Iron Phosphide Incorporated into Iron‐Treated Heteroatoms‐Doped Porous Bio‐Carbon as Efficient Electrocatalyst for the Oxygen Reduction Reaction

The development of electrocatalysts from inexpensive, natural sources has been an attractive subject owing to economic, environmental, sustainable, and social merits. Herein, Fe‐treated heteroatoms (N, P, and S)‐doped porous carbons are synthesized for the first time by pyrolysis of bio‐char derived...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 5; no. 14; pp. 1944 - 1953
Main Authors Tran, Thanh‐Nhan, Song, Min Young, Kang, Tong‐Hyun, Samdani, Jitendra, Park, Hyean‐Yeol, Kim, Hasuck, Jhung, Sung Hwa, Yu, Jong‐Sung
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 11.07.2018
Subjects
Online AccessGet full text
ISSN2196-0216
2196-0216
DOI10.1002/celc.201800091

Cover

Loading…
Abstract The development of electrocatalysts from inexpensive, natural sources has been an attractive subject owing to economic, environmental, sustainable, and social merits. Herein, Fe‐treated heteroatoms (N, P, and S)‐doped porous carbons are synthesized for the first time by pyrolysis of bio‐char derived from abundant human urine waste as a single precursor for carbon and heteroatoms, using iron(III) acetylacetonate as an external Fe precursor, followed by acid leaching and activation with a second pyrolysis step in NH3. In particular, the sample prepared at a pyrolysis temperature of 800 °C (FeP‐NSC‐800) contains iron phosphide (FeP, Fe2P) in the high‐porosity heteroatoms‐doped carbon framework along with Fe traces, and exhibits excellent oxygen reduction reaction (ORR) activity and stability in both alkaline and acidic electrolytes as demonstrated in half‐ and single‐cell tests. Such excellent ORR catalytic performance is ascribed to a synergistic effect of not only multiple active Fe−P, Fe−N, and pyridinic and graphitic N species in the electrocatalyst but also facile transport channels provided by its hierarchical porous structure with micro‐/mesopores. In addition, the sample exhibits high long‐term durability and methanol crossover resistance. Nothing goes to waste: Template‐free synthesis of new active Fe‐treated heteroatoms (N, P, and S)‐doped bio‐carbon electrocatalysts is reported for the first time by simple pyrolysis of bio‐char derived from human urine and Fe (III) precursor. The optimized sample contains iron phosphide (FeP and Fe2P) incorporated in carbon framework, and exhibits remarkable ORR catalytic activity and stability in both alkaline and acidic media.
AbstractList The development of electrocatalysts from inexpensive, natural sources has been an attractive subject owing to economic, environmental, sustainable, and social merits. Herein, Fe‐treated heteroatoms (N, P, and S)‐doped porous carbons are synthesized for the first time by pyrolysis of bio‐char derived from abundant human urine waste as a single precursor for carbon and heteroatoms, using iron(III) acetylacetonate as an external Fe precursor, followed by acid leaching and activation with a second pyrolysis step in NH3. In particular, the sample prepared at a pyrolysis temperature of 800 °C (FeP‐NSC‐800) contains iron phosphide (FeP, Fe2P) in the high‐porosity heteroatoms‐doped carbon framework along with Fe traces, and exhibits excellent oxygen reduction reaction (ORR) activity and stability in both alkaline and acidic electrolytes as demonstrated in half‐ and single‐cell tests. Such excellent ORR catalytic performance is ascribed to a synergistic effect of not only multiple active Fe−P, Fe−N, and pyridinic and graphitic N species in the electrocatalyst but also facile transport channels provided by its hierarchical porous structure with micro‐/mesopores. In addition, the sample exhibits high long‐term durability and methanol crossover resistance. Nothing goes to waste: Template‐free synthesis of new active Fe‐treated heteroatoms (N, P, and S)‐doped bio‐carbon electrocatalysts is reported for the first time by simple pyrolysis of bio‐char derived from human urine and Fe (III) precursor. The optimized sample contains iron phosphide (FeP and Fe2P) incorporated in carbon framework, and exhibits remarkable ORR catalytic activity and stability in both alkaline and acidic media.
The development of electrocatalysts from inexpensive, natural sources has been an attractive subject owing to economic, environmental, sustainable, and social merits. Herein, Fe‐treated heteroatoms (N, P, and S)‐doped porous carbons are synthesized for the first time by pyrolysis of bio‐char derived from abundant human urine waste as a single precursor for carbon and heteroatoms, using iron(III) acetylacetonate as an external Fe precursor, followed by acid leaching and activation with a second pyrolysis step in NH3. In particular, the sample prepared at a pyrolysis temperature of 800 °C (FeP‐NSC‐800) contains iron phosphide (FeP, Fe2P) in the high‐porosity heteroatoms‐doped carbon framework along with Fe traces, and exhibits excellent oxygen reduction reaction (ORR) activity and stability in both alkaline and acidic electrolytes as demonstrated in half‐ and single‐cell tests. Such excellent ORR catalytic performance is ascribed to a synergistic effect of not only multiple active Fe−P, Fe−N, and pyridinic and graphitic N species in the electrocatalyst but also facile transport channels provided by its hierarchical porous structure with micro‐/mesopores. In addition, the sample exhibits high long‐term durability and methanol crossover resistance.
The development of electrocatalysts from inexpensive, natural sources has been an attractive subject owing to economic, environmental, sustainable, and social merits. Herein, Fe‐treated heteroatoms (N, P, and S)‐doped porous carbons are synthesized for the first time by pyrolysis of bio‐char derived from abundant human urine waste as a single precursor for carbon and heteroatoms, using iron(III) acetylacetonate as an external Fe precursor, followed by acid leaching and activation with a second pyrolysis step in NH 3 . In particular, the sample prepared at a pyrolysis temperature of 800 °C (FeP‐NSC‐800) contains iron phosphide (FeP, Fe 2 P) in the high‐porosity heteroatoms‐doped carbon framework along with Fe traces, and exhibits excellent oxygen reduction reaction (ORR) activity and stability in both alkaline and acidic electrolytes as demonstrated in half‐ and single‐cell tests. Such excellent ORR catalytic performance is ascribed to a synergistic effect of not only multiple active Fe−P, Fe−N, and pyridinic and graphitic N species in the electrocatalyst but also facile transport channels provided by its hierarchical porous structure with micro‐/mesopores. In addition, the sample exhibits high long‐term durability and methanol crossover resistance.
Author Kang, Tong‐Hyun
Yu, Jong‐Sung
Tran, Thanh‐Nhan
Park, Hyean‐Yeol
Song, Min Young
Samdani, Jitendra
Jhung, Sung Hwa
Kim, Hasuck
Author_xml – sequence: 1
  givenname: Thanh‐Nhan
  orcidid: 0000-0002-0121-062X
  surname: Tran
  fullname: Tran, Thanh‐Nhan
  organization: DGIST
– sequence: 2
  givenname: Min Young
  surname: Song
  fullname: Song, Min Young
  organization: DGIST
– sequence: 3
  givenname: Tong‐Hyun
  orcidid: 0000-0003-4292-2110
  surname: Kang
  fullname: Kang, Tong‐Hyun
  organization: DGIST
– sequence: 4
  givenname: Jitendra
  surname: Samdani
  fullname: Samdani, Jitendra
  organization: DGIST
– sequence: 5
  givenname: Hyean‐Yeol
  surname: Park
  fullname: Park, Hyean‐Yeol
  organization: DGIST
– sequence: 6
  givenname: Hasuck
  surname: Kim
  fullname: Kim, Hasuck
  email: hasuckim@dgist.ac.kr
  organization: DGIST
– sequence: 7
  givenname: Sung Hwa
  orcidid: 0000-0002-6941-1583
  surname: Jhung
  fullname: Jhung, Sung Hwa
  email: sung@knu.ac.kr
  organization: Kyungpook National University
– sequence: 8
  givenname: Jong‐Sung
  orcidid: 0000-0002-8805-012X
  surname: Yu
  fullname: Yu, Jong‐Sung
  email: jsyu@dgist.ac.kr
  organization: DGIST
BookMark eNqFkU9LI0EQxZvFBf-sV88NnhOre_4fdYxrIGAQPQ-dnppNh3Fq7O6gufkR9uQH9JPYY0RFWPZUj8f7VRW8fbbTUYeMHQkYCwB5orHVYwkiB4BC_GB7UhTpCKRId77oXXbo3CpEhIAkytM99jy11PH5kly_NDXyaafJ9mSVx5qbzhMfAi9Pf28svnmX6NGS8nTngntOffDmZGnt-JmhYJXKLsJK5fikaYw22Hk-aVF7S1p51W6c5w1Z7pfIrx43f7Dj11ivtTc0KPUmfrGfjWodHr7PA3Z7MbkpL0ezq9_T8nQ20lESi1GS5QWkUZYLWSPIXEIci0RISFSSpZBkMtGY5fECsyIvFg3UccCkzhqIJGYQHbDj7d7e0v0ana9WtLZdOFlJSPMohqKQIRVvU9qScxabShuvhj-9VaatBFRDCdVQQvVRQsDG37DemjtlN_8Gii3wYFrc_CddlZNZ-cm-Auj1n1E
CitedBy_id crossref_primary_10_1016_j_cej_2020_126883
crossref_primary_10_1021_acsenergylett_0c00184
crossref_primary_10_3390_catal12020207
crossref_primary_10_1002_smll_202202033
crossref_primary_10_1016_j_cjsc_2023_100097
crossref_primary_10_1016_j_ijhydene_2024_02_027
crossref_primary_10_1039_D1TA02597J
crossref_primary_10_1021_acsaem_0c00520
crossref_primary_10_1021_acssuschemeng_9b02473
crossref_primary_10_3390_jcs4010020
crossref_primary_10_1002_adma_202208942
crossref_primary_10_3390_catal14050303
crossref_primary_10_1007_s10853_023_08359_w
crossref_primary_10_1016_j_jiec_2019_01_044
crossref_primary_10_1016_j_ijhydene_2023_03_359
crossref_primary_10_1002_cssc_201802369
crossref_primary_10_1016_j_materresbull_2021_111638
crossref_primary_10_1016_j_pmatsci_2020_100770
crossref_primary_10_1021_acscatal_9b01420
crossref_primary_10_1039_C8CY01140K
crossref_primary_10_3390_chemengineering3010016
crossref_primary_10_1002_cctc_202100947
crossref_primary_10_1002_asia_201900524
crossref_primary_10_1016_j_fuel_2022_124349
crossref_primary_10_1016_j_jpowsour_2023_233816
crossref_primary_10_1002_admi_202000676
crossref_primary_10_1002_nano_202100099
crossref_primary_10_1039_D2TA09110K
crossref_primary_10_1039_D4QI00182F
Cites_doi 10.1016/j.nanoen.2017.04.014
10.1002/anie.201504903
10.1039/c2ee21166a
10.1039/C5CC01999K
10.1016/j.electacta.2014.12.163
10.1002/adma.201301002
10.1021/acssuschemeng.6b01764
10.1039/c2ee22550f
10.1016/j.carbon.2008.12.049
10.1016/j.nanoen.2015.07.009
10.1016/j.ijhydene.2016.05.223
10.1038/s41598-017-11229-6
10.1039/C5TA00970G
10.1016/j.electacta.2012.06.011
10.1021/acsnano.6b01247
10.1016/j.apcatb.2014.10.074
10.1002/adma.201600398
10.1016/j.jpowsour.2017.11.093
10.1038/nmat4367
10.1021/ja504696r
10.1016/j.nanoen.2016.10.037
10.1021/es104229m
10.1021/jz1016284
10.1021/jp302396g
10.1002/cctc.201500340
10.1038/srep05221
10.1016/j.apcatb.2016.03.031
10.1038/ncomms5973
10.1039/C6RA16606G
10.1021/am4001634
10.1021/cr050182l
10.1021/acsami.5b11558
10.1016/j.carbon.2014.11.008
10.1039/C6TA08363C
10.1039/C6TA01543C
10.1021/ja511759u
10.1515/pac-2014-1117
10.1002/chem.201304561
10.1002/cssc.201400049
10.1021/am505080r
10.1002/cctc.201500081
10.1039/C7TA05222G
10.1016/j.jelechem.2015.05.013
10.1038/srep07772
10.1016/j.nanoen.2016.10.051
10.1038/srep02431
10.1088/2043-6262/4/4/045007
10.1016/j.nanoen.2016.02.038
10.1039/C4EE02531H
10.1021/acsami.5b10642
10.1039/C5CP05551B
10.1149/2.0141506jes
10.1021/jp410501u
10.1039/C5TA10063A
10.1016/j.ijhydene.2013.08.048
10.1002/ange.201410258
10.1149/2.042206jes
10.1126/science.1168049
10.1016/j.apcatb.2016.08.043
10.1039/C3TA14043A
10.1002/adma.201401848
10.1021/acsami.6b06329
10.1002/anie.201206720
10.1039/C6RA21958F
10.1002/anie.201501590
10.1021/ar300253f
10.1002/anie.201101287
10.1016/j.nanoen.2015.11.027
10.1126/science.aan2255
10.1002/anie.201510495
10.1021/acscatal.6b03291
10.1039/C4CC08592B
10.1021/ic051004d
10.1016/j.jpowsour.2014.12.018
10.1021/am506459f
10.1039/C5TA08316H
10.1016/j.nanoen.2015.02.004
10.1073/pnas.1507159112
10.1126/science.aad0832
10.1021/acssuschemeng.5b01425
10.1039/C6TA04941A
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/celc.201800091
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage 1953
ExternalDocumentID 10_1002_celc_201800091
CELC201800091
Genre article
GrantInformation_xml – fundername: Science and Technology of Korea
  funderid: 2016M1A2A2937137
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJNI
ADMLS
CITATION
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3541-57890637812de0282044151205a57605725ce784be7989bf0d45412c7f032e703
ISSN 2196-0216
IngestDate Fri Jul 25 11:58:18 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Tue Jul 01 00:45:01 EDT 2025
Sat Aug 24 01:00:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3541-57890637812de0282044151205a57605725ce784be7989bf0d45412c7f032e703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0121-062X
0000-0003-4292-2110
0000-0002-8805-012X
0000-0002-6941-1583
PQID 2068340992
PQPubID 2034587
PageCount 10
ParticipantIDs proquest_journals_2068340992
crossref_citationtrail_10_1002_celc_201800091
crossref_primary_10_1002_celc_201800091
wiley_primary_10_1002_celc_201800091_CELC201800091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 11, 2018
PublicationDateYYYYMMDD 2018-07-11
PublicationDate_xml – month: 07
  year: 2018
  text: July 11, 2018
  day: 11
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 5
2017; 7
2009; 47
2007; 107
2013; 3
2013; 4
2013; 25
2014; 26
2016; 30
2013; 5
2014; 136
2017; 357
2012; 51
2014; 20
2014; 5
2014; 2
2015; 137
2015; 82
2017; 36
2018; 376
2015; 87
2016; 41
2014; 7
2016; 191
2017; 201
2014; 6
2009; 323
2016; 351
2015; 162
2014; 118
2015; 12
2015; 14
2015; 17
2015; 16
2015; 5
2015; 4
2011; 2
2016; 19
2015; 3
2015; 127
2015; 51
2013; 46
2015; 54
2016; 10
2016; 18
2015; 7
2012; 77
2005; 44
2016; 55
2016; 4
2016; 6
2013; 38
2015; 753
2015; 277
2015; 155
2015; 112
2011; 50
2011; 45
2014
2015; 166–167
2016; 29
2012; 159
2016; 28
2012; 116
2012; 5
2016; 8
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
He F. (e_1_2_7_21_1) 2016; 18
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 136
  start-page: 11027
  year: 2014
  end-page: 11033
  publication-title: J. Am. Chem. Soc.
– volume: 155
  start-page: 335
  year: 2015
  end-page: 340
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 19533
  year: 2016
  end-page: 19541
  publication-title: ACS Appl. Mater. Interfaces
– volume: 82
  start-page: 562
  year: 2015
  end-page: 571
  publication-title: Carbon N. Y.
– volume: 87
  start-page: 1051
  year: 2015
  end-page: 1069
  publication-title: Pure Appl. Chem.
– volume: 30
  start-page: 443
  year: 2016
  end-page: 449
  publication-title: Nano Energy
– volume: 5
  start-page: 6796
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 7772
  year: 2015
  publication-title: Sci. Rep.
– volume: 18
  start-page: 12675
  year: 2016
  end-page: 12681
  publication-title: Chem. Phys.
– volume: 14
  start-page: 937
  year: 2015
  end-page: 942
  publication-title: Nat. Mater.
– start-page: 1755
  year: 2014
  end-page: 1763
  publication-title: ChemSusChem
– volume: 5
  start-page: 20095
  year: 2017
  end-page: 20119
  publication-title: J. Mater. Chem. A
– volume: 351
  start-page: 361
  year: 2016
  end-page: 365
  publication-title: Science (80-.)
– volume: 5
  start-page: 2685
  year: 2013
  end-page: 2691
  publication-title: ACS Appl. Mater. Interfaces
– volume: 41
  start-page: 22570
  year: 2016
  end-page: 22588
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 45007
  year: 2013
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
– volume: 7
  start-page: 4095
  year: 2014
  end-page: 4103
  publication-title: Energy Environ. Sci.
– volume: 376
  start-page: 161
  year: 2018
  end-page: 167
  publication-title: J. Power Sources
– volume: 25
  start-page: 4794
  year: 2013
  end-page: 4799
  publication-title: Adv. Mater.
– volume: 357
  start-page: 479
  year: 2017
  end-page: 484
  publication-title: Science (80-.)
– volume: 4
  start-page: 2581
  year: 2016
  end-page: 2589
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 373
  year: 2016
  end-page: 381
  publication-title: Nano Energy
– volume: 4
  start-page: 5221
  year: 2015
  publication-title: Sci. Rep.
– volume: 16
  start-page: 408
  year: 2015
  end-page: 418
  publication-title: Nano Energy
– volume: 3
  start-page: 11031
  year: 2015
  end-page: 11039
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 6074
  year: 2014
  end-page: 6079
  publication-title: Adv. Mater.
– volume: 6
  start-page: 21454
  year: 2014
  end-page: 21460
  publication-title: ACS Appl. Mater. Interfaces
– volume: 162
  start-page: 489
  year: 2015
  end-page: 498
  publication-title: J. Electrochem. Soc.
– volume: 46
  start-page: 1397
  year: 2013
  end-page: 1406
  publication-title: Acc. Chem. Res.
– volume: 36
  start-page: 286
  year: 2017
  end-page: 294
  publication-title: Nano Energy
– volume: 8
  start-page: 28283
  year: 2016
  end-page: 28290
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 5080
  year: 2016
  end-page: 5086
  publication-title: Adv. Mater.
– volume: 45
  start-page: 3650
  year: 2011
  end-page: 3656
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 9319
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 77
  start-page: 324
  year: 2012
  end-page: 329
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 19109
  year: 2014
  end-page: 19117
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 2230
  year: 2016
  end-page: 2234
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 2431
  year: 2013
  publication-title: Sci. Rep.
– volume: 323
  start-page: 760
  year: 2009
  end-page: 764
  publication-title: Science (80-.)
– volume: 17
  start-page: 30687
  year: 2015
  end-page: 30694
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 1415
  year: 2016
  end-page: 1423
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 785
  year: 2015
  end-page: 793
  publication-title: Nano Energy
– volume: 47
  start-page: 1146
  year: 2009
  end-page: 1151
  publication-title: Carbon N. Y.
– volume: 30
  start-page: 503
  year: 2016
  end-page: 510
  publication-title: Nano Energy
– volume: 5
  start-page: 4973
  year: 2014
  publication-title: Nat. Commun.
– volume: 38
  start-page: 13611
  year: 2013
  end-page: 13616
  publication-title: Int. J. Hydrogen Energy
– volume: 166–167
  start-page: 75
  year: 2015
  end-page: 83
  publication-title: Appl. Catal. B Environ.
– volume: 51
  start-page: 11496
  year: 2012
  end-page: 11500
  publication-title: Angew. Chem. Int. Ed.
– volume: 127
  start-page: 1908
  year: 2015
  end-page: 1912
  publication-title: Angew. Chemie
– volume: 201
  start-page: 253
  year: 2017
  end-page: 265
  publication-title: Appl. Catal. B Environ.
– volume: 6
  start-page: 80398
  year: 2016
  end-page: 80407
  publication-title: RSC Adv.
– volume: 20
  start-page: 3106
  year: 2014
  end-page: 3112
  publication-title: Chem. – A Eur. J.
– volume: 2
  start-page: 4085
  year: 2014
  end-page: 4110
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 9230
  year: 2015
  end-page: 9234
  publication-title: Angew. Chem. Int. Ed.
– volume: 118
  start-page: 3545
  year: 2014
  end-page: 3553
  publication-title: J. Phys. Chem. C
– volume: 277
  start-page: 161
  year: 2015
  end-page: 168
  publication-title: J. Power Sources
– volume: 7
  start-page: 10910
  year: 2017
  publication-title: Sci. Rep.
– volume: 6
  start-page: 104183
  year: 2016
  end-page: 104192
  publication-title: RSC Adv.
– volume: 51
  start-page: 2450
  year: 2015
  end-page: 2453
  publication-title: Chem. Commun.
– volume: 7
  start-page: 2882
  year: 2015
  end-page: 2890
  publication-title: ChemCatChem
– volume: 159
  start-page: 654
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 54
  start-page: 12753
  year: 2015
  end-page: 12757
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 5922
  year: 2016
  end-page: 5932
  publication-title: ACS Nano
– volume: 107
  start-page: 3904
  year: 2007
  end-page: 3951
  publication-title: Chem. Rev.
– volume: 4
  start-page: 8645
  year: 2016
  end-page: 8657
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 2897
  year: 2017
  end-page: 2905
  publication-title: ACS Sustainable Chem. Eng.
– volume: 51
  start-page: 8841
  year: 2015
  end-page: 8844
  publication-title: Chem. Commun.
– volume: 4
  start-page: 1439
  year: 2016
  end-page: 1445
  publication-title: ACS Sustainable Chem. Eng.
– volume: 50
  start-page: 7132
  year: 2011
  end-page: 7135
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 2381
  year: 2017
  end-page: 2391
  publication-title: ACS Catal.
– volume: 112
  start-page: 10629
  year: 2015
  end-page: 10634
  publication-title: Proc. Natl. Acad. Sci.
– volume: 191
  start-page: 202
  year: 2016
  end-page: 208
  publication-title: Appl. Catal. B Environ.
– volume: 4
  start-page: 3858
  year: 2016
  end-page: 3864
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 111
  year: 2016
  end-page: 125
  publication-title: Nano Energy
– volume: 4
  start-page: 14291
  year: 2016
  end-page: 14297
  publication-title: J. Mater. Chem. A
– volume: 116
  start-page: 16001
  year: 2012
  end-page: 16013
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 1608
  year: 2015
  end-page: 1629
  publication-title: ChemCatChem
– volume: 753
  start-page: 21
  year: 2015
  end-page: 27
  publication-title: J. Electroanal. Chem.
– volume: 137
  start-page: 3165
  year: 2015
  end-page: 3168
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 8988
  year: 2005
  end-page: 8998
  publication-title: Inorg. Chem.
– volume: 2
  start-page: 295
  year: 2011
  end-page: 298
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 18723
  year: 2016
  end-page: 18729
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_60_1
  doi: 10.1016/j.nanoen.2017.04.014
– ident: e_1_2_7_72_1
  doi: 10.1002/anie.201504903
– ident: e_1_2_7_23_1
  doi: 10.1039/c2ee21166a
– ident: e_1_2_7_31_1
  doi: 10.1039/C5CC01999K
– ident: e_1_2_7_19_1
  doi: 10.1016/j.electacta.2014.12.163
– ident: e_1_2_7_48_1
  doi: 10.1002/adma.201301002
– ident: e_1_2_7_66_1
  doi: 10.1021/acssuschemeng.6b01764
– ident: e_1_2_7_3_1
  doi: 10.1039/c2ee22550f
– ident: e_1_2_7_62_1
  doi: 10.1016/j.carbon.2008.12.049
– ident: e_1_2_7_34_1
  doi: 10.1016/j.nanoen.2015.07.009
– ident: e_1_2_7_44_1
  doi: 10.1016/j.ijhydene.2016.05.223
– ident: e_1_2_7_38_1
  doi: 10.1038/s41598-017-11229-6
– ident: e_1_2_7_16_1
  doi: 10.1039/C5TA00970G
– ident: e_1_2_7_69_1
  doi: 10.1016/j.electacta.2012.06.011
– ident: e_1_2_7_14_1
  doi: 10.1021/acsnano.6b01247
– ident: e_1_2_7_68_1
  doi: 10.1016/j.apcatb.2014.10.074
– ident: e_1_2_7_75_1
  doi: 10.1002/adma.201600398
– ident: e_1_2_7_79_1
  doi: 10.1016/j.jpowsour.2017.11.093
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat4367
– ident: e_1_2_7_52_1
  doi: 10.1021/ja504696r
– ident: e_1_2_7_13_1
  doi: 10.1016/j.nanoen.2016.10.037
– ident: e_1_2_7_74_1
  doi: 10.1021/es104229m
– ident: e_1_2_7_73_1
  doi: 10.1021/jz1016284
– ident: e_1_2_7_49_1
  doi: 10.1021/jp302396g
– ident: e_1_2_7_25_1
  doi: 10.1002/cctc.201500340
– ident: e_1_2_7_35_1
  doi: 10.1038/srep05221
– ident: e_1_2_7_56_1
  doi: 10.1016/j.apcatb.2016.03.031
– ident: e_1_2_7_4_1
  doi: 10.1038/ncomms5973
– ident: e_1_2_7_59_1
  doi: 10.1039/C6RA16606G
– ident: e_1_2_7_57_1
  doi: 10.1021/am4001634
– ident: e_1_2_7_2_1
  doi: 10.1021/cr050182l
– ident: e_1_2_7_30_1
  doi: 10.1021/acsami.5b11558
– ident: e_1_2_7_46_1
  doi: 10.1016/j.carbon.2014.11.008
– ident: e_1_2_7_15_1
  doi: 10.1039/C6TA08363C
– ident: e_1_2_7_41_1
  doi: 10.1039/C6TA01543C
– ident: e_1_2_7_22_1
  doi: 10.1021/ja511759u
– ident: e_1_2_7_58_1
  doi: 10.1515/pac-2014-1117
– ident: e_1_2_7_81_1
  doi: 10.1002/chem.201304561
– ident: e_1_2_7_10_1
  doi: 10.1002/cssc.201400049
– volume: 18
  start-page: 12675
  year: 2016
  ident: e_1_2_7_21_1
  publication-title: Chem. Phys.
– ident: e_1_2_7_47_1
  doi: 10.1021/am505080r
– ident: e_1_2_7_28_1
  doi: 10.1002/cctc.201500081
– ident: e_1_2_7_12_1
  doi: 10.1039/C7TA05222G
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jelechem.2015.05.013
– ident: e_1_2_7_55_1
  doi: 10.1038/srep07772
– ident: e_1_2_7_8_1
  doi: 10.1016/j.nanoen.2016.10.051
– ident: e_1_2_7_82_1
  doi: 10.1038/srep02431
– ident: e_1_2_7_5_1
  doi: 10.1088/2043-6262/4/4/045007
– ident: e_1_2_7_70_1
  doi: 10.1016/j.nanoen.2016.02.038
– ident: e_1_2_7_33_1
  doi: 10.1039/C4EE02531H
– ident: e_1_2_7_50_1
  doi: 10.1021/acsami.5b10642
– ident: e_1_2_7_20_1
  doi: 10.1039/C5CP05551B
– ident: e_1_2_7_64_1
  doi: 10.1149/2.0141506jes
– ident: e_1_2_7_80_1
  doi: 10.1021/jp410501u
– ident: e_1_2_7_24_1
  doi: 10.1039/C5TA10063A
– ident: e_1_2_7_63_1
  doi: 10.1016/j.ijhydene.2013.08.048
– ident: e_1_2_7_54_1
  doi: 10.1002/ange.201410258
– ident: e_1_2_7_65_1
  doi: 10.1149/2.042206jes
– ident: e_1_2_7_6_1
  doi: 10.1126/science.1168049
– ident: e_1_2_7_67_1
  doi: 10.1016/j.apcatb.2016.08.043
– ident: e_1_2_7_78_1
  doi: 10.1039/C3TA14043A
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201401848
– ident: e_1_2_7_42_1
  doi: 10.1021/acsami.6b06329
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.201206720
– ident: e_1_2_7_51_1
  doi: 10.1039/C6RA21958F
– ident: e_1_2_7_76_1
  doi: 10.1002/anie.201501590
– ident: e_1_2_7_27_1
  doi: 10.1021/ar300253f
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.201101287
– ident: e_1_2_7_7_1
  doi: 10.1016/j.nanoen.2015.11.027
– ident: e_1_2_7_71_1
  doi: 10.1126/science.aan2255
– ident: e_1_2_7_36_1
  doi: 10.1002/anie.201510495
– ident: e_1_2_7_37_1
  doi: 10.1021/acscatal.6b03291
– ident: e_1_2_7_26_1
  doi: 10.1039/C4CC08592B
– ident: e_1_2_7_45_1
  doi: 10.1021/ic051004d
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jpowsour.2014.12.018
– ident: e_1_2_7_43_1
  doi: 10.1021/am506459f
– ident: e_1_2_7_53_1
  doi: 10.1039/C5TA08316H
– ident: e_1_2_7_32_1
  doi: 10.1016/j.nanoen.2015.02.004
– ident: e_1_2_7_61_1
  doi: 10.1073/pnas.1507159112
– ident: e_1_2_7_77_1
  doi: 10.1126/science.aad0832
– ident: e_1_2_7_29_1
  doi: 10.1021/acssuschemeng.5b01425
– ident: e_1_2_7_17_1
  doi: 10.1039/C6TA04941A
SSID ssj0001105386
Score 2.263215
Snippet The development of electrocatalysts from inexpensive, natural sources has been an attractive subject owing to economic, environmental, sustainable, and social...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1944
SubjectTerms Acid leaching
Ammonia pressure leaching
biomass
Carbon
Catalysis
Electrocatalysts
heteroatoms doping
Human wastes
Iron
iron phosphide
Leaching
oxygen reduction reaction
Oxygen reduction reactions
Phosphides
Porosity
porous carbon
Precursors
Pyrolysis
Structural hierarchy
Synergistic effect
Urine
Title Iron Phosphide Incorporated into Iron‐Treated Heteroatoms‐Doped Porous Bio‐Carbon as Efficient Electrocatalyst for the Oxygen Reduction Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201800091
https://www.proquest.com/docview/2068340992
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbptAEF65yaG9VP1VnabVHir1YNHCAjYcU-LKjeI0UhwpNwTLIpBisMCW6p76CD31ASv1PTrDLguJXDXtBeHdWcCej_nz7Awhb8apB85O5BpJajsGIAReKaA0eOR5kctd7jd1tudn49mlc3LlXg0Gv3pZS5t1_I5_3bmv5H-4CmPAV9wl-w-c1ReFATgH_sIROAzHO_H4UwW8O8_KepXlCSZBclWXWGBFJbAqkUCnMyzQPoSZGWbAlOBsL2s9d1yuYOa8rDAj9kNe6okgqmJMWK6xB3Pe7J4cTWXrnCbys63XOlPx85ctPCpwLJElaTFDn2vGt-UQMrFUF8BTHTmoVJ_kLCoyffezrAPvhUoenufFqJFRWleokPcCCdqVs-2mWxktE9m6anSSY8y_ivrBDsvDKKoSxo1MBPmKOdOWqp69Y0wJdbePXacnoS1f1ptU2h7_RdypSWRlWi6usc6l5aEtanU6s80TuKVKdYKjLAbNQlwf6vX3yD4Dbwb0x_7R8fz0ogsGgpVrN11J9ZdpC4ya7P3Nh7hpQHVeUd-3aoyjxSPyUHk19EhC9DEZiOIJuR-0zQSfkh-IRKqhSvtQpQhVigQ_v31XIKU9kMJoA08q4UkBnjAkgUmjmmpg0lvApABMCsCkEphUA5O2wHxGLj9OF8HMUC1BDG67jmW4uG97bE_ALE0EhgtMjAdYzHQjcJzB92AuFxPPicXE9_w4NRMHljE-SU2bCdBuz8leURbiBaGOb6aCm0maJJ4TTZJYCO7FzLRjyxYs5kNitL9zyFW9fGzbch3uZu6QvNX0K1kp5o-Uhy3bQiVNapgde7YD_hobEtaw8i9XCYPpaaA_Hdz57i_Jg-7NOiR762ojXoFhvY5fK1j-BlRGy7M
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQHWBBPEV5ekBiikiclzNCKGqhPIRahFiixHZEJYirpkh04ycw8QP5Jdzl0cKAkNiSy9lDzuf77mR_R8iBl3JIdmLXkKntGLBCwKVA0xAx57ErXBEUPNuXV16775zfu_VpQrwLU_JDTAtu6BnFfo0OjgXpoxlrqFBPyEFoccQJkAA1ENpA_tU4vus_9GeFFkAQdtHxEZwTD9xaXk3eaLKjn5P8DE4zxPkdtxaB52yZLFWIkR6XJl4hcypbJQth3ahtjXx0RjqjN486Hz4OpKIdpKYs6ImVpINsrCkqfL699xAggqyNR2A0ZNvPOUhP9RBkN3qkX3J6MtAgCuNRAlPGOW0VDBMQmGir7JdTlHsm-ZgC2KUAHun16wTWIL1FClg0MjyVdyXWSf-s1QvbRtVuwRC261iGi3diPduHkC8VpmIm5loWM90YkhLAdcwVyudOovyAB0lqSgeGMeGnps0U7BwbZD7Tmdok1AnMVAlTplJyJ_ZlopTgCTPtxLIVS0STGPV_jkTFRY4tMZ6ikkWZRWiXaGqXJjmc6g9LFo5fNXdqs0WVN-bw1eM2JLIBaxJWmPKPWaKw1Q2nb1v_GbRPFtq9y27U7VxdbJNFlGNJ2LJ2yPx49KJ2AcuMk71qtX4BbxvuvA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kgnoRn1ifexA8BZPNa3OssaX1WcSKeAnJ7gYLmi1NBXvzJ3jyB_pLnEnSVg8ieEsms3vI7Ox8M-x-Q8ihl3JIdmLXkKntGLBCwKVA0xAx57ErXBEUPNuXV16755zdu_ffbvGX_BDTght6RrFfo4MPZHo8Iw0V6gkpCC2OMAHyn3mkyuM1Mt-46z30ZnUWABB20fARfBPP21rehLvRZMc_J_kZm2aA8ztsLeJOa4UsV4CRNkoLr5I5la2RxXDSp22dfHSGOqPdR50PHvtS0Q4yUxbsxErSfjbSFBU-395vER-CrI0nYDQk2885SE_1AGRdPdQvOT3paxCF8TCBKeOcNguCCYhLtFm2yymqPeN8RAHrUsCO9Pp1DEuQ3iADLNoYnsqrEhuk12rehm2j6rZgCNt1LMPFK7Ge7UPElwozMRNTLYuZbgw5CcA65grlcydRfsCDJDWlA8OY8FPTZgo2jk1Sy3Smtgh1AjNVwpSplNyJfZkoJXjCTDuxbMUSUSfG5D9HoqIix44YT1FJoswitEs0tUudHE31ByUJx6-auxOzRZUz5vDV4zbksQGrE1aY8o9ZorB5EU7ftv8z6IAsdE9b0UXn6nyHLKEYC8KWtUtqo-GL2gMkM0r2q8X6BQHC7eU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron+Phosphide+Incorporated+into+Iron%E2%80%90Treated+Heteroatoms%E2%80%90Doped+Porous+Bio%E2%80%90Carbon+as+Efficient+Electrocatalyst+for+the+Oxygen+Reduction+Reaction&rft.jtitle=ChemElectroChem&rft.au=Tran%2C+Thanh%E2%80%90Nhan&rft.au=Song%2C+Min+Young&rft.au=Kang%2C+Tong%E2%80%90Hyun&rft.au=Samdani%2C+Jitendra&rft.date=2018-07-11&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=5&rft.issue=14&rft.spage=1944&rft.epage=1953&rft_id=info:doi/10.1002%2Fcelc.201800091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_celc_201800091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon