Bacillus subtilis PcrA Couples DNA Replication, Transcription, Recombination and Segregation

Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coup...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in molecular biosciences Vol. 7; p. 140
Main Authors Moreno-del Alamo, María, Torres, Rubén, Manfredi, Candela, Ruiz-Masó, José A., del Solar, Gloria, Alonso, Juan Carlos
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 21.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.
AbstractList Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.
Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro . Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection ( addAB or recQ ), positive and negative RecA modulators ( rarA or recX and recU ), or genes involved in the reactivation of a stalled RNA polymerase ( recD 2, helD, hepA , and ywqA ). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd , but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD 2, helD, hepA , or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA , or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.
Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.
Author Torres, Rubén
Alonso, Juan Carlos
Manfredi, Candela
Moreno-del Alamo, María
del Solar, Gloria
Ruiz-Masó, José A.
AuthorAffiliation 1 Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC , Madrid , Spain
2 Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC , Madrid , Spain
AuthorAffiliation_xml – name: 2 Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC , Madrid , Spain
– name: 1 Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC , Madrid , Spain
Author_xml – sequence: 1
  givenname: María
  surname: Moreno-del Alamo
  fullname: Moreno-del Alamo, María
– sequence: 2
  givenname: Rubén
  surname: Torres
  fullname: Torres, Rubén
– sequence: 3
  givenname: Candela
  surname: Manfredi
  fullname: Manfredi, Candela
– sequence: 4
  givenname: José A.
  surname: Ruiz-Masó
  fullname: Ruiz-Masó, José A.
– sequence: 5
  givenname: Gloria
  surname: del Solar
  fullname: del Solar, Gloria
– sequence: 6
  givenname: Juan Carlos
  surname: Alonso
  fullname: Alonso, Juan Carlos
BookMark eNp1UU1v1DAQtVARLaV3jjlyYLeO7ST2BWlZvipVBZUicUCyxvZkceXEwU6Q-Pdks61EkXqyZ96HRu89J0d97JGQlyVdcy7VedvFYNaMMrqmtBT0CTlhTNUrKdX3o3_-x-Qs51s6cyrKm1o8I8ecNYrXTJ6QH2_B-hCmXOTJjD74XHyxaVNs4zQEzMW7q01xjUPwFkYf-9fFTYI-2-SHw3iNNnbG9wtaQO-Kr7hLuFvmF-RpCyHj2d17Sr59eH-z_bS6_PzxYru5XFleCbpSqiolN66tjGFKtsgcMAsAtQLFaeOM44IJA1ZKjhVtpBXOKeOsm9GW8VNycfB1EW71kHwH6Y-O4PWyiGmnIY3eBtRcWonYAsy5CcBqjsEACFkxazgr69nrzcFrmEyHzmI_JggPTB8ivf-pd_G3brisON0f8-rOIMVfE-ZRdz5bDAF6jFPWTHAhmn3-M7U-UG2KOSdstfXjktzs7IMuqd43rZem9b5pvTQ9C-l_wvv7HpX8BZKFr08
CitedBy_id crossref_primary_10_1093_femsre_fuad065
crossref_primary_10_3389_fmicb_2021_625705
crossref_primary_10_3389_fmolb_2022_910673
crossref_primary_10_3389_fmicb_2021_766897
crossref_primary_10_3390_ijms24065810
crossref_primary_10_7554_eLife_68829
crossref_primary_10_3389_fmolb_2022_836211
crossref_primary_10_1016_j_tibs_2023_07_007
crossref_primary_10_1093_nar_gkac174
crossref_primary_10_3390_cells10040935
crossref_primary_10_1128_MMBR_00222_20
Cites_doi 10.1016/j.molcel.2005.06.004
10.1093/nar/gkw1254
10.1038/nmeth805
10.1038/nmeth.1270
10.1128/JB.186.17.5557-5566.2004
10.1371/journal.pgen.1005289
10.1016/j.molcel.2007.03.012
10.1016/j.dnarep.2017.05.004
10.1016/j.jmb.2014.10.001
10.1002/bies.201400106
10.1093/nar/gki713
10.3389/fmicb.2017.01816
10.1038/384379a0
10.1016/j.cell.2005.11.045
10.3389/fmicb.2018.01514
10.1128/JB.00620-08
10.1016/j.bbagrm.2011.03.003
10.1093/nar/gku113
10.1128/JB.170.7.3001-3007.1988
10.1128/MMBR.58.3.317-329.1994
10.1021/bi9004123
10.1074/jbc.M114.552794
10.1046/j.1365-2958.1998.00927.x
10.1038/sj.emboj.7600485
10.1111/j.1365-2958.2008.06467.x
10.1016/j.cell.2017.11.017
10.1111/j.1365-2958.2007.05835.x
10.1007/BF00330464
10.1111/j.1365-2958.1989.tb00277.x
10.3389/fmicb.2020.00092
10.1016/j.str.2008.06.012
10.1016/j.cell.2010.07.016
10.1038/nrm1312
10.1038/s41467-020-15182-3
10.1128/JB.180.13.3405-3409.1998
10.1073/pnas.94.5.1755
10.1093/nar/27.16.3310
10.1042/BST0390413
10.1146/annurev.biochem.76.052305.115300
10.1093/nar/gks641
10.1016/j.dnarep.2010.01.007
10.1093/nar/gky541
10.1126/science.aad6945
10.1073/pnas.1303890110
10.1093/nar/gkx074
10.1074/jbc.M802002200
10.1038/nrc3185
10.1093/nar/22.10.1855
10.1093/emboj/cdg500
10.1038/s41467-018-03790-z
10.1038/emboj.2009.308
10.1016/j.molcel.2010.11.012
10.1038/nature01585
10.1038/s41598-018-38289-6
10.1128/JB.00376-07
10.1074/jbc.273.24.15157
10.1093/emboj/cdf317
10.1093/nar/gkv545
10.1093/nar/23.16.3181
10.1093/nar/gkt1194
10.1126/science.271.5251.990
10.1111/j.1365-2958.2010.07208.x
10.1038/nature01577
10.1038/nature12928
10.1016/j.resmic.2015.08.006
10.1128/JB.175.15.4641-4651.1993
10.1016/S0092-8674(02)00769-9
10.1146/annurev.genet.40.110405.090636
10.1128/JB.188.2.353-360.2006
10.1128/JB.01494-14
10.1101/gad.936701
10.1128/JB.183.19.5772-5777.2001
10.1016/j.celrep.2017.11.047
10.1016/j.dnarep.2017.09.006
10.1006/jmbi.1996.0087
10.1101/cshperspect.a016410
10.1093/nar/gkq533
10.1073/pnas.97.2.728
10.1534/genetics.105.045906
10.1016/j.molcel.2009.11.009
10.1073/pnas.1417152112
10.1128/JB.00237-15
10.1007/BF00428732
10.1128/MCB.12.7.3224
10.1371/journal.pgen.1003126
10.1111/j.1365-2958.2004.04102.x
10.1093/nar/gkx583
10.1146/annurev.mi.23.100169.002415
10.1093/nar/gkv186
10.1126/science.8465200
10.1093/nar/gkz219
10.1073/pnas.2533829100
10.1016/j.molcel.2009.05.026
10.1016/j.dnarep.2019.03.010
10.1038/sj.emboj.7601804
ContentType Journal Article
Copyright Copyright © 2020 Moreno-del Alamo, Torres, Manfredi, Ruiz-Masó, del Solar and Alonso.
Copyright © 2020 Moreno-del Alamo, Torres, Manfredi, Ruiz-Masó, del Solar and Alonso. 2020 Moreno-del Alamo, Torres, Manfredi, Ruiz-Masó, del Solar and Alonso
Copyright_xml – notice: Copyright © 2020 Moreno-del Alamo, Torres, Manfredi, Ruiz-Masó, del Solar and Alonso.
– notice: Copyright © 2020 Moreno-del Alamo, Torres, Manfredi, Ruiz-Masó, del Solar and Alonso. 2020 Moreno-del Alamo, Torres, Manfredi, Ruiz-Masó, del Solar and Alonso
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fmolb.2020.00140
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-889X
ExternalDocumentID oai_doaj_org_article_38c8eefaa2024ae5936baa4852cb3216
PMC7385302
10_3389_fmolb_2020_00140
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c3540-995183bdf5bb298fe2da2caaa69a9307dbd3424bac883e5078c4dd9bdcd307f23
IEDL.DBID M48
ISSN 2296-889X
IngestDate Wed Aug 27 01:08:37 EDT 2025
Thu Aug 21 18:11:01 EDT 2025
Thu Jul 10 22:30:29 EDT 2025
Tue Jul 01 03:28:00 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3540-995183bdf5bb298fe2da2caaa69a9307dbd3424bac883e5078c4dd9bdcd307f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Molecular Recognition, a section of the journal Frontiers in Molecular Biosciences
Edited by: Chew Chieng Yeo, Sultan Zainal Abidin University, Malaysia
Present address: Candela Manfredi, Dept of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
Reviewed by: Arijit Dutta, The University of Texas Health Science Center at San Antonio, United States; Harshad Ghodke, University of Wollongong, Australia
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmolb.2020.00140
PMID 32793628
PQID 2434477936
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_38c8eefaa2024ae5936baa4852cb3216
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7385302
proquest_miscellaneous_2434477936
crossref_citationtrail_10_3389_fmolb_2020_00140
crossref_primary_10_3389_fmolb_2020_00140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-21
PublicationDateYYYYMMDD 2020-07-21
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-21
  day: 21
PublicationDecade 2020
PublicationTitle Frontiers in molecular biosciences
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Gassel (B30) 1989; 3
Griffith (B31) 2008; 70
Singleton (B82) 2007; 76
Anand (B5) 2007; 189
Boubakri (B11) 2010; 29
Petit (B63) 1998; 29
Magner (B51) 2007; 26
Sanchez (B74) 2006; 188
Fu (B29) 2012; 12
Ayora (B8) 1996; 256
Fernández (B28) 1998; 180
Veaute (B90) 2005; 24
Wiedermannova (B93) 2014; 42
Kaniecki (B38) 2017; 21
Quail (B66) 2008; 5
Subramanya (B83) 1996; 384
Torres (B86) 2019; 47
Shaw (B81) 2008; 16
Le (B44) 2017; 45
Taucher-Scholtz (B85) 1983
Park (B61) 2010; 142
Romero (B72); 78
Sedgwick (B77) 2004; 5
Carrasco (B17) 2004; 186
Witkin (B94) 1969; 23
Cañas (B13) 2014; 289
Serrano (B80) 2018; 9
Trautinger (B88) 2005; 19
Baharoglu (B9) 2010; 77
Lestini (B49) 2008; 190
Park (B62) 2002; 109
Romero (B71) 2020; 11
Sukhodolets (B84) 2001; 15
Carrasco (B18) 2001; 183
Selby (B78) 1993; 260
Lestini (B48) 2007; 26
Guy (B33) 2009; 36
Keiler (B39) 1996; 271
Rojo (B69) 1994; 22
Ho (B34) 2018; 9
Marini (B55) 2010; 9
Liu (B50) 2015; 112
Bruning (B12) 2014; 426
Mendonca (B56) 1993; 175
Bernstein (B10) 2003; 22
Aboussekhra (B1) 1992; 12
Dillingham (B24) 1999; 27
Torres (B87) 2017; 55
Romero (B70); 9
Veaute (B91) 2003; 423
Sánchez (B73) 2007; 65
Dillingham (B23) 2011; 39
Kidane (B40) 2004; 52
Rojo (B68) 1995; 23
Sanders (B76) 2017; 45
Petit (B64) 2002; 21
Manfredi (B54) 2010; 38
Million-Weaver (B58) 2015; 197
Muzzin (B59) 1998; 273
Krejci (B43) 2003; 423
Jin (B36) 2011; 1809
Manfredi (B53) 2008; 283
Le (B45) 2018; 172
Merrikh (B57) 2015; 11
Antony (B6) 2009; 35
Lenhart (B46) 2014; 196
Epshtein (B25) 2015; 37
Gupta (B32) 2013; 110
Vlasic (B92) 2014; 42
Petrova (B65) 2015; 43
Ayora (B7) 2004; 101
Carrasco (B16) 2005; 33
Canosi (B14) 1981; 181
Carrasco (B19) 2018; 46
Kowalczykowski (B42) 2015; 7
Raguse (B67) 2017; 59
Cárdenas (B15) 2012; 8
Manelyte (B52) 2010; 40
Alonso (B3) 1988; 170
Deaconescu (B22) 2006; 124
Alonso (B4) 1987; 208
Ho (B35) 2020; 11
Albert (B2) 2005; 2
Epshtein (B26) 2014; 505
Wu (B95) 2006; 40
Carrasco (B20) 2015; 43
Lenhart (B47) 2016; 167
Kamarthapu (B37) 2016; 352
Komissarova (B41) 1997; 94
Yawn (B96) 2009; 48
Myka (B60) 2017; 45
Sanchez (B75) 2005; 171
Valero-Rello (B89) 2017; 8
Fagerburg (B27) 2012; 40
de la Hoz (B21) 2000; 97
Selby (B79) 1994; 58
References_xml – volume: 19
  start-page: 247
  year: 2005
  ident: B88
  article-title: RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.06.004
– volume: 45
  start-page: 2571
  year: 2017
  ident: B60
  article-title: Inhibiting translation elongation can aid genome duplication in Escherichia coli
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1254
– volume: 2
  start-page: 951
  year: 2005
  ident: B2
  article-title: Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori
  publication-title: Nat. Methods
  doi: 10.1038/nmeth805
– volume: 5
  start-page: 1005
  year: 2008
  ident: B66
  article-title: A large genome center's improvements to the Illumina sequencing system
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1270
– volume: 186
  start-page: 5557
  year: 2004
  ident: B17
  article-title: Genetic recombination in Bacillus subtilis 168: contribution of Holliday junction processing functions in chromosome segregation
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.17.5557-5566.2004
– volume: 11
  start-page: e1005289
  year: 2015
  ident: B57
  article-title: The B. subtilis accessory helicase PcrA facilitates DNA replication through transcription units
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005289
– volume: 26
  start-page: 273
  year: 2007
  ident: B51
  article-title: RecQ promotes toxic recombination in cells lacking recombination intermediate-removal proteins
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.03.012
– volume: 55
  start-page: 40
  year: 2017
  ident: B87
  article-title: Interplay between Bacillus subtilis RecD2 and the RecG or RuvAB helicase in recombinational repair
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2017.05.004
– volume: 426
  start-page: 3917
  year: 2014
  ident: B12
  article-title: Accessory replicative helicases and the replication of protein-bound DNA
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2014.10.001
– volume: 37
  start-page: 12
  year: 2015
  ident: B25
  article-title: UvrD helicase: an old dog with a new trick: how one step backward leads to many steps forward
  publication-title: Bioessays
  doi: 10.1002/bies.201400106
– volume: 33
  start-page: 3942
  year: 2005
  ident: B16
  article-title: Bacillus subtilis RecU Holliday-junction resolvase modulates RecA activities
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki713
– volume: 8
  start-page: 1816
  year: 2017
  ident: B89
  article-title: Molecular mechanisms that contribute to horizontal transfer of plasmids by the bacteriophage SPP1
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01816
– volume: 384
  start-page: 379
  year: 1996
  ident: B83
  article-title: Crystal structure of a DExx box DNA helicase
  publication-title: Nature
  doi: 10.1038/384379a0
– volume: 124
  start-page: 507
  year: 2006
  ident: B22
  article-title: Structural basis for bacterial transcription-coupled DNA repair
  publication-title: Cell
  doi: 10.1016/j.cell.2005.11.045
– volume: 9
  start-page: 1514
  year: 2018
  ident: B80
  article-title: RecA regulation by RecU and DprA during Bacillus subtilis natural plasmid transformation
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01514
– volume: 190
  start-page: 5995
  year: 2008
  ident: B49
  article-title: UvrD and UvrD252 counteract RecQ, RecJ, and RecFOR in a rep mutant of Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00620-08
– volume: 1809
  start-page: 470
  year: 2011
  ident: B36
  article-title: Structure and function of RapA: a bacterial Swi2/Snf2 protein required for RNA polymerase recycling in transcription
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2011.03.003
– volume: 42
  start-page: 5151
  year: 2014
  ident: B93
  article-title: Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku113
– volume: 170
  start-page: 3001
  year: 1988
  ident: B3
  article-title: Characterization of recombination-deficient mutants of Bacillus subtilis
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.170.7.3001-3007.1988
– volume: 58
  start-page: 317
  year: 1994
  ident: B79
  article-title: Mechanisms of transcription-repair coupling and mutation frequency decline
  publication-title: Microbiol. Rev.
  doi: 10.1128/MMBR.58.3.317-329.1994
– volume: 48
  start-page: 7794
  year: 2009
  ident: B96
  article-title: RapA, the SWI/SNF subunit of Escherichia coli RNA polymerase, promotes the release of nascent RNA from transcription complexes
  publication-title: Biochemistry
  doi: 10.1021/bi9004123
– volume: 289
  start-page: 17634
  year: 2014
  ident: B13
  article-title: Interaction of branch migration translocases with the Holliday junction-resolving enzyme and their implications in Holliday junction resolution
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.552794
– volume: 29
  start-page: 261
  year: 1998
  ident: B63
  article-title: PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1998.00927.x
– volume: 24
  start-page: 180
  year: 2005
  ident: B90
  article-title: UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600485
– volume: 70
  start-page: 1012
  year: 2008
  ident: B31
  article-title: Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06467.x
– volume: 172
  start-page: 344
  year: 2018
  ident: B45
  article-title: Mfd Dynamically regulates transcription via a release and catch-up mechanism
  publication-title: Cell
  doi: 10.1016/j.cell.2017.11.017
– volume: 65
  start-page: 920
  year: 2007
  ident: B73
  article-title: Bacillus subtilis RecG branch migration translocase is required for DNA repair and chromosomal segregation
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05835.x
– volume: 208
  start-page: 349
  year: 1987
  ident: B4
  article-title: Plasmid maintenance in Bacillus subtilis recombination-deficient mutants
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00330464
– volume: 3
  start-page: 1269
  year: 1989
  ident: B30
  article-title: Expression of the recE gene during induction of the SOS response in Bacillus subtilis recombination-deficient strains
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1989.tb00277.x
– volume: 11
  start-page: 92
  year: 2020
  ident: B71
  article-title: Bacillus subtilis RarA acts as a positive RecA accessory protein
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00092
– volume: 16
  start-page: 1417
  year: 2008
  ident: B81
  article-title: Structure of RapA, a Swi2/Snf2 protein that recycles RNA polymerase during transcription
  publication-title: Structure
  doi: 10.1016/j.str.2008.06.012
– volume: 142
  start-page: 544
  year: 2010
  ident: B61
  article-title: PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps
  publication-title: Cell
  doi: 10.1016/j.cell.2010.07.016
– volume: 5
  start-page: 148
  year: 2004
  ident: B77
  article-title: Repairing DNA-methylation damage
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1312
– volume: 11
  start-page: 1478
  year: 2020
  ident: B35
  article-title: Single-molecule imaging reveals molecular coupling between transcription and DNA repair machinery in live cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15182-3
– volume: 180
  start-page: 3405
  year: 1998
  ident: B28
  article-title: Genetic recombination in Bacillus subtilis 168: effects of recU and recS mutations on DNA repair and homologous recombination
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.180.13.3405-3409.1998
– volume: 94
  start-page: 1755
  year: 1997
  ident: B41
  article-title: Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3' end of the RNA intact and extruded
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.94.5.1755
– volume: 27
  start-page: 3310
  year: 1999
  ident: B24
  article-title: Site-directed mutagenesis of motif III in PcrA helicase reveals a role in coupling ATP hydrolysis to strand separation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.16.3310
– volume: 39
  start-page: 413
  year: 2011
  ident: B23
  article-title: Superfamily I helicases as modular components of DNA-processing machines
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0390413
– volume: 76
  start-page: 23
  year: 2007
  ident: B82
  article-title: Structure and mechanism of helicases and nucleic acid translocases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052305.115300
– start-page: 65
  volume-title: Mechanisms of DNA Replication and Recombination
  year: 1983
  ident: B85
  article-title: Functions of helicases in E. coli,
– volume: 40
  start-page: 8416
  year: 2012
  ident: B27
  article-title: PcrA-mediated disruption of RecA nucleoprotein filaments–essential role of the ATPase activity of RecA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks641
– volume: 9
  start-page: 268
  year: 2010
  ident: B55
  article-title: Srs2: the “Odd-Job Man” in DNA repair
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2010.01.007
– volume: 46
  start-page: 7206
  year: 2018
  ident: B19
  article-title: Bacillus subtilis RarA modulates replication restart
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky541
– volume: 352
  start-page: 993
  year: 2016
  ident: B37
  article-title: ppGpp couples transcription to DNA repair
  publication-title: E. coli. Science
  doi: 10.1126/science.aad6945
– volume: 110
  start-page: 7252
  year: 2013
  ident: B32
  article-title: Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1303890110
– volume: 45
  start-page: 3875
  year: 2017
  ident: B76
  article-title: The structure and function of an RNA polymerase interaction domain in the PcrA/UvrD helicase
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx074
– volume: 283
  start-page: 24837
  year: 2008
  ident: B53
  article-title: Bacillus subtilis RecO nucleates RecA onto SsbA-coated single-stranded DNA
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802002200
– volume: 12
  start-page: 104
  year: 2012
  ident: B29
  article-title: Balancing repair and tolerance of DNA damage caused by alkylating agents
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3185
– volume: 22
  start-page: 1855
  year: 1994
  ident: B69
  article-title: The β recombinase from the Streptococcal plasmid pSM 19035 represses its own transcription by holding the RNA polymerase at the promoter region
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/22.10.1855
– volume: 22
  start-page: 4910
  year: 2003
  ident: B10
  article-title: High-resolution structure of the E. coli RecQ helicase catalytic core
  publication-title: EMBO
  doi: 10.1093/emboj/cdg500
– volume: 9
  start-page: 1570
  year: 2018
  ident: B34
  article-title: The transcription-repair coupling factor Mfd associates with RNA polymerase in the absence of exogenous damage
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03790-z
– volume: 29
  start-page: 145
  year: 2010
  ident: B11
  article-title: The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.308
– volume: 40
  start-page: 714
  year: 2010
  ident: B52
  article-title: Regulation and rate enhancement during transcription-coupled DNA repair
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.11.012
– volume: 423
  start-page: 309
  year: 2003
  ident: B91
  article-title: The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
  publication-title: Nature
  doi: 10.1038/nature01585
– volume: 9
  start-page: 1997
  ident: B70
  article-title: Single molecule tracking reveals functions for RarA at replication forks but also independently from replication during DNA repair in Bacillus subtilis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-38289-6
– volume: 189
  start-page: 4502
  year: 2007
  ident: B5
  article-title: DNA helicase activity of PcrA is not required for the displacement of RecA protein from DNA or inhibition of RecA-mediated strand exchange
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00376-07
– volume: 273
  start-page: 15157
  year: 1998
  ident: B59
  article-title: Disruption of Escherichia coli hepA, an RNA polymerase-associated protein, causes UV sensitivity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.24.15157
– volume: 21
  start-page: 3137
  year: 2002
  ident: B64
  article-title: Essential bacterial helicases that counteract the toxicity of recombination proteins
  publication-title: EMBO J
  doi: 10.1093/emboj/cdf317
– volume: 43
  start-page: 5984
  year: 2015
  ident: B20
  article-title: Bacillus subtilis RecO and SsbA are crucial for RecA-mediated recombinational DNA repair
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv545
– volume: 23
  start-page: 3181
  year: 1995
  ident: B68
  article-title: The β recombinase of plasmid pSM19035 binds to two adjacent sites, making different contacts at each of them
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/23.16.3181
– volume: 42
  start-page: 2295
  year: 2014
  ident: B92
  article-title: Bacillus subtilis RecA and its accessory factors, RecF, RecO, RecR and RecX, are required for spore resistance to DNA double-strand break
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1194
– volume: 271
  start-page: 990
  year: 1996
  ident: B39
  article-title: Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RN
  publication-title: Science
  doi: 10.1126/science.271.5251.990
– volume: 77
  start-page: 324
  year: 2010
  ident: B9
  article-title: RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07208.x
– volume: 423
  start-page: 305
  year: 2003
  ident: B43
  article-title: DNA helicase Srs2 disrupts the Rad51 presynaptic filament
  publication-title: Nature
  doi: 10.1038/nature01577
– volume: 505
  start-page: 372
  year: 2014
  ident: B26
  article-title: UvrD facilitates DNA repair by pulling RNA polymerase backwards
  publication-title: Nature
  doi: 10.1038/nature12928
– volume: 167
  start-page: 4
  year: 2016
  ident: B47
  article-title: Mismatch repair in Gram-positive bacteria
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2015.08.006
– volume: 175
  start-page: 4641
  year: 1993
  ident: B56
  article-title: Double helicase II (uvrD)-helicase IV (helD) deletion mutants are defective in the recombination pathways of Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.175.15.4641-4651.1993
– volume: 109
  start-page: 757
  year: 2002
  ident: B62
  article-title: E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00769-9
– volume: 40
  start-page: 279
  year: 2006
  ident: B95
  article-title: DNA helicases required for homologous recombination and repair of damaged replication forks
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.40.110405.090636
– volume: 188
  start-page: 353
  year: 2006
  ident: B74
  article-title: Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence of DNA end processing
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.188.2.353-360.2006
– volume: 196
  start-page: 2851
  year: 2014
  ident: B46
  article-title: RecO and RecR Are Necessary for RecA loading in response to DNA damage and replication fork stress
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01494-14
– volume: 15
  start-page: 3330
  year: 2001
  ident: B84
  article-title: RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription
  publication-title: Genes Dev.
  doi: 10.1101/gad.936701
– volume: 183
  start-page: 5772
  year: 2001
  ident: B18
  article-title: Genetic recombination in Bacillus subtilis 168: effect of DeltahelD on DNA repair and homologous recombination
  publication-title: Bacteriol. J
  doi: 10.1128/JB.183.19.5772-5777.2001
– volume: 21
  start-page: 3166
  year: 2017
  ident: B38
  article-title: Dissociation of Rad51 presynaptic complexes and heteroduplex DNA joints by tandem assemblies of Srs2
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.11.047
– volume: 59
  start-page: 57
  year: 2017
  ident: B67
  article-title: Bacillus subtilis DisA helps to circumvent replicative stress during spore revival
  publication-title: DNA Repair.
  doi: 10.1016/j.dnarep.2017.09.006
– volume: 256
  start-page: 301
  year: 1996
  ident: B8
  article-title: The Mfd protein of Bacillus subtilis 168 is involved in both transcription-coupled DNA repair and DNA recombination
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0087
– volume: 7
  start-page: a016410
  year: 2015
  ident: B42
  article-title: An overview of the molecular mechanisms of recombinational DNA repair
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a016410
– volume: 38
  start-page: 6920
  year: 2010
  ident: B54
  article-title: RecO-mediated DNA homology search and annealing is facilitated by SsbA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq533
– volume: 97
  start-page: 728
  year: 2000
  ident: B21
  article-title: Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.97.2.728
– volume: 171
  start-page: 873
  year: 2005
  ident: B75
  article-title: The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis
  publication-title: Genetics
  doi: 10.1534/genetics.105.045906
– volume: 36
  start-page: 654
  year: 2009
  ident: B33
  article-title: Rep provides a second motor at the replisome to promote duplication of protein-bound DNA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.11.009
– volume: 112
  start-page: 2006
  year: 2015
  ident: B50
  article-title: Structural basis for transcription reactivation by RapA
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1417152112
– volume: 197
  start-page: 2374
  year: 2015
  ident: B58
  article-title: Replication restart after replication-transcription conflicts requires RecA in Bacillus subtilis
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00237-15
– volume: 181
  start-page: 434
  year: 1981
  ident: B14
  article-title: Plasmid transformation in Bacillus subtilis: effects of insertion of Bacillus subtilis DNA into plasmid pC194
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00428732
– volume: 12
  start-page: 3224
  year: 1992
  ident: B1
  article-title: Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.12.7.3224
– volume: 8
  start-page: e1003126
  year: 2012
  ident: B15
  article-title: RecX facilitates homologous recombination by modulating RecA activities
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003126
– volume: 52
  start-page: 1627
  year: 2004
  ident: B40
  article-title: Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2004.04102.x
– volume: 45
  start-page: 8873
  year: 2017
  ident: B44
  article-title: Bacillus subtilis RecA with DprA-SsbA antagonizes RecX function during natural transformation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx583
– volume: 23
  start-page: 487
  year: 1969
  ident: B94
  article-title: Ultraviolet-induced mutation and DNA repair
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.mi.23.100169.002415
– volume: 43
  start-page: 4133
  year: 2015
  ident: B65
  article-title: Active displacement of RecA filaments by UvrD translocase activity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv186
– volume: 260
  start-page: 53
  year: 1993
  ident: B78
  article-title: Molecular mechanism of transcription-repair coupling
  publication-title: Science
  doi: 10.1126/science.8465200
– volume: 47
  start-page: 5141
  year: 2019
  ident: B86
  article-title: Bacillus subtilis DisA regulates RecA-mediated DNA strand exchange
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz219
– volume: 101
  start-page: 452
  year: 2004
  ident: B7
  article-title: Bacillus subtilis RecU protein cleaves Holliday junctions and anneals single-stranded DNA
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2533829100
– volume: 35
  start-page: 105
  year: 2009
  ident: B6
  article-title: Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.05.026
– volume: 78
  start-page: 27
  ident: B72
  article-title: Bacillus subtilis RarA acts at the interplay between replication and repair-by-recombination
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2019.03.010
– volume: 26
  start-page: 3804
  year: 2007
  ident: B48
  article-title: UvrD controls the access of recombination proteins to blocked replication forks
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601804
SSID ssj0001503764
Score 2.1829994
Snippet Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is...
Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro . Inactivation of pcrA is...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 140
SubjectTerms Molecular Biosciences
RecL16
Rep
replication fork stalling
replication-transcription conflict
RNA polymerase backtracking
UvrD
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vIngRLLZJ1qbHdVUWDyKo4EEIk5cu1K7Y7cF_7yTdle1FLx6bB21mJplHpt8QcqJZaqUVNsm054lgTiS6yHxi09TjqQi5MDHb4u5i9CRun_vPC6W-Qk5YCw_cEu6cSyOd8wDopQtwoQCdBhCyz4zmLItg26jzFpyp9v_gFHeOaO8l0QsrkE2TUqM_yEIqVxZiHQt6KML1d2zMbobkgsq5WSdrM1uRDtpv3CBLrtokK231yK8t8nIJZlyWTU3rRk_H5bim9-ZzQIeT5qN0Nb26G1C0r-dRuTMa9dL8lDijwfN8R8c49lKoLH1w6H2_xudt8nRz_TgcJbNiCYkJoZukQFNJcm19X2tWSO-YBWYA4KKAAjey1ZYLJjQYKblDK1AaYW2hrbHY6xnfIcvVpHK7hHKZOmzgDnACF6Ad87k1xhu0VqDIe-R8TjplZkjioaBFqdCjCMRWkdgqEFtFYvfI6c-MjxZF45exl4EbP-MC_nVsQKlQM6lQf0lFjxzPealwv4RLEKjcpKlVWJHI8VTCMXmHyZ03dnuq8VtE3g7QPzxle__xiftkNSw6xIlZdkCWp5-NO0QDZ6qPoix_AxwN_Js
  priority: 102
  providerName: Directory of Open Access Journals
Title Bacillus subtilis PcrA Couples DNA Replication, Transcription, Recombination and Segregation
URI https://www.proquest.com/docview/2434477936
https://pubmed.ncbi.nlm.nih.gov/PMC7385302
https://doaj.org/article/38c8eefaa2024ae5936baa4852cb3216
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9aUfoifuL5USL4InR1L8ndZh9ErtVSBIugB30QwuSrHqy79fYW7H_vTHavdqH44OMmGZbMZDLzmyQzjL2yIvfaK59NbZSZEkFltpzGzOd5xF0RCuXSbYuT-fFSfTqdnf59Hj0wsL0W2lE9qeW6evP718V7VPh3hDjR3qIEmsoi1BN0SwsBw012C-1SQfUMPg_Ofv9mOEdtUv1Z5bWEu-yOFLhg51Sb_YqZStn8Ry7o-ALlFYt0dI_dHVxJvuhlf5_dCPUDdrsvLnnxkH0_ALeqqq7lbWc3q2rV8i9uveCHTXdehZZ_OFlwdL-3Qbt9nszWdhPZ5wRMfyJuTr0cas-_BgTnZ-n7EVseffx2eJwNtRQyR5GdrERPSkvr48xaUeoYhAfhAGBeQol67q2XSigLTmsZ0EnUTnlfWu889kYhH7OduqnDE8alzgM2yABIIBXYIGLhnYsOnRkoiwl7u2WdcUOicap3URkEHMR3k_huiO8m8X3CXl9SnPdJNv4x9oCkcTmO0mOnhmZ9ZgZtM1I7HUIEQDoFgaoWWgClZ8JZKabzCXu5laVBdaIzEqhD07WGZqQKWgMTVoyEPPrjuKde_UiJuSkzkMzF0_-mfMZ2aaYUOxbT52xns-7CC3R6NnYvBQv20or-A88rBaU
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacillus+subtilis+PcrA+Couples+DNA+Replication%2C+Transcription%2C+Recombination+and+Segregation&rft.jtitle=Frontiers+in+molecular+biosciences&rft.au=Moreno-del+Alamo%2C+Mar%C3%ADa&rft.au=Torres%2C+Rub%C3%A9n&rft.au=Manfredi%2C+Candela&rft.au=Ruiz-Mas%C3%B3%2C+Jos%C3%A9+A.&rft.date=2020-07-21&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-889X&rft.volume=7&rft_id=info:doi/10.3389%2Ffmolb.2020.00140&rft_id=info%3Apmid%2F32793628&rft.externalDocID=PMC7385302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-889X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-889X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-889X&client=summon