 2015; 3 2019; 31 2006; 99 2006 2017; 29 2004 2020; 32 2008; 321 2008; 320 2017; 135 1961; 14 2018; 18 2016; 7 1975; 27 2017; 10 2015; 197 1994; 15 2018; 12 2018; 11 2008; 130 2016; 8 Chizhevskaya S. N. (e_1_2_7_52_1) 1994; 30 e_1_2_7_5_1 Hogan T. P. (e_1_2_7_40_1) 2006 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 Matsumura A. (e_1_2_7_51_1) 1968; 11 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Kang S.‐J. L. (e_1_2_7_44_1) 2004 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 11 start-page: 429 year: 2018 publication-title: Energy Environ. Sci. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 11 start-page: 225 year: 2011 publication-title: Nano Lett. – volume: 111 start-page: 3 year: 2016 publication-title: Scr. Mater. – volume: 57 start-page: 835 year: 2019 publication-title: Nano Energy – volume: 14 start-page: 72 year: 1961 publication-title: Physics Today – volume: 81 start-page: 61 year: 1986 publication-title: Mater. Sci. Eng. – volume: 400 start-page: 11 year: 2007 publication-title: Phys. B Condens. Matter – volume: 11 start-page: 103 year: 1968 publication-title: Tech. Rev – volume: 8 year: 2016 publication-title: NPG Asia Mater. – volume: 57 start-page: 2128 year: 2009 publication-title: Acta Mater – volume: 11 start-page: 1520 year: 2018 publication-title: Energy Environ. Sci. – volume: 2 start-page: 152 year: 2010 publication-title: NPG Asia Mater. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 49 start-page: 267 year: 2018 publication-title: Nano Energy – volume: 12 start-page: 624 year: 2018 publication-title: Energy Environ. Sci. – volume: 30 start-page: 1 year: 1994 publication-title: Inorg. Mater. – volume: 3 year: 2015 publication-title: APL Mater. – volume: 20 start-page: 452 year: 2017 publication-title: Mater. Today – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 79 start-page: 722 year: 1950 publication-title: Phys. Rev. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 55 start-page: 486 year: 2019 publication-title: Nano Energy – year: 2004 – volume: 135 start-page: 297 year: 2017 publication-title: Acta Mater – volume: 197 start-page: 75 year: 2015 publication-title: Mater. Sci. Eng. B Solid‐State Mater. Adv. Technol. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 36 start-page: 541 year: 2016 publication-title: J. Eur. Ceram. Soc. – volume: 15 start-page: 349 year: 1994 publication-title: J. Phase Equilibria – volume: 18 start-page: 2557 year: 2018 publication-title: Nano Lett. – volume: 320 start-page: 634 year: 2008 publication-title: Science – volume: 10 start-page: 251 year: 2017 publication-title: Materials – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 8 year: 2016 publication-title: NPG Asia Mater – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 13 start-page: 535 year: 2020 publication-title: Energy Environ. Sci. – volume: 24 start-page: 6125 year: 2012 publication-title: Adv. Mater. – volume: 7 start-page: 1856 year: 2020 publication-title: Natl. Sci. Rev. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 3 start-page: 1519 year: 2010 publication-title: Energy Environ. Sci. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 7 start-page: 105 year: 2008 publication-title: Nat. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 120 start-page: 1149 year: 1960 publication-title: Phys. Rev. – volume: 8 start-page: 2580 year: 2008 publication-title: Nano Lett. – volume: 60 start-page: 1 year: 2019 publication-title: Nano Energy – volume: 348 start-page: 109 year: 2015 publication-title: Science – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 99 year: 2006 publication-title: J. Appl. Phys. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – start-page: 12 year: 2006 end-page: 1 – volume: 30 start-page: 630 year: 2016 publication-title: Nano Energy – volume: 12 start-page: 1396 year: 2019 publication-title: Energy Environ. Sci. – volume: 321 start-page: 1457 year: 2008 publication-title: Science – volume: 303 start-page: 818 year: 2004 publication-title: Science – volume: 37 start-page: 203 year: 2017 publication-title: Nano Energy – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 251 start-page: 1431 year: 2014 publication-title: Phys. Status Solidi B Basic Solid State Phys. – volume: 42 start-page: 8 year: 2017 publication-title: Nano Energy – volume: 27 start-page: 329 year: 1975 publication-title: Phys. Status Solidi – volume: 130 start-page: 4527 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 121 year: 2017 publication-title: J. Appl. Phys. – ident: e_1_2_7_43_1 doi: 10.1039/C7EE03326E – ident: e_1_2_7_34_1 doi: 10.1021/acs.nanolett.8b00263 – ident: e_1_2_7_21_1 doi: 10.1063/1.4984914 – ident: e_1_2_7_5_1 doi: 10.1038/asiamat.2010.138 – ident: e_1_2_7_8_1 doi: 10.1126/science.1092963 – ident: e_1_2_7_20_1 doi: 10.1039/C8TA08238C – ident: e_1_2_7_41_1 doi: 10.1002/adma.202001537 – ident: e_1_2_7_17_1 doi: 10.1016/j.nanoen.2019.03.031 – volume: 30 start-page: 1 year: 1994 ident: e_1_2_7_52_1 publication-title: Inorg. Mater. – ident: e_1_2_7_48_1 doi: 10.1038/ncomms13828 – ident: e_1_2_7_58_1 doi: 10.1039/C8EE00290H – ident: e_1_2_7_35_1 doi: 10.1039/c0ee00012d – ident: e_1_2_7_42_1 doi: 10.1002/pssa.2210270202 – ident: e_1_2_7_46_1 doi: 10.1016/j.actamat.2009.01.005 – ident: e_1_2_7_25_1 doi: 10.1016/j.physb.2007.06.009 – ident: e_1_2_7_3_1 doi: 10.1016/j.scriptamat.2015.07.045 – ident: e_1_2_7_61_1 doi: 10.1016/j.nanoen.2018.10.069 – ident: e_1_2_7_50_1 doi: 10.1016/0025-5416(86)90254-5 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201605884 – ident: e_1_2_7_28_1 doi: 10.1038/am.2016.67 – ident: e_1_2_7_55_1 doi: 10.1016/j.nanoen.2017.10.034 – ident: e_1_2_7_29_1 doi: 10.1039/C9EE00317G – ident: e_1_2_7_4_1 doi: 10.1021/nl103581z – ident: e_1_2_7_6_1 doi: 10.1002/pssb.201451088 – ident: e_1_2_7_37_1 doi: 10.1016/j.actamat.2017.06.036 – ident: e_1_2_7_53_1 doi: 10.1007/BF02669225 – ident: e_1_2_7_13_1 doi: 10.1039/C8EE03225D – ident: e_1_2_7_24_1 doi: 10.1016/j.mseb.2015.03.011 – ident: e_1_2_7_27_1 doi: 10.1016/j.mattod.2017.02.007 – ident: e_1_2_7_59_1 doi: 10.1039/C9EE03446C – ident: e_1_2_7_54_1 doi: 10.1103/PhysRev.120.1149 – ident: e_1_2_7_22_1 doi: 10.1016/j.nanoen.2018.12.090 – ident: e_1_2_7_56_1 doi: 10.1063/1.2188251 – ident: e_1_2_7_16_1 doi: 10.1038/am.2016.134 – start-page: 12 volume-title: Thermoelectrics Handbook: Macro to Nano year: 2006 ident: e_1_2_7_40_1 – ident: e_1_2_7_1_1 doi: 10.1038/nmat2090 – ident: e_1_2_7_23_1 doi: 10.1093/nsr/nwaa259 – ident: e_1_2_7_49_1 doi: 10.1002/aenm.201800065 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.201300937 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201802016 – ident: e_1_2_7_19_1 doi: 10.1126/science.1156446 – ident: e_1_2_7_31_1 doi: 10.1002/adma.201900108 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201202919 – ident: e_1_2_7_18_1 doi: 10.1021/nl8009928 – ident: e_1_2_7_11_1 doi: 10.1016/j.nanoen.2016.10.056 – ident: e_1_2_7_36_1 doi: 10.1021/acsami.7b01473 – volume: 11 start-page: 103 year: 1968 ident: e_1_2_7_51_1 publication-title: Tech. Rev – ident: e_1_2_7_12_1 doi: 10.1002/adma.201605140 – ident: e_1_2_7_10_1 doi: 10.1038/ncomms10766 – ident: e_1_2_7_39_1 doi: 10.1063/1.3057351 – ident: e_1_2_7_64_1 doi: 10.1063/1.4908244 – ident: e_1_2_7_38_1 doi: 10.1016/j.nanoen.2017.05.031 – ident: e_1_2_7_62_1 doi: 10.1002/aenm.201902986 – volume-title: Sintering: Densification, Grain Growth and Microstructure year: 2004 ident: e_1_2_7_44_1 – ident: e_1_2_7_60_1 doi: 10.1016/j.nanoen.2018.04.058 – ident: e_1_2_7_57_1 doi: 10.1126/sciadv.aar5606 – ident: e_1_2_7_14_1 doi: 10.1021/ja7110652 – ident: e_1_2_7_26_1 doi: 10.1002/aelm.201800904 – ident: e_1_2_7_47_1 doi: 10.1103/PhysRev.79.722 – ident: e_1_2_7_63_1 doi: 10.3390/ma10030251 – ident: e_1_2_7_32_1 doi: 10.1126/science.aaa4166 – ident: e_1_2_7_45_1 doi: 10.1016/j.jeurceramsoc.2015.11.002 – ident: e_1_2_7_2_1 doi: 10.1126/science.1158899 – ident: e_1_2_7_30_1 doi: 10.1021/acs.chemrev.6b00255 |
SSID | ssj0017734 |
Score | 2.650397 |
Snippet | The widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Antimony bismuth telluride Bismuth tellurides Carrier mobility Commercialization Current carriers Deformation effects Dislocations Eutectic temperature Grains Liquid phase sintering Liquid phases Materials science Microstructure Performance enhancement Phase (cyclic) Plasma sintering Plastic deformation Power factor Precipitates Spark plasma sintering Thermal conductivity thermoelectric Thermoelectric materials |
Title | Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation via Cyclic Spark Plasma Sintering with Liquid Phase |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202009681 https://www.proquest.com/docview/2509575819 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VcGkPbSlUDS_NoVJPBq-9fh1TIEIIVxEBKTdr9mFhJTgQSKXwB_jb7NiOEyohJHqybO2u7Z1Zz-fZmW8Y-2lFzrn2YicPtXKE0IkTBypyiFfFKC6CPKAE5_RPeHolzobBcCWLv-aHaB1utDKq7zUtcJT3h0vSUNQ5ZZKTdz-scq8pYItQ0UXLH8WjqN5WDjkFePHhgrXR9Q5fdn9plZZQcxWwVhan94Xh4lnrQJPRwexBHqjHf2gc_-dlvrLPDRyFbq0_G-yDKb-xTyskhZvsyWrS9GZS18spFPSXqQZwUl7TkTyMUJTwuxjISwPd8XgyBzmHlKL9aoba2dRAOtFNsTD4WyAczdXYjje4xekI-hbF3yAMiL6C7gvkIIbz4m5WaOhfW1u7xa56J5dHp05TvsFRfiC4gzHtUgqZBCgSX7nCRBZeoEVYGjmqUCcq57HmuW8xjBaJjIPQzxE9eyU3SeR_Z2vlpDQ_GLgYeNJIERn7-6ZRSZQiRx2hta4qcd0Ocxbiy1TDbU4lNsZZzcrsZTTBWTvBHfarbX9bs3q82nJ3oQ1Zs7rvMwsbEwtzLZjqMK8S6xujZN3jXtqebb-n0w776FE4TRU0tMvWrOzMnsVDD3KfrXeP0_PBfqX7z3_rBQY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hegAOpbzUAC1zqMTJ4LXXr2N4RCmNUUSCxM3al4VFcCAQpPQP9G93x68AEkKCk2Vr14-dHc-3szPfEPLLiJxS5YRW6itpMaYiK_RkYCGvipaUeamHCc7xud-9ZGdXXh1NiLkwJT9E43BDzSj-16jg6JA-nLOGcpViKjm6931Mvv6CZb2LVdVFwyBFg6DcWPYphnjRq5q30XYOX_Z_aZfmYPM5ZC1sTmeViPpty1CTm4PpoziQf18ROX7qc76RrxUihXY5hdbIgs7XycoznsIN8s9MpsntuCyZk0noz7MN4DS_xiM6GSHL4SgbiKGG9mg0noGYQYwBfyVJ7XSiIR6rql4YPGUcjmdyZO43uOOTG-gbIH_LYYAMFvhcQB8x9LL7aaagf23M7Sa57JwOj7tWVcHBkq7HqMVD3KhkIvI4i1xpMx0YhMENyFKccumrSKY0VDR1DYxRLBKh57sp5465kuoocLfIYj7O9XcCNvccoQULtFnBKS4FFyzlKuDGwMrItlvEquWXyIreHKtsjJKSmNlJcICTZoBbZL9pf1cSe7zZcreeDkml4A-JQY6RQboGT7WIU8j1nbsk7ZNO3Jxtf6TTHlnqDuNe0vt9_meHLDsYXVPEEO2SRSNH_cPAo0fxs1CA_4_0B40 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5KCqU99F3iJG3nUOhJiVZavY5uHJO2cTB1Ar6J2RcRcWTXiQPOH8jf7o4ky06hFNqTkNhdSTuzmk-zM98w9smJnHMdpJ6NtfKE0JmXRirxiFfFKC4iG1GC8-A0Pj4X38bReCOLv-aHaB1utDKq7zUt8Jm2B2vSUNSWMsnJux9T7vVjEfsp6XXvR0sgxZOk3leOOUV48fGKttEPDh72f2iW1lhzE7FWJqf_guHqYetIk8v9xY3cV3e_8Tj-z9u8ZM8bPArdWoFesUemfM2ebbAUvmH3TpXmV9O6YE6hYLjONYCj8oKO5GKEooQvxUieGehOJtMlyCUMKNyvpqhdzA0MprqpFga3BcLhUk3ceKMZzi9h6GD8FcKI-CvovkAeYjgpfi4KDcMLZ2zfsvP-0dnhsdfUb_BUGAnuYUrblEJmEYosVL4wicMX6CCWRo4q1pmyPNXchg7EaJHJNIpDixi4K9ZkSfiObZXT0mwz8DEKpJEiMe7_TaOSKIVFnaAzryrz_Q7zVuLLVUNuTjU2JnlNyxzkNMF5O8Ed9rltP6tpPf7Ycm-lDXmzvK9zhxszh3MdmuqwoBLrX0bJu73-oD3b-ZdOH9mTYa-fn3w9_b7LngYUWlMFEO2xLSdG895hoxv5oVL_X40KBkU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoelectric+Performance+Enhancement+in+BiSbTe+Alloy+by+Microstructure+Modulation+via+Cyclic+Spark+Plasma+Sintering+with+Liquid+Phase&rft.jtitle=Advanced+functional+materials&rft.au=Hua%E2%80%90Lu+Zhuang&rft.au=Pei%2C+Jun&rft.au=Bowen%2C+Cai&rft.au=Dong%2C+Jinfeng&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=15&rft_id=info:doi/10.1002%2Fadfm.202009681&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |