Bacillus subtilis PcrA Couples DNA Replication, Transcription, Recombination and Segregation
Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coup...
Saved in:
Published in | Frontiers in molecular biosciences Vol. 7; p. 140 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
21.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions. |
---|---|
AbstractList | Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions. Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro . Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection ( addAB or recQ ), positive and negative RecA modulators ( rarA or recX and recU ), or genes involved in the reactivation of a stalled RNA polymerase ( recD 2, helD, hepA , and ywqA ). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd , but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD 2, helD, hepA , or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA , or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions. Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions. |
Author | Torres, Rubén Alonso, Juan Carlos Manfredi, Candela Moreno-del Alamo, María del Solar, Gloria Ruiz-Masó, José A. |
AuthorAffiliation | 1 Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC , Madrid , Spain 2 Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC , Madrid , Spain |
AuthorAffiliation_xml | – name: 2 Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC , Madrid , Spain – name: 1 Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC , Madrid , Spain |
Author_xml | – sequence: 1 givenname: María surname: Moreno-del Alamo fullname: Moreno-del Alamo, María – sequence: 2 givenname: Rubén surname: Torres fullname: Torres, Rubén – sequence: 3 givenname: Candela surname: Manfredi fullname: Manfredi, Candela – sequence: 4 givenname: José A. surname: Ruiz-Masó fullname: Ruiz-Masó, José A. – sequence: 5 givenname: Gloria surname: del Solar fullname: del Solar, Gloria – sequence: 6 givenname: Juan Carlos surname: Alonso fullname: Alonso, Juan Carlos |
BookMark | eNp1UU1v1DAQtVARLaV3jjlyYLeO7ST2BWlZvipVBZUicUCyxvZkceXEwU6Q-Pdks61EkXqyZ96HRu89J0d97JGQlyVdcy7VedvFYNaMMrqmtBT0CTlhTNUrKdX3o3_-x-Qs51s6cyrKm1o8I8ecNYrXTJ6QH2_B-hCmXOTJjD74XHyxaVNs4zQEzMW7q01xjUPwFkYf-9fFTYI-2-SHw3iNNnbG9wtaQO-Kr7hLuFvmF-RpCyHj2d17Sr59eH-z_bS6_PzxYru5XFleCbpSqiolN66tjGFKtsgcMAsAtQLFaeOM44IJA1ZKjhVtpBXOKeOsm9GW8VNycfB1EW71kHwH6Y-O4PWyiGmnIY3eBtRcWonYAsy5CcBqjsEACFkxazgr69nrzcFrmEyHzmI_JggPTB8ivf-pd_G3brisON0f8-rOIMVfE-ZRdz5bDAF6jFPWTHAhmn3-M7U-UG2KOSdstfXjktzs7IMuqd43rZem9b5pvTQ9C-l_wvv7HpX8BZKFr08 |
CitedBy_id | crossref_primary_10_1093_femsre_fuad065 crossref_primary_10_3389_fmicb_2021_625705 crossref_primary_10_3389_fmolb_2022_910673 crossref_primary_10_3389_fmicb_2021_766897 crossref_primary_10_3390_ijms24065810 crossref_primary_10_7554_eLife_68829 crossref_primary_10_3389_fmolb_2022_836211 crossref_primary_10_1016_j_tibs_2023_07_007 crossref_primary_10_1093_nar_gkac174 crossref_primary_10_3390_cells10040935 crossref_primary_10_1128_MMBR_00222_20 |
Cites_doi | 10.1016/j.molcel.2005.06.004 10.1093/nar/gkw1254 10.1038/nmeth805 10.1038/nmeth.1270 10.1128/JB.186.17.5557-5566.2004 10.1371/journal.pgen.1005289 10.1016/j.molcel.2007.03.012 10.1016/j.dnarep.2017.05.004 10.1016/j.jmb.2014.10.001 10.1002/bies.201400106 10.1093/nar/gki713 10.3389/fmicb.2017.01816 10.1038/384379a0 10.1016/j.cell.2005.11.045 10.3389/fmicb.2018.01514 10.1128/JB.00620-08 10.1016/j.bbagrm.2011.03.003 10.1093/nar/gku113 10.1128/JB.170.7.3001-3007.1988 10.1128/MMBR.58.3.317-329.1994 10.1021/bi9004123 10.1074/jbc.M114.552794 10.1046/j.1365-2958.1998.00927.x 10.1038/sj.emboj.7600485 10.1111/j.1365-2958.2008.06467.x 10.1016/j.cell.2017.11.017 10.1111/j.1365-2958.2007.05835.x 10.1007/BF00330464 10.1111/j.1365-2958.1989.tb00277.x 10.3389/fmicb.2020.00092 10.1016/j.str.2008.06.012 10.1016/j.cell.2010.07.016 10.1038/nrm1312 10.1038/s41467-020-15182-3 10.1128/JB.180.13.3405-3409.1998 10.1073/pnas.94.5.1755 10.1093/nar/27.16.3310 10.1042/BST0390413 10.1146/annurev.biochem.76.052305.115300 10.1093/nar/gks641 10.1016/j.dnarep.2010.01.007 10.1093/nar/gky541 10.1126/science.aad6945 10.1073/pnas.1303890110 10.1093/nar/gkx074 10.1074/jbc.M802002200 10.1038/nrc3185 10.1093/nar/22.10.1855 10.1093/emboj/cdg500 10.1038/s41467-018-03790-z 10.1038/emboj.2009.308 10.1016/j.molcel.2010.11.012 10.1038/nature01585 10.1038/s41598-018-38289-6 10.1128/JB.00376-07 10.1074/jbc.273.24.15157 10.1093/emboj/cdf317 10.1093/nar/gkv545 10.1093/nar/23.16.3181 10.1093/nar/gkt1194 10.1126/science.271.5251.990 10.1111/j.1365-2958.2010.07208.x 10.1038/nature01577 10.1038/nature12928 10.1016/j.resmic.2015.08.006 10.1128/JB.175.15.4641-4651.1993 10.1016/S0092-8674(02)00769-9 10.1146/annurev.genet.40.110405.090636 10.1128/JB.188.2.353-360.2006 10.1128/JB.01494-14 10.1101/gad.936701 10.1128/JB.183.19.5772-5777.2001 10.1016/j.celrep.2017.11.047 10.1016/j.dnarep.2017.09.006 10.1006/jmbi.1996.0087 10.1101/cshperspect.a016410 10.1093/nar/gkq533 10.1073/pnas.97.2.728 10.1534/genetics.105.045906 10.1016/j.molcel.2009.11.009 10.1073/pnas.1417152112 10.1128/JB.00237-15 10.1007/BF00428732 10.1128/MCB.12.7.3224 10.1371/journal.pgen.1003126 10.1111/j.1365-2958.2004.04102.x 10.1093/nar/gkx583 10.1146/annurev.mi.23.100169.002415 10.1093/nar/gkv186 10.1126/science.8465200 10.1093/nar/gkz219 10.1073/pnas.2533829100 10.1016/j.molcel.2009.05.026 10.1016/j.dnarep.2019.03.010 10.1038/sj.emboj.7601804 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Moreno-del Alamo, Torres, Manfredi, Ruiz-Masó, del Solar and Alonso. Copyright © 2020 Moreno-del Alamo, Torres, Manfredi, Ruiz-Masó, del Solar and Alonso. 2020 Moreno-del Alamo, Torres, Manfredi, Ruiz-Masó, del Solar and Alonso |
Copyright_xml | – notice: Copyright © 2020 Moreno-del Alamo, Torres, Manfredi, Ruiz-Masó, del Solar and Alonso. – notice: Copyright © 2020 Moreno-del Alamo, Torres, Manfredi, Ruiz-Masó, del Solar and Alonso. 2020 Moreno-del Alamo, Torres, Manfredi, Ruiz-Masó, del Solar and Alonso |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fmolb.2020.00140 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2296-889X |
ExternalDocumentID | oai_doaj_org_article_38c8eefaa2024ae5936baa4852cb3216 PMC7385302 10_3389_fmolb_2020_00140 |
GrantInformation_xml | – fundername: Ministerio de Ciencia e Innovación |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION GROUPED_DOAJ HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
ID | FETCH-LOGICAL-c3540-995183bdf5bb298fe2da2caaa69a9307dbd3424bac883e5078c4dd9bdcd307f23 |
IEDL.DBID | M48 |
ISSN | 2296-889X |
IngestDate | Wed Aug 27 01:08:37 EDT 2025 Thu Aug 21 18:11:01 EDT 2025 Thu Jul 10 22:30:29 EDT 2025 Tue Jul 01 03:28:00 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3540-995183bdf5bb298fe2da2caaa69a9307dbd3424bac883e5078c4dd9bdcd307f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Molecular Recognition, a section of the journal Frontiers in Molecular Biosciences Edited by: Chew Chieng Yeo, Sultan Zainal Abidin University, Malaysia Present address: Candela Manfredi, Dept of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States Reviewed by: Arijit Dutta, The University of Texas Health Science Center at San Antonio, United States; Harshad Ghodke, University of Wollongong, Australia |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmolb.2020.00140 |
PMID | 32793628 |
PQID | 2434477936 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_38c8eefaa2024ae5936baa4852cb3216 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7385302 proquest_miscellaneous_2434477936 crossref_citationtrail_10_3389_fmolb_2020_00140 crossref_primary_10_3389_fmolb_2020_00140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-21 |
PublicationDateYYYYMMDD | 2020-07-21 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in molecular biosciences |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Gassel (B30) 1989; 3 Griffith (B31) 2008; 70 Singleton (B82) 2007; 76 Anand (B5) 2007; 189 Boubakri (B11) 2010; 29 Petit (B63) 1998; 29 Magner (B51) 2007; 26 Sanchez (B74) 2006; 188 Fu (B29) 2012; 12 Ayora (B8) 1996; 256 Fernández (B28) 1998; 180 Veaute (B90) 2005; 24 Wiedermannova (B93) 2014; 42 Kaniecki (B38) 2017; 21 Quail (B66) 2008; 5 Subramanya (B83) 1996; 384 Torres (B86) 2019; 47 Shaw (B81) 2008; 16 Le (B44) 2017; 45 Taucher-Scholtz (B85) 1983 Park (B61) 2010; 142 Romero (B72); 78 Sedgwick (B77) 2004; 5 Carrasco (B17) 2004; 186 Witkin (B94) 1969; 23 Cañas (B13) 2014; 289 Serrano (B80) 2018; 9 Trautinger (B88) 2005; 19 Baharoglu (B9) 2010; 77 Lestini (B49) 2008; 190 Park (B62) 2002; 109 Romero (B71) 2020; 11 Sukhodolets (B84) 2001; 15 Carrasco (B18) 2001; 183 Selby (B78) 1993; 260 Lestini (B48) 2007; 26 Guy (B33) 2009; 36 Keiler (B39) 1996; 271 Rojo (B69) 1994; 22 Ho (B34) 2018; 9 Marini (B55) 2010; 9 Liu (B50) 2015; 112 Bruning (B12) 2014; 426 Mendonca (B56) 1993; 175 Bernstein (B10) 2003; 22 Aboussekhra (B1) 1992; 12 Dillingham (B24) 1999; 27 Torres (B87) 2017; 55 Romero (B70); 9 Veaute (B91) 2003; 423 Sánchez (B73) 2007; 65 Dillingham (B23) 2011; 39 Kidane (B40) 2004; 52 Rojo (B68) 1995; 23 Sanders (B76) 2017; 45 Petit (B64) 2002; 21 Manfredi (B54) 2010; 38 Million-Weaver (B58) 2015; 197 Muzzin (B59) 1998; 273 Krejci (B43) 2003; 423 Jin (B36) 2011; 1809 Manfredi (B53) 2008; 283 Le (B45) 2018; 172 Merrikh (B57) 2015; 11 Antony (B6) 2009; 35 Lenhart (B46) 2014; 196 Epshtein (B25) 2015; 37 Gupta (B32) 2013; 110 Vlasic (B92) 2014; 42 Petrova (B65) 2015; 43 Ayora (B7) 2004; 101 Carrasco (B16) 2005; 33 Canosi (B14) 1981; 181 Carrasco (B19) 2018; 46 Kowalczykowski (B42) 2015; 7 Raguse (B67) 2017; 59 Cárdenas (B15) 2012; 8 Manelyte (B52) 2010; 40 Alonso (B3) 1988; 170 Deaconescu (B22) 2006; 124 Alonso (B4) 1987; 208 Ho (B35) 2020; 11 Albert (B2) 2005; 2 Epshtein (B26) 2014; 505 Wu (B95) 2006; 40 Carrasco (B20) 2015; 43 Lenhart (B47) 2016; 167 Kamarthapu (B37) 2016; 352 Komissarova (B41) 1997; 94 Yawn (B96) 2009; 48 Myka (B60) 2017; 45 Sanchez (B75) 2005; 171 Valero-Rello (B89) 2017; 8 Fagerburg (B27) 2012; 40 de la Hoz (B21) 2000; 97 Selby (B79) 1994; 58 |
References_xml | – volume: 19 start-page: 247 year: 2005 ident: B88 article-title: RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.06.004 – volume: 45 start-page: 2571 year: 2017 ident: B60 article-title: Inhibiting translation elongation can aid genome duplication in Escherichia coli publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1254 – volume: 2 start-page: 951 year: 2005 ident: B2 article-title: Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori publication-title: Nat. Methods doi: 10.1038/nmeth805 – volume: 5 start-page: 1005 year: 2008 ident: B66 article-title: A large genome center's improvements to the Illumina sequencing system publication-title: Nat. Methods doi: 10.1038/nmeth.1270 – volume: 186 start-page: 5557 year: 2004 ident: B17 article-title: Genetic recombination in Bacillus subtilis 168: contribution of Holliday junction processing functions in chromosome segregation publication-title: J. Bacteriol. doi: 10.1128/JB.186.17.5557-5566.2004 – volume: 11 start-page: e1005289 year: 2015 ident: B57 article-title: The B. subtilis accessory helicase PcrA facilitates DNA replication through transcription units publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005289 – volume: 26 start-page: 273 year: 2007 ident: B51 article-title: RecQ promotes toxic recombination in cells lacking recombination intermediate-removal proteins publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.03.012 – volume: 55 start-page: 40 year: 2017 ident: B87 article-title: Interplay between Bacillus subtilis RecD2 and the RecG or RuvAB helicase in recombinational repair publication-title: DNA Repair doi: 10.1016/j.dnarep.2017.05.004 – volume: 426 start-page: 3917 year: 2014 ident: B12 article-title: Accessory replicative helicases and the replication of protein-bound DNA publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2014.10.001 – volume: 37 start-page: 12 year: 2015 ident: B25 article-title: UvrD helicase: an old dog with a new trick: how one step backward leads to many steps forward publication-title: Bioessays doi: 10.1002/bies.201400106 – volume: 33 start-page: 3942 year: 2005 ident: B16 article-title: Bacillus subtilis RecU Holliday-junction resolvase modulates RecA activities publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki713 – volume: 8 start-page: 1816 year: 2017 ident: B89 article-title: Molecular mechanisms that contribute to horizontal transfer of plasmids by the bacteriophage SPP1 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01816 – volume: 384 start-page: 379 year: 1996 ident: B83 article-title: Crystal structure of a DExx box DNA helicase publication-title: Nature doi: 10.1038/384379a0 – volume: 124 start-page: 507 year: 2006 ident: B22 article-title: Structural basis for bacterial transcription-coupled DNA repair publication-title: Cell doi: 10.1016/j.cell.2005.11.045 – volume: 9 start-page: 1514 year: 2018 ident: B80 article-title: RecA regulation by RecU and DprA during Bacillus subtilis natural plasmid transformation publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01514 – volume: 190 start-page: 5995 year: 2008 ident: B49 article-title: UvrD and UvrD252 counteract RecQ, RecJ, and RecFOR in a rep mutant of Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.00620-08 – volume: 1809 start-page: 470 year: 2011 ident: B36 article-title: Structure and function of RapA: a bacterial Swi2/Snf2 protein required for RNA polymerase recycling in transcription publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2011.03.003 – volume: 42 start-page: 5151 year: 2014 ident: B93 article-title: Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku113 – volume: 170 start-page: 3001 year: 1988 ident: B3 article-title: Characterization of recombination-deficient mutants of Bacillus subtilis publication-title: J. Bacteriol. doi: 10.1128/JB.170.7.3001-3007.1988 – volume: 58 start-page: 317 year: 1994 ident: B79 article-title: Mechanisms of transcription-repair coupling and mutation frequency decline publication-title: Microbiol. Rev. doi: 10.1128/MMBR.58.3.317-329.1994 – volume: 48 start-page: 7794 year: 2009 ident: B96 article-title: RapA, the SWI/SNF subunit of Escherichia coli RNA polymerase, promotes the release of nascent RNA from transcription complexes publication-title: Biochemistry doi: 10.1021/bi9004123 – volume: 289 start-page: 17634 year: 2014 ident: B13 article-title: Interaction of branch migration translocases with the Holliday junction-resolving enzyme and their implications in Holliday junction resolution publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.552794 – volume: 29 start-page: 261 year: 1998 ident: B63 article-title: PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1998.00927.x – volume: 24 start-page: 180 year: 2005 ident: B90 article-title: UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli publication-title: EMBO J doi: 10.1038/sj.emboj.7600485 – volume: 70 start-page: 1012 year: 2008 ident: B31 article-title: Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2008.06467.x – volume: 172 start-page: 344 year: 2018 ident: B45 article-title: Mfd Dynamically regulates transcription via a release and catch-up mechanism publication-title: Cell doi: 10.1016/j.cell.2017.11.017 – volume: 65 start-page: 920 year: 2007 ident: B73 article-title: Bacillus subtilis RecG branch migration translocase is required for DNA repair and chromosomal segregation publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05835.x – volume: 208 start-page: 349 year: 1987 ident: B4 article-title: Plasmid maintenance in Bacillus subtilis recombination-deficient mutants publication-title: Mol. Gen. Genet. doi: 10.1007/BF00330464 – volume: 3 start-page: 1269 year: 1989 ident: B30 article-title: Expression of the recE gene during induction of the SOS response in Bacillus subtilis recombination-deficient strains publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1989.tb00277.x – volume: 11 start-page: 92 year: 2020 ident: B71 article-title: Bacillus subtilis RarA acts as a positive RecA accessory protein publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00092 – volume: 16 start-page: 1417 year: 2008 ident: B81 article-title: Structure of RapA, a Swi2/Snf2 protein that recycles RNA polymerase during transcription publication-title: Structure doi: 10.1016/j.str.2008.06.012 – volume: 142 start-page: 544 year: 2010 ident: B61 article-title: PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps publication-title: Cell doi: 10.1016/j.cell.2010.07.016 – volume: 5 start-page: 148 year: 2004 ident: B77 article-title: Repairing DNA-methylation damage publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1312 – volume: 11 start-page: 1478 year: 2020 ident: B35 article-title: Single-molecule imaging reveals molecular coupling between transcription and DNA repair machinery in live cells publication-title: Nat. Commun. doi: 10.1038/s41467-020-15182-3 – volume: 180 start-page: 3405 year: 1998 ident: B28 article-title: Genetic recombination in Bacillus subtilis 168: effects of recU and recS mutations on DNA repair and homologous recombination publication-title: J. Bacteriol. doi: 10.1128/JB.180.13.3405-3409.1998 – volume: 94 start-page: 1755 year: 1997 ident: B41 article-title: Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3' end of the RNA intact and extruded publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.94.5.1755 – volume: 27 start-page: 3310 year: 1999 ident: B24 article-title: Site-directed mutagenesis of motif III in PcrA helicase reveals a role in coupling ATP hydrolysis to strand separation publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.16.3310 – volume: 39 start-page: 413 year: 2011 ident: B23 article-title: Superfamily I helicases as modular components of DNA-processing machines publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0390413 – volume: 76 start-page: 23 year: 2007 ident: B82 article-title: Structure and mechanism of helicases and nucleic acid translocases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.052305.115300 – start-page: 65 volume-title: Mechanisms of DNA Replication and Recombination year: 1983 ident: B85 article-title: Functions of helicases in E. coli, – volume: 40 start-page: 8416 year: 2012 ident: B27 article-title: PcrA-mediated disruption of RecA nucleoprotein filaments–essential role of the ATPase activity of RecA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks641 – volume: 9 start-page: 268 year: 2010 ident: B55 article-title: Srs2: the “Odd-Job Man” in DNA repair publication-title: DNA Repair doi: 10.1016/j.dnarep.2010.01.007 – volume: 46 start-page: 7206 year: 2018 ident: B19 article-title: Bacillus subtilis RarA modulates replication restart publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky541 – volume: 352 start-page: 993 year: 2016 ident: B37 article-title: ppGpp couples transcription to DNA repair publication-title: E. coli. Science doi: 10.1126/science.aad6945 – volume: 110 start-page: 7252 year: 2013 ident: B32 article-title: Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1303890110 – volume: 45 start-page: 3875 year: 2017 ident: B76 article-title: The structure and function of an RNA polymerase interaction domain in the PcrA/UvrD helicase publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx074 – volume: 283 start-page: 24837 year: 2008 ident: B53 article-title: Bacillus subtilis RecO nucleates RecA onto SsbA-coated single-stranded DNA publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802002200 – volume: 12 start-page: 104 year: 2012 ident: B29 article-title: Balancing repair and tolerance of DNA damage caused by alkylating agents publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3185 – volume: 22 start-page: 1855 year: 1994 ident: B69 article-title: The β recombinase from the Streptococcal plasmid pSM 19035 represses its own transcription by holding the RNA polymerase at the promoter region publication-title: Nucleic Acids Res. doi: 10.1093/nar/22.10.1855 – volume: 22 start-page: 4910 year: 2003 ident: B10 article-title: High-resolution structure of the E. coli RecQ helicase catalytic core publication-title: EMBO doi: 10.1093/emboj/cdg500 – volume: 9 start-page: 1570 year: 2018 ident: B34 article-title: The transcription-repair coupling factor Mfd associates with RNA polymerase in the absence of exogenous damage publication-title: Nat. Commun. doi: 10.1038/s41467-018-03790-z – volume: 29 start-page: 145 year: 2010 ident: B11 article-title: The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo publication-title: EMBO J doi: 10.1038/emboj.2009.308 – volume: 40 start-page: 714 year: 2010 ident: B52 article-title: Regulation and rate enhancement during transcription-coupled DNA repair publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.11.012 – volume: 423 start-page: 309 year: 2003 ident: B91 article-title: The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments publication-title: Nature doi: 10.1038/nature01585 – volume: 9 start-page: 1997 ident: B70 article-title: Single molecule tracking reveals functions for RarA at replication forks but also independently from replication during DNA repair in Bacillus subtilis publication-title: Sci. Rep. doi: 10.1038/s41598-018-38289-6 – volume: 189 start-page: 4502 year: 2007 ident: B5 article-title: DNA helicase activity of PcrA is not required for the displacement of RecA protein from DNA or inhibition of RecA-mediated strand exchange publication-title: J. Bacteriol. doi: 10.1128/JB.00376-07 – volume: 273 start-page: 15157 year: 1998 ident: B59 article-title: Disruption of Escherichia coli hepA, an RNA polymerase-associated protein, causes UV sensitivity publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.24.15157 – volume: 21 start-page: 3137 year: 2002 ident: B64 article-title: Essential bacterial helicases that counteract the toxicity of recombination proteins publication-title: EMBO J doi: 10.1093/emboj/cdf317 – volume: 43 start-page: 5984 year: 2015 ident: B20 article-title: Bacillus subtilis RecO and SsbA are crucial for RecA-mediated recombinational DNA repair publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv545 – volume: 23 start-page: 3181 year: 1995 ident: B68 article-title: The β recombinase of plasmid pSM19035 binds to two adjacent sites, making different contacts at each of them publication-title: Nucleic Acids Res. doi: 10.1093/nar/23.16.3181 – volume: 42 start-page: 2295 year: 2014 ident: B92 article-title: Bacillus subtilis RecA and its accessory factors, RecF, RecO, RecR and RecX, are required for spore resistance to DNA double-strand break publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1194 – volume: 271 start-page: 990 year: 1996 ident: B39 article-title: Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RN publication-title: Science doi: 10.1126/science.271.5251.990 – volume: 77 start-page: 324 year: 2010 ident: B9 article-title: RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07208.x – volume: 423 start-page: 305 year: 2003 ident: B43 article-title: DNA helicase Srs2 disrupts the Rad51 presynaptic filament publication-title: Nature doi: 10.1038/nature01577 – volume: 505 start-page: 372 year: 2014 ident: B26 article-title: UvrD facilitates DNA repair by pulling RNA polymerase backwards publication-title: Nature doi: 10.1038/nature12928 – volume: 167 start-page: 4 year: 2016 ident: B47 article-title: Mismatch repair in Gram-positive bacteria publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2015.08.006 – volume: 175 start-page: 4641 year: 1993 ident: B56 article-title: Double helicase II (uvrD)-helicase IV (helD) deletion mutants are defective in the recombination pathways of Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.175.15.4641-4651.1993 – volume: 109 start-page: 757 year: 2002 ident: B62 article-title: E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation publication-title: Cell doi: 10.1016/S0092-8674(02)00769-9 – volume: 40 start-page: 279 year: 2006 ident: B95 article-title: DNA helicases required for homologous recombination and repair of damaged replication forks publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.40.110405.090636 – volume: 188 start-page: 353 year: 2006 ident: B74 article-title: Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence of DNA end processing publication-title: J. Bacteriol. doi: 10.1128/JB.188.2.353-360.2006 – volume: 196 start-page: 2851 year: 2014 ident: B46 article-title: RecO and RecR Are Necessary for RecA loading in response to DNA damage and replication fork stress publication-title: J. Bacteriol. doi: 10.1128/JB.01494-14 – volume: 15 start-page: 3330 year: 2001 ident: B84 article-title: RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription publication-title: Genes Dev. doi: 10.1101/gad.936701 – volume: 183 start-page: 5772 year: 2001 ident: B18 article-title: Genetic recombination in Bacillus subtilis 168: effect of DeltahelD on DNA repair and homologous recombination publication-title: Bacteriol. J doi: 10.1128/JB.183.19.5772-5777.2001 – volume: 21 start-page: 3166 year: 2017 ident: B38 article-title: Dissociation of Rad51 presynaptic complexes and heteroduplex DNA joints by tandem assemblies of Srs2 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.11.047 – volume: 59 start-page: 57 year: 2017 ident: B67 article-title: Bacillus subtilis DisA helps to circumvent replicative stress during spore revival publication-title: DNA Repair. doi: 10.1016/j.dnarep.2017.09.006 – volume: 256 start-page: 301 year: 1996 ident: B8 article-title: The Mfd protein of Bacillus subtilis 168 is involved in both transcription-coupled DNA repair and DNA recombination publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0087 – volume: 7 start-page: a016410 year: 2015 ident: B42 article-title: An overview of the molecular mechanisms of recombinational DNA repair publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016410 – volume: 38 start-page: 6920 year: 2010 ident: B54 article-title: RecO-mediated DNA homology search and annealing is facilitated by SsbA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq533 – volume: 97 start-page: 728 year: 2000 ident: B21 article-title: Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.97.2.728 – volume: 171 start-page: 873 year: 2005 ident: B75 article-title: The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis publication-title: Genetics doi: 10.1534/genetics.105.045906 – volume: 36 start-page: 654 year: 2009 ident: B33 article-title: Rep provides a second motor at the replisome to promote duplication of protein-bound DNA publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.11.009 – volume: 112 start-page: 2006 year: 2015 ident: B50 article-title: Structural basis for transcription reactivation by RapA publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1417152112 – volume: 197 start-page: 2374 year: 2015 ident: B58 article-title: Replication restart after replication-transcription conflicts requires RecA in Bacillus subtilis publication-title: J. Bacteriol. doi: 10.1128/JB.00237-15 – volume: 181 start-page: 434 year: 1981 ident: B14 article-title: Plasmid transformation in Bacillus subtilis: effects of insertion of Bacillus subtilis DNA into plasmid pC194 publication-title: Mol. Gen. Genet. doi: 10.1007/BF00428732 – volume: 12 start-page: 3224 year: 1992 ident: B1 article-title: Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.12.7.3224 – volume: 8 start-page: e1003126 year: 2012 ident: B15 article-title: RecX facilitates homologous recombination by modulating RecA activities publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003126 – volume: 52 start-page: 1627 year: 2004 ident: B40 article-title: Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2004.04102.x – volume: 45 start-page: 8873 year: 2017 ident: B44 article-title: Bacillus subtilis RecA with DprA-SsbA antagonizes RecX function during natural transformation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx583 – volume: 23 start-page: 487 year: 1969 ident: B94 article-title: Ultraviolet-induced mutation and DNA repair publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.mi.23.100169.002415 – volume: 43 start-page: 4133 year: 2015 ident: B65 article-title: Active displacement of RecA filaments by UvrD translocase activity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv186 – volume: 260 start-page: 53 year: 1993 ident: B78 article-title: Molecular mechanism of transcription-repair coupling publication-title: Science doi: 10.1126/science.8465200 – volume: 47 start-page: 5141 year: 2019 ident: B86 article-title: Bacillus subtilis DisA regulates RecA-mediated DNA strand exchange publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz219 – volume: 101 start-page: 452 year: 2004 ident: B7 article-title: Bacillus subtilis RecU protein cleaves Holliday junctions and anneals single-stranded DNA publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2533829100 – volume: 35 start-page: 105 year: 2009 ident: B6 article-title: Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.05.026 – volume: 78 start-page: 27 ident: B72 article-title: Bacillus subtilis RarA acts at the interplay between replication and repair-by-recombination publication-title: DNA Repair doi: 10.1016/j.dnarep.2019.03.010 – volume: 26 start-page: 3804 year: 2007 ident: B48 article-title: UvrD controls the access of recombination proteins to blocked replication forks publication-title: EMBO J doi: 10.1038/sj.emboj.7601804 |
SSID | ssj0001503764 |
Score | 2.1829994 |
Snippet | Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is... Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro . Inactivation of pcrA is... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 140 |
SubjectTerms | Molecular Biosciences RecL16 Rep replication fork stalling replication-transcription conflict RNA polymerase backtracking UvrD |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vIngRLLZJ1qbHdVUWDyKo4EEIk5cu1K7Y7cF_7yTdle1FLx6bB21mJplHpt8QcqJZaqUVNsm054lgTiS6yHxi09TjqQi5MDHb4u5i9CRun_vPC6W-Qk5YCw_cEu6cSyOd8wDopQtwoQCdBhCyz4zmLItg26jzFpyp9v_gFHeOaO8l0QsrkE2TUqM_yEIqVxZiHQt6KML1d2zMbobkgsq5WSdrM1uRDtpv3CBLrtokK231yK8t8nIJZlyWTU3rRk_H5bim9-ZzQIeT5qN0Nb26G1C0r-dRuTMa9dL8lDijwfN8R8c49lKoLH1w6H2_xudt8nRz_TgcJbNiCYkJoZukQFNJcm19X2tWSO-YBWYA4KKAAjey1ZYLJjQYKblDK1AaYW2hrbHY6xnfIcvVpHK7hHKZOmzgDnACF6Ad87k1xhu0VqDIe-R8TjplZkjioaBFqdCjCMRWkdgqEFtFYvfI6c-MjxZF45exl4EbP-MC_nVsQKlQM6lQf0lFjxzPealwv4RLEKjcpKlVWJHI8VTCMXmHyZ03dnuq8VtE3g7QPzxle__xiftkNSw6xIlZdkCWp5-NO0QDZ6qPoix_AxwN_Js priority: 102 providerName: Directory of Open Access Journals |
Title | Bacillus subtilis PcrA Couples DNA Replication, Transcription, Recombination and Segregation |
URI | https://www.proquest.com/docview/2434477936 https://pubmed.ncbi.nlm.nih.gov/PMC7385302 https://doaj.org/article/38c8eefaa2024ae5936baa4852cb3216 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9aUfoifuL5USL4InR1L8ndZh9ErtVSBIugB30QwuSrHqy79fYW7H_vTHavdqH44OMmGZbMZDLzmyQzjL2yIvfaK59NbZSZEkFltpzGzOd5xF0RCuXSbYuT-fFSfTqdnf59Hj0wsL0W2lE9qeW6evP718V7VPh3hDjR3qIEmsoi1BN0SwsBw012C-1SQfUMPg_Ofv9mOEdtUv1Z5bWEu-yOFLhg51Sb_YqZStn8Ry7o-ALlFYt0dI_dHVxJvuhlf5_dCPUDdrsvLnnxkH0_ALeqqq7lbWc3q2rV8i9uveCHTXdehZZ_OFlwdL-3Qbt9nszWdhPZ5wRMfyJuTr0cas-_BgTnZ-n7EVseffx2eJwNtRQyR5GdrERPSkvr48xaUeoYhAfhAGBeQol67q2XSigLTmsZ0EnUTnlfWu889kYhH7OduqnDE8alzgM2yABIIBXYIGLhnYsOnRkoiwl7u2WdcUOicap3URkEHMR3k_huiO8m8X3CXl9SnPdJNv4x9oCkcTmO0mOnhmZ9ZgZtM1I7HUIEQDoFgaoWWgClZ8JZKabzCXu5laVBdaIzEqhD07WGZqQKWgMTVoyEPPrjuKde_UiJuSkzkMzF0_-mfMZ2aaYUOxbT52xns-7CC3R6NnYvBQv20or-A88rBaU |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacillus+subtilis+PcrA+Couples+DNA+Replication%2C+Transcription%2C+Recombination+and+Segregation&rft.jtitle=Frontiers+in+molecular+biosciences&rft.au=Moreno-del+Alamo%2C+Mar%C3%ADa&rft.au=Torres%2C+Rub%C3%A9n&rft.au=Manfredi%2C+Candela&rft.au=Ruiz-Mas%C3%B3%2C+Jos%C3%A9+A.&rft.date=2020-07-21&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-889X&rft.volume=7&rft_id=info:doi/10.3389%2Ffmolb.2020.00140&rft_id=info%3Apmid%2F32793628&rft.externalDocID=PMC7385302 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-889X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-889X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-889X&client=summon |