Iron Phosphide Incorporated into Iron‐Treated Heteroatoms‐Doped Porous Bio‐Carbon as Efficient Electrocatalyst for the Oxygen Reduction Reaction
The development of electrocatalysts from inexpensive, natural sources has been an attractive subject owing to economic, environmental, sustainable, and social merits. Herein, Fe‐treated heteroatoms (N, P, and S)‐doped porous carbons are synthesized for the first time by pyrolysis of bio‐char derived...
Saved in:
Published in | ChemElectroChem Vol. 5; no. 14; pp. 1944 - 1953 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
11.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2196-0216 2196-0216 |
DOI | 10.1002/celc.201800091 |
Cover
Loading…
Abstract | The development of electrocatalysts from inexpensive, natural sources has been an attractive subject owing to economic, environmental, sustainable, and social merits. Herein, Fe‐treated heteroatoms (N, P, and S)‐doped porous carbons are synthesized for the first time by pyrolysis of bio‐char derived from abundant human urine waste as a single precursor for carbon and heteroatoms, using iron(III) acetylacetonate as an external Fe precursor, followed by acid leaching and activation with a second pyrolysis step in NH3. In particular, the sample prepared at a pyrolysis temperature of 800 °C (FeP‐NSC‐800) contains iron phosphide (FeP, Fe2P) in the high‐porosity heteroatoms‐doped carbon framework along with Fe traces, and exhibits excellent oxygen reduction reaction (ORR) activity and stability in both alkaline and acidic electrolytes as demonstrated in half‐ and single‐cell tests. Such excellent ORR catalytic performance is ascribed to a synergistic effect of not only multiple active Fe−P, Fe−N, and pyridinic and graphitic N species in the electrocatalyst but also facile transport channels provided by its hierarchical porous structure with micro‐/mesopores. In addition, the sample exhibits high long‐term durability and methanol crossover resistance.
Nothing goes to waste: Template‐free synthesis of new active Fe‐treated heteroatoms (N, P, and S)‐doped bio‐carbon electrocatalysts is reported for the first time by simple pyrolysis of bio‐char derived from human urine and Fe (III) precursor. The optimized sample contains iron phosphide (FeP and Fe2P) incorporated in carbon framework, and exhibits remarkable ORR catalytic activity and stability in both alkaline and acidic media. |
---|---|
AbstractList | The development of electrocatalysts from inexpensive, natural sources has been an attractive subject owing to economic, environmental, sustainable, and social merits. Herein, Fe‐treated heteroatoms (N, P, and S)‐doped porous carbons are synthesized for the first time by pyrolysis of bio‐char derived from abundant human urine waste as a single precursor for carbon and heteroatoms, using iron(III) acetylacetonate as an external Fe precursor, followed by acid leaching and activation with a second pyrolysis step in NH3. In particular, the sample prepared at a pyrolysis temperature of 800 °C (FeP‐NSC‐800) contains iron phosphide (FeP, Fe2P) in the high‐porosity heteroatoms‐doped carbon framework along with Fe traces, and exhibits excellent oxygen reduction reaction (ORR) activity and stability in both alkaline and acidic electrolytes as demonstrated in half‐ and single‐cell tests. Such excellent ORR catalytic performance is ascribed to a synergistic effect of not only multiple active Fe−P, Fe−N, and pyridinic and graphitic N species in the electrocatalyst but also facile transport channels provided by its hierarchical porous structure with micro‐/mesopores. In addition, the sample exhibits high long‐term durability and methanol crossover resistance.
Nothing goes to waste: Template‐free synthesis of new active Fe‐treated heteroatoms (N, P, and S)‐doped bio‐carbon electrocatalysts is reported for the first time by simple pyrolysis of bio‐char derived from human urine and Fe (III) precursor. The optimized sample contains iron phosphide (FeP and Fe2P) incorporated in carbon framework, and exhibits remarkable ORR catalytic activity and stability in both alkaline and acidic media. The development of electrocatalysts from inexpensive, natural sources has been an attractive subject owing to economic, environmental, sustainable, and social merits. Herein, Fe‐treated heteroatoms (N, P, and S)‐doped porous carbons are synthesized for the first time by pyrolysis of bio‐char derived from abundant human urine waste as a single precursor for carbon and heteroatoms, using iron(III) acetylacetonate as an external Fe precursor, followed by acid leaching and activation with a second pyrolysis step in NH3. In particular, the sample prepared at a pyrolysis temperature of 800 °C (FeP‐NSC‐800) contains iron phosphide (FeP, Fe2P) in the high‐porosity heteroatoms‐doped carbon framework along with Fe traces, and exhibits excellent oxygen reduction reaction (ORR) activity and stability in both alkaline and acidic electrolytes as demonstrated in half‐ and single‐cell tests. Such excellent ORR catalytic performance is ascribed to a synergistic effect of not only multiple active Fe−P, Fe−N, and pyridinic and graphitic N species in the electrocatalyst but also facile transport channels provided by its hierarchical porous structure with micro‐/mesopores. In addition, the sample exhibits high long‐term durability and methanol crossover resistance. The development of electrocatalysts from inexpensive, natural sources has been an attractive subject owing to economic, environmental, sustainable, and social merits. Herein, Fe‐treated heteroatoms (N, P, and S)‐doped porous carbons are synthesized for the first time by pyrolysis of bio‐char derived from abundant human urine waste as a single precursor for carbon and heteroatoms, using iron(III) acetylacetonate as an external Fe precursor, followed by acid leaching and activation with a second pyrolysis step in NH 3 . In particular, the sample prepared at a pyrolysis temperature of 800 °C (FeP‐NSC‐800) contains iron phosphide (FeP, Fe 2 P) in the high‐porosity heteroatoms‐doped carbon framework along with Fe traces, and exhibits excellent oxygen reduction reaction (ORR) activity and stability in both alkaline and acidic electrolytes as demonstrated in half‐ and single‐cell tests. Such excellent ORR catalytic performance is ascribed to a synergistic effect of not only multiple active Fe−P, Fe−N, and pyridinic and graphitic N species in the electrocatalyst but also facile transport channels provided by its hierarchical porous structure with micro‐/mesopores. In addition, the sample exhibits high long‐term durability and methanol crossover resistance. |
Author | Kang, Tong‐Hyun Yu, Jong‐Sung Tran, Thanh‐Nhan Park, Hyean‐Yeol Song, Min Young Samdani, Jitendra Jhung, Sung Hwa Kim, Hasuck |
Author_xml | – sequence: 1 givenname: Thanh‐Nhan orcidid: 0000-0002-0121-062X surname: Tran fullname: Tran, Thanh‐Nhan organization: DGIST – sequence: 2 givenname: Min Young surname: Song fullname: Song, Min Young organization: DGIST – sequence: 3 givenname: Tong‐Hyun orcidid: 0000-0003-4292-2110 surname: Kang fullname: Kang, Tong‐Hyun organization: DGIST – sequence: 4 givenname: Jitendra surname: Samdani fullname: Samdani, Jitendra organization: DGIST – sequence: 5 givenname: Hyean‐Yeol surname: Park fullname: Park, Hyean‐Yeol organization: DGIST – sequence: 6 givenname: Hasuck surname: Kim fullname: Kim, Hasuck email: hasuckim@dgist.ac.kr organization: DGIST – sequence: 7 givenname: Sung Hwa orcidid: 0000-0002-6941-1583 surname: Jhung fullname: Jhung, Sung Hwa email: sung@knu.ac.kr organization: Kyungpook National University – sequence: 8 givenname: Jong‐Sung orcidid: 0000-0002-8805-012X surname: Yu fullname: Yu, Jong‐Sung email: jsyu@dgist.ac.kr organization: DGIST |
BookMark | eNqFkU9LI0EQxZvFBf-sV88NnhOre_4fdYxrIGAQPQ-dnppNh3Fq7O6gufkR9uQH9JPYY0RFWPZUj8f7VRW8fbbTUYeMHQkYCwB5orHVYwkiB4BC_GB7UhTpCKRId77oXXbo3CpEhIAkytM99jy11PH5kly_NDXyaafJ9mSVx5qbzhMfAi9Pf28svnmX6NGS8nTngntOffDmZGnt-JmhYJXKLsJK5fikaYw22Hk-aVF7S1p51W6c5w1Z7pfIrx43f7Dj11ivtTc0KPUmfrGfjWodHr7PA3Z7MbkpL0ezq9_T8nQ20lESi1GS5QWkUZYLWSPIXEIci0RISFSSpZBkMtGY5fECsyIvFg3UccCkzhqIJGYQHbDj7d7e0v0ana9WtLZdOFlJSPMohqKQIRVvU9qScxabShuvhj-9VaatBFRDCdVQQvVRQsDG37DemjtlN_8Gii3wYFrc_CddlZNZ-cm-Auj1n1E |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_126883 crossref_primary_10_1021_acsenergylett_0c00184 crossref_primary_10_3390_catal12020207 crossref_primary_10_1002_smll_202202033 crossref_primary_10_1016_j_cjsc_2023_100097 crossref_primary_10_1016_j_ijhydene_2024_02_027 crossref_primary_10_1039_D1TA02597J crossref_primary_10_1021_acsaem_0c00520 crossref_primary_10_1021_acssuschemeng_9b02473 crossref_primary_10_3390_jcs4010020 crossref_primary_10_1002_adma_202208942 crossref_primary_10_3390_catal14050303 crossref_primary_10_1007_s10853_023_08359_w crossref_primary_10_1016_j_jiec_2019_01_044 crossref_primary_10_1016_j_ijhydene_2023_03_359 crossref_primary_10_1002_cssc_201802369 crossref_primary_10_1016_j_materresbull_2021_111638 crossref_primary_10_1016_j_pmatsci_2020_100770 crossref_primary_10_1021_acscatal_9b01420 crossref_primary_10_1039_C8CY01140K crossref_primary_10_3390_chemengineering3010016 crossref_primary_10_1002_cctc_202100947 crossref_primary_10_1002_asia_201900524 crossref_primary_10_1016_j_fuel_2022_124349 crossref_primary_10_1016_j_jpowsour_2023_233816 crossref_primary_10_1002_admi_202000676 crossref_primary_10_1002_nano_202100099 crossref_primary_10_1039_D2TA09110K crossref_primary_10_1039_D4QI00182F |
Cites_doi | 10.1016/j.nanoen.2017.04.014 10.1002/anie.201504903 10.1039/c2ee21166a 10.1039/C5CC01999K 10.1016/j.electacta.2014.12.163 10.1002/adma.201301002 10.1021/acssuschemeng.6b01764 10.1039/c2ee22550f 10.1016/j.carbon.2008.12.049 10.1016/j.nanoen.2015.07.009 10.1016/j.ijhydene.2016.05.223 10.1038/s41598-017-11229-6 10.1039/C5TA00970G 10.1016/j.electacta.2012.06.011 10.1021/acsnano.6b01247 10.1016/j.apcatb.2014.10.074 10.1002/adma.201600398 10.1016/j.jpowsour.2017.11.093 10.1038/nmat4367 10.1021/ja504696r 10.1016/j.nanoen.2016.10.037 10.1021/es104229m 10.1021/jz1016284 10.1021/jp302396g 10.1002/cctc.201500340 10.1038/srep05221 10.1016/j.apcatb.2016.03.031 10.1038/ncomms5973 10.1039/C6RA16606G 10.1021/am4001634 10.1021/cr050182l 10.1021/acsami.5b11558 10.1016/j.carbon.2014.11.008 10.1039/C6TA08363C 10.1039/C6TA01543C 10.1021/ja511759u 10.1515/pac-2014-1117 10.1002/chem.201304561 10.1002/cssc.201400049 10.1021/am505080r 10.1002/cctc.201500081 10.1039/C7TA05222G 10.1016/j.jelechem.2015.05.013 10.1038/srep07772 10.1016/j.nanoen.2016.10.051 10.1038/srep02431 10.1088/2043-6262/4/4/045007 10.1016/j.nanoen.2016.02.038 10.1039/C4EE02531H 10.1021/acsami.5b10642 10.1039/C5CP05551B 10.1149/2.0141506jes 10.1021/jp410501u 10.1039/C5TA10063A 10.1016/j.ijhydene.2013.08.048 10.1002/ange.201410258 10.1149/2.042206jes 10.1126/science.1168049 10.1016/j.apcatb.2016.08.043 10.1039/C3TA14043A 10.1002/adma.201401848 10.1021/acsami.6b06329 10.1002/anie.201206720 10.1039/C6RA21958F 10.1002/anie.201501590 10.1021/ar300253f 10.1002/anie.201101287 10.1016/j.nanoen.2015.11.027 10.1126/science.aan2255 10.1002/anie.201510495 10.1021/acscatal.6b03291 10.1039/C4CC08592B 10.1021/ic051004d 10.1016/j.jpowsour.2014.12.018 10.1021/am506459f 10.1039/C5TA08316H 10.1016/j.nanoen.2015.02.004 10.1073/pnas.1507159112 10.1126/science.aad0832 10.1021/acssuschemeng.5b01425 10.1039/C6TA04941A |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1002/celc.201800091 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | 1953 |
ExternalDocumentID | 10_1002_celc_201800091 CELC201800091 |
Genre | article |
GrantInformation_xml | – fundername: Science and Technology of Korea funderid: 2016M1A2A2937137 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS EJD G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJNI ADMLS CITATION 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3541-57890637812de0282044151205a57605725ce784be7989bf0d45412c7f032e703 |
ISSN | 2196-0216 |
IngestDate | Fri Jul 25 11:58:18 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Tue Jul 01 00:45:01 EDT 2025 Sat Aug 24 01:00:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3541-57890637812de0282044151205a57605725ce784be7989bf0d45412c7f032e703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0121-062X 0000-0003-4292-2110 0000-0002-8805-012X 0000-0002-6941-1583 |
PQID | 2068340992 |
PQPubID | 2034587 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2068340992 crossref_citationtrail_10_1002_celc_201800091 crossref_primary_10_1002_celc_201800091 wiley_primary_10_1002_celc_201800091_CELC201800091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 11, 2018 |
PublicationDateYYYYMMDD | 2018-07-11 |
PublicationDate_xml | – month: 07 year: 2018 text: July 11, 2018 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 5 2017; 7 2009; 47 2007; 107 2013; 3 2013; 4 2013; 25 2014; 26 2016; 30 2013; 5 2014; 136 2017; 357 2012; 51 2014; 20 2014; 5 2014; 2 2015; 137 2015; 82 2017; 36 2018; 376 2015; 87 2016; 41 2014; 7 2016; 191 2017; 201 2014; 6 2009; 323 2016; 351 2015; 162 2014; 118 2015; 12 2015; 14 2015; 17 2015; 16 2015; 5 2015; 4 2011; 2 2016; 19 2015; 3 2015; 127 2015; 51 2013; 46 2015; 54 2016; 10 2016; 18 2015; 7 2012; 77 2005; 44 2016; 55 2016; 4 2016; 6 2013; 38 2015; 753 2015; 277 2015; 155 2015; 112 2011; 50 2011; 45 2014 2015; 166–167 2016; 29 2012; 159 2016; 28 2012; 116 2012; 5 2016; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 He F. (e_1_2_7_21_1) 2016; 18 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 136 start-page: 11027 year: 2014 end-page: 11033 publication-title: J. Am. Chem. Soc. – volume: 155 start-page: 335 year: 2015 end-page: 340 publication-title: Electrochim. Acta – volume: 8 start-page: 19533 year: 2016 end-page: 19541 publication-title: ACS Appl. Mater. Interfaces – volume: 82 start-page: 562 year: 2015 end-page: 571 publication-title: Carbon N. Y. – volume: 87 start-page: 1051 year: 2015 end-page: 1069 publication-title: Pure Appl. Chem. – volume: 30 start-page: 443 year: 2016 end-page: 449 publication-title: Nano Energy – volume: 5 start-page: 6796 year: 2012 publication-title: Energy Environ. Sci. – volume: 5 start-page: 7772 year: 2015 publication-title: Sci. Rep. – volume: 18 start-page: 12675 year: 2016 end-page: 12681 publication-title: Chem. Phys. – volume: 14 start-page: 937 year: 2015 end-page: 942 publication-title: Nat. Mater. – start-page: 1755 year: 2014 end-page: 1763 publication-title: ChemSusChem – volume: 5 start-page: 20095 year: 2017 end-page: 20119 publication-title: J. Mater. Chem. A – volume: 351 start-page: 361 year: 2016 end-page: 365 publication-title: Science (80-.) – volume: 5 start-page: 2685 year: 2013 end-page: 2691 publication-title: ACS Appl. Mater. Interfaces – volume: 41 start-page: 22570 year: 2016 end-page: 22588 publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 45007 year: 2013 publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. – volume: 7 start-page: 4095 year: 2014 end-page: 4103 publication-title: Energy Environ. Sci. – volume: 376 start-page: 161 year: 2018 end-page: 167 publication-title: J. Power Sources – volume: 25 start-page: 4794 year: 2013 end-page: 4799 publication-title: Adv. Mater. – volume: 357 start-page: 479 year: 2017 end-page: 484 publication-title: Science (80-.) – volume: 4 start-page: 2581 year: 2016 end-page: 2589 publication-title: J. Mater. Chem. A – volume: 19 start-page: 373 year: 2016 end-page: 381 publication-title: Nano Energy – volume: 4 start-page: 5221 year: 2015 publication-title: Sci. Rep. – volume: 16 start-page: 408 year: 2015 end-page: 418 publication-title: Nano Energy – volume: 3 start-page: 11031 year: 2015 end-page: 11039 publication-title: J. Mater. Chem. A – volume: 26 start-page: 6074 year: 2014 end-page: 6079 publication-title: Adv. Mater. – volume: 6 start-page: 21454 year: 2014 end-page: 21460 publication-title: ACS Appl. Mater. Interfaces – volume: 162 start-page: 489 year: 2015 end-page: 498 publication-title: J. Electrochem. Soc. – volume: 46 start-page: 1397 year: 2013 end-page: 1406 publication-title: Acc. Chem. Res. – volume: 36 start-page: 286 year: 2017 end-page: 294 publication-title: Nano Energy – volume: 8 start-page: 28283 year: 2016 end-page: 28290 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 5080 year: 2016 end-page: 5086 publication-title: Adv. Mater. – volume: 45 start-page: 3650 year: 2011 end-page: 3656 publication-title: Environ. Sci. Technol. – volume: 5 start-page: 9319 year: 2012 publication-title: Energy Environ. Sci. – volume: 77 start-page: 324 year: 2012 end-page: 329 publication-title: Electrochim. Acta – volume: 6 start-page: 19109 year: 2014 end-page: 19117 publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 2230 year: 2016 end-page: 2234 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 2431 year: 2013 publication-title: Sci. Rep. – volume: 323 start-page: 760 year: 2009 end-page: 764 publication-title: Science (80-.) – volume: 17 start-page: 30687 year: 2015 end-page: 30694 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 1415 year: 2016 end-page: 1423 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 785 year: 2015 end-page: 793 publication-title: Nano Energy – volume: 47 start-page: 1146 year: 2009 end-page: 1151 publication-title: Carbon N. Y. – volume: 30 start-page: 503 year: 2016 end-page: 510 publication-title: Nano Energy – volume: 5 start-page: 4973 year: 2014 publication-title: Nat. Commun. – volume: 38 start-page: 13611 year: 2013 end-page: 13616 publication-title: Int. J. Hydrogen Energy – volume: 166–167 start-page: 75 year: 2015 end-page: 83 publication-title: Appl. Catal. B Environ. – volume: 51 start-page: 11496 year: 2012 end-page: 11500 publication-title: Angew. Chem. Int. Ed. – volume: 127 start-page: 1908 year: 2015 end-page: 1912 publication-title: Angew. Chemie – volume: 201 start-page: 253 year: 2017 end-page: 265 publication-title: Appl. Catal. B Environ. – volume: 6 start-page: 80398 year: 2016 end-page: 80407 publication-title: RSC Adv. – volume: 20 start-page: 3106 year: 2014 end-page: 3112 publication-title: Chem. – A Eur. J. – volume: 2 start-page: 4085 year: 2014 end-page: 4110 publication-title: J. Mater. Chem. A – volume: 54 start-page: 9230 year: 2015 end-page: 9234 publication-title: Angew. Chem. Int. Ed. – volume: 118 start-page: 3545 year: 2014 end-page: 3553 publication-title: J. Phys. Chem. C – volume: 277 start-page: 161 year: 2015 end-page: 168 publication-title: J. Power Sources – volume: 7 start-page: 10910 year: 2017 publication-title: Sci. Rep. – volume: 6 start-page: 104183 year: 2016 end-page: 104192 publication-title: RSC Adv. – volume: 51 start-page: 2450 year: 2015 end-page: 2453 publication-title: Chem. Commun. – volume: 7 start-page: 2882 year: 2015 end-page: 2890 publication-title: ChemCatChem – volume: 159 start-page: 654 year: 2012 publication-title: J. Electrochem. Soc. – volume: 54 start-page: 12753 year: 2015 end-page: 12757 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 5922 year: 2016 end-page: 5932 publication-title: ACS Nano – volume: 107 start-page: 3904 year: 2007 end-page: 3951 publication-title: Chem. Rev. – volume: 4 start-page: 8645 year: 2016 end-page: 8657 publication-title: J. Mater. Chem. A – volume: 5 start-page: 2897 year: 2017 end-page: 2905 publication-title: ACS Sustainable Chem. Eng. – volume: 51 start-page: 8841 year: 2015 end-page: 8844 publication-title: Chem. Commun. – volume: 4 start-page: 1439 year: 2016 end-page: 1445 publication-title: ACS Sustainable Chem. Eng. – volume: 50 start-page: 7132 year: 2011 end-page: 7135 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 2381 year: 2017 end-page: 2391 publication-title: ACS Catal. – volume: 112 start-page: 10629 year: 2015 end-page: 10634 publication-title: Proc. Natl. Acad. Sci. – volume: 191 start-page: 202 year: 2016 end-page: 208 publication-title: Appl. Catal. B Environ. – volume: 4 start-page: 3858 year: 2016 end-page: 3864 publication-title: J. Mater. Chem. A – volume: 29 start-page: 111 year: 2016 end-page: 125 publication-title: Nano Energy – volume: 4 start-page: 14291 year: 2016 end-page: 14297 publication-title: J. Mater. Chem. A – volume: 116 start-page: 16001 year: 2012 end-page: 16013 publication-title: J. Phys. Chem. C – volume: 7 start-page: 1608 year: 2015 end-page: 1629 publication-title: ChemCatChem – volume: 753 start-page: 21 year: 2015 end-page: 27 publication-title: J. Electroanal. Chem. – volume: 137 start-page: 3165 year: 2015 end-page: 3168 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 8988 year: 2005 end-page: 8998 publication-title: Inorg. Chem. – volume: 2 start-page: 295 year: 2011 end-page: 298 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 18723 year: 2016 end-page: 18729 publication-title: J. Mater. Chem. A – ident: e_1_2_7_60_1 doi: 10.1016/j.nanoen.2017.04.014 – ident: e_1_2_7_72_1 doi: 10.1002/anie.201504903 – ident: e_1_2_7_23_1 doi: 10.1039/c2ee21166a – ident: e_1_2_7_31_1 doi: 10.1039/C5CC01999K – ident: e_1_2_7_19_1 doi: 10.1016/j.electacta.2014.12.163 – ident: e_1_2_7_48_1 doi: 10.1002/adma.201301002 – ident: e_1_2_7_66_1 doi: 10.1021/acssuschemeng.6b01764 – ident: e_1_2_7_3_1 doi: 10.1039/c2ee22550f – ident: e_1_2_7_62_1 doi: 10.1016/j.carbon.2008.12.049 – ident: e_1_2_7_34_1 doi: 10.1016/j.nanoen.2015.07.009 – ident: e_1_2_7_44_1 doi: 10.1016/j.ijhydene.2016.05.223 – ident: e_1_2_7_38_1 doi: 10.1038/s41598-017-11229-6 – ident: e_1_2_7_16_1 doi: 10.1039/C5TA00970G – ident: e_1_2_7_69_1 doi: 10.1016/j.electacta.2012.06.011 – ident: e_1_2_7_14_1 doi: 10.1021/acsnano.6b01247 – ident: e_1_2_7_68_1 doi: 10.1016/j.apcatb.2014.10.074 – ident: e_1_2_7_75_1 doi: 10.1002/adma.201600398 – ident: e_1_2_7_79_1 doi: 10.1016/j.jpowsour.2017.11.093 – ident: e_1_2_7_1_1 doi: 10.1038/nmat4367 – ident: e_1_2_7_52_1 doi: 10.1021/ja504696r – ident: e_1_2_7_13_1 doi: 10.1016/j.nanoen.2016.10.037 – ident: e_1_2_7_74_1 doi: 10.1021/es104229m – ident: e_1_2_7_73_1 doi: 10.1021/jz1016284 – ident: e_1_2_7_49_1 doi: 10.1021/jp302396g – ident: e_1_2_7_25_1 doi: 10.1002/cctc.201500340 – ident: e_1_2_7_35_1 doi: 10.1038/srep05221 – ident: e_1_2_7_56_1 doi: 10.1016/j.apcatb.2016.03.031 – ident: e_1_2_7_4_1 doi: 10.1038/ncomms5973 – ident: e_1_2_7_59_1 doi: 10.1039/C6RA16606G – ident: e_1_2_7_57_1 doi: 10.1021/am4001634 – ident: e_1_2_7_2_1 doi: 10.1021/cr050182l – ident: e_1_2_7_30_1 doi: 10.1021/acsami.5b11558 – ident: e_1_2_7_46_1 doi: 10.1016/j.carbon.2014.11.008 – ident: e_1_2_7_15_1 doi: 10.1039/C6TA08363C – ident: e_1_2_7_41_1 doi: 10.1039/C6TA01543C – ident: e_1_2_7_22_1 doi: 10.1021/ja511759u – ident: e_1_2_7_58_1 doi: 10.1515/pac-2014-1117 – ident: e_1_2_7_81_1 doi: 10.1002/chem.201304561 – ident: e_1_2_7_10_1 doi: 10.1002/cssc.201400049 – volume: 18 start-page: 12675 year: 2016 ident: e_1_2_7_21_1 publication-title: Chem. Phys. – ident: e_1_2_7_47_1 doi: 10.1021/am505080r – ident: e_1_2_7_28_1 doi: 10.1002/cctc.201500081 – ident: e_1_2_7_12_1 doi: 10.1039/C7TA05222G – ident: e_1_2_7_39_1 doi: 10.1016/j.jelechem.2015.05.013 – ident: e_1_2_7_55_1 doi: 10.1038/srep07772 – ident: e_1_2_7_8_1 doi: 10.1016/j.nanoen.2016.10.051 – ident: e_1_2_7_82_1 doi: 10.1038/srep02431 – ident: e_1_2_7_5_1 doi: 10.1088/2043-6262/4/4/045007 – ident: e_1_2_7_70_1 doi: 10.1016/j.nanoen.2016.02.038 – ident: e_1_2_7_33_1 doi: 10.1039/C4EE02531H – ident: e_1_2_7_50_1 doi: 10.1021/acsami.5b10642 – ident: e_1_2_7_20_1 doi: 10.1039/C5CP05551B – ident: e_1_2_7_64_1 doi: 10.1149/2.0141506jes – ident: e_1_2_7_80_1 doi: 10.1021/jp410501u – ident: e_1_2_7_24_1 doi: 10.1039/C5TA10063A – ident: e_1_2_7_63_1 doi: 10.1016/j.ijhydene.2013.08.048 – ident: e_1_2_7_54_1 doi: 10.1002/ange.201410258 – ident: e_1_2_7_65_1 doi: 10.1149/2.042206jes – ident: e_1_2_7_6_1 doi: 10.1126/science.1168049 – ident: e_1_2_7_67_1 doi: 10.1016/j.apcatb.2016.08.043 – ident: e_1_2_7_78_1 doi: 10.1039/C3TA14043A – ident: e_1_2_7_11_1 doi: 10.1002/adma.201401848 – ident: e_1_2_7_42_1 doi: 10.1021/acsami.6b06329 – ident: e_1_2_7_40_1 doi: 10.1002/anie.201206720 – ident: e_1_2_7_51_1 doi: 10.1039/C6RA21958F – ident: e_1_2_7_76_1 doi: 10.1002/anie.201501590 – ident: e_1_2_7_27_1 doi: 10.1021/ar300253f – ident: e_1_2_7_9_1 doi: 10.1002/anie.201101287 – ident: e_1_2_7_7_1 doi: 10.1016/j.nanoen.2015.11.027 – ident: e_1_2_7_71_1 doi: 10.1126/science.aan2255 – ident: e_1_2_7_36_1 doi: 10.1002/anie.201510495 – ident: e_1_2_7_37_1 doi: 10.1021/acscatal.6b03291 – ident: e_1_2_7_26_1 doi: 10.1039/C4CC08592B – ident: e_1_2_7_45_1 doi: 10.1021/ic051004d – ident: e_1_2_7_18_1 doi: 10.1016/j.jpowsour.2014.12.018 – ident: e_1_2_7_43_1 doi: 10.1021/am506459f – ident: e_1_2_7_53_1 doi: 10.1039/C5TA08316H – ident: e_1_2_7_32_1 doi: 10.1016/j.nanoen.2015.02.004 – ident: e_1_2_7_61_1 doi: 10.1073/pnas.1507159112 – ident: e_1_2_7_77_1 doi: 10.1126/science.aad0832 – ident: e_1_2_7_29_1 doi: 10.1021/acssuschemeng.5b01425 – ident: e_1_2_7_17_1 doi: 10.1039/C6TA04941A |
SSID | ssj0001105386 |
Score | 2.263215 |
Snippet | The development of electrocatalysts from inexpensive, natural sources has been an attractive subject owing to economic, environmental, sustainable, and social... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1944 |
SubjectTerms | Acid leaching Ammonia pressure leaching biomass Carbon Catalysis Electrocatalysts heteroatoms doping Human wastes Iron iron phosphide Leaching oxygen reduction reaction Oxygen reduction reactions Phosphides Porosity porous carbon Precursors Pyrolysis Structural hierarchy Synergistic effect Urine |
Title | Iron Phosphide Incorporated into Iron‐Treated Heteroatoms‐Doped Porous Bio‐Carbon as Efficient Electrocatalyst for the Oxygen Reduction Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201800091 https://www.proquest.com/docview/2068340992 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbptAEF65yaG9VP1VnabVHir1YNHCAjYcU-LKjeI0UhwpNwTLIpBisMCW6p76CD31ASv1PTrDLguJXDXtBeHdWcCej_nz7Awhb8apB85O5BpJajsGIAReKaA0eOR5kctd7jd1tudn49mlc3LlXg0Gv3pZS5t1_I5_3bmv5H-4CmPAV9wl-w-c1ReFATgH_sIROAzHO_H4UwW8O8_KepXlCSZBclWXWGBFJbAqkUCnMyzQPoSZGWbAlOBsL2s9d1yuYOa8rDAj9kNe6okgqmJMWK6xB3Pe7J4cTWXrnCbys63XOlPx85ctPCpwLJElaTFDn2vGt-UQMrFUF8BTHTmoVJ_kLCoyffezrAPvhUoenufFqJFRWleokPcCCdqVs-2mWxktE9m6anSSY8y_ivrBDsvDKKoSxo1MBPmKOdOWqp69Y0wJdbePXacnoS1f1ptU2h7_RdypSWRlWi6usc6l5aEtanU6s80TuKVKdYKjLAbNQlwf6vX3yD4Dbwb0x_7R8fz0ogsGgpVrN11J9ZdpC4ya7P3Nh7hpQHVeUd-3aoyjxSPyUHk19EhC9DEZiOIJuR-0zQSfkh-IRKqhSvtQpQhVigQ_v31XIKU9kMJoA08q4UkBnjAkgUmjmmpg0lvApABMCsCkEphUA5O2wHxGLj9OF8HMUC1BDG67jmW4uG97bE_ALE0EhgtMjAdYzHQjcJzB92AuFxPPicXE9_w4NRMHljE-SU2bCdBuz8leURbiBaGOb6aCm0maJJ4TTZJYCO7FzLRjyxYs5kNitL9zyFW9fGzbch3uZu6QvNX0K1kp5o-Uhy3bQiVNapgde7YD_hobEtaw8i9XCYPpaaA_Hdz57i_Jg-7NOiR762ojXoFhvY5fK1j-BlRGy7M |
linkProvider | EBSCOhost |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQHWBBPEV5ekBiikiclzNCKGqhPIRahFiixHZEJYirpkh04ycw8QP5Jdzl0cKAkNiSy9lDzuf77mR_R8iBl3JIdmLXkKntGLBCwKVA0xAx57ErXBEUPNuXV16775zfu_VpQrwLU_JDTAtu6BnFfo0OjgXpoxlrqFBPyEFoccQJkAA1ENpA_tU4vus_9GeFFkAQdtHxEZwTD9xaXk3eaLKjn5P8DE4zxPkdtxaB52yZLFWIkR6XJl4hcypbJQth3ahtjXx0RjqjN486Hz4OpKIdpKYs6ImVpINsrCkqfL699xAggqyNR2A0ZNvPOUhP9RBkN3qkX3J6MtAgCuNRAlPGOW0VDBMQmGir7JdTlHsm-ZgC2KUAHun16wTWIL1FClg0MjyVdyXWSf-s1QvbRtVuwRC261iGi3diPduHkC8VpmIm5loWM90YkhLAdcwVyudOovyAB0lqSgeGMeGnps0U7BwbZD7Tmdok1AnMVAlTplJyJ_ZlopTgCTPtxLIVS0STGPV_jkTFRY4tMZ6ikkWZRWiXaGqXJjmc6g9LFo5fNXdqs0WVN-bw1eM2JLIBaxJWmPKPWaKw1Q2nb1v_GbRPFtq9y27U7VxdbJNFlGNJ2LJ2yPx49KJ2AcuMk71qtX4BbxvuvA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kgnoRn1ifexA8BZPNa3OssaX1WcSKeAnJ7gYLmi1NBXvzJ3jyB_pLnEnSVg8ieEsms3vI7Ox8M-x-Q8ihl3JIdmLXkKntGLBCwKVA0xAx57ErXBEUPNuXV16755zdu_ffbvGX_BDTght6RrFfo4MPZHo8Iw0V6gkpCC2OMAHyn3mkyuM1Mt-46z30ZnUWABB20fARfBPP21rehLvRZMc_J_kZm2aA8ztsLeJOa4UsV4CRNkoLr5I5la2RxXDSp22dfHSGOqPdR50PHvtS0Q4yUxbsxErSfjbSFBU-395vER-CrI0nYDQk2885SE_1AGRdPdQvOT3paxCF8TCBKeOcNguCCYhLtFm2yymqPeN8RAHrUsCO9Pp1DEuQ3iADLNoYnsqrEhuk12rehm2j6rZgCNt1LMPFK7Ge7UPElwozMRNTLYuZbgw5CcA65grlcydRfsCDJDWlA8OY8FPTZgo2jk1Sy3Smtgh1AjNVwpSplNyJfZkoJXjCTDuxbMUSUSfG5D9HoqIix44YT1FJoswitEs0tUudHE31ByUJx6-auxOzRZUz5vDV4zbksQGrE1aY8o9ZorB5EU7ftv8z6IAsdE9b0UXn6nyHLKEYC8KWtUtqo-GL2gMkM0r2q8X6BQHC7eU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron+Phosphide+Incorporated+into+Iron%E2%80%90Treated+Heteroatoms%E2%80%90Doped+Porous+Bio%E2%80%90Carbon+as+Efficient+Electrocatalyst+for+the+Oxygen+Reduction+Reaction&rft.jtitle=ChemElectroChem&rft.au=Tran%2C+Thanh%E2%80%90Nhan&rft.au=Song%2C+Min+Young&rft.au=Kang%2C+Tong%E2%80%90Hyun&rft.au=Samdani%2C+Jitendra&rft.date=2018-07-11&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=5&rft.issue=14&rft.spage=1944&rft.epage=1953&rft_id=info:doi/10.1002%2Fcelc.201800091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_celc_201800091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |