Effect of Geometrical Parameters on Piezoresponse of Nanofibrous Wearable Piezoelectric Nanofabrics Under Low Impact Pressure

Piezoelectric polymers are potential energizers for wearable electronics due to the possibility of developing their yarns for various textile products. The present study is aimed at understanding the effect of geometrical parameters, viz., yarn linear density (measured as Tex), twist per meter (TPM)...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular materials and engineering Vol. 306; no. 1
Main Authors Forouzan, Amin, Yousefzadeh, Maryam, Latifi, Masoud, Jose, Rajan
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Piezoelectric polymers are potential energizers for wearable electronics due to the possibility of developing their yarns for various textile products. The present study is aimed at understanding the effect of geometrical parameters, viz., yarn linear density (measured as Tex), twist per meter (TPM), plying, as well as weft and warp density on the piezoelectric voltage of electrospun yarns of polyvinylidene fluoride (PVDF) polymer and poly[(vinylidene fluoride)‐co‐trifluoroethylene] [P(VDF‐TrFE)] copolymer. Yarns are developed by twisting and plying electrospun nanofibers and their mechanical and piezoelectric properties are systematically investigated. Relative advantages of the yarns of the copolymer with respect to PVDF in both aligned and random fiber geometries are evaluated. The studies show that piezoresponse of the woven nanogenerators can be enhanced by decreasing Tex and increasing the TPM, the plying number, and the fabric density. A record piezovoltage of ≈2.5 V is achieved through this work. The results of the present work can be used for the fabrication of flexible and breathable nanogenerators or sensors. The piezoelectric nanofabric is developed with the electrospun polyvinylidene fluoride (PVDF) and poly[(vinylidene fluoride)‐co‐trifluoroethylene] [P(VDF‐TrFE)] nanofibrous yarns. The effect of geometrical parameters of fabric (Tex, twist, ply, and weave density) are investigated and shows how can tune the piezoresponse by changing these parameters. The results of the present work can be used for the fabrication of flexible and breathable nanogenerators or sensors.
AbstractList Piezoelectric polymers are potential energizers for wearable electronics due to the possibility of developing their yarns for various textile products. The present study is aimed at understanding the effect of geometrical parameters, viz., yarn linear density (measured as Tex), twist per meter (TPM), plying, as well as weft and warp density on the piezoelectric voltage of electrospun yarns of polyvinylidene fluoride (PVDF) polymer and poly[(vinylidene fluoride)‐co‐trifluoroethylene] [P(VDF‐TrFE)] copolymer. Yarns are developed by twisting and plying electrospun nanofibers and their mechanical and piezoelectric properties are systematically investigated. Relative advantages of the yarns of the copolymer with respect to PVDF in both aligned and random fiber geometries are evaluated. The studies show that piezoresponse of the woven nanogenerators can be enhanced by decreasing Tex and increasing the TPM, the plying number, and the fabric density. A record piezovoltage of ≈2.5 V is achieved through this work. The results of the present work can be used for the fabrication of flexible and breathable nanogenerators or sensors. The piezoelectric nanofabric is developed with the electrospun polyvinylidene fluoride (PVDF) and poly[(vinylidene fluoride)‐co‐trifluoroethylene] [P(VDF‐TrFE)] nanofibrous yarns. The effect of geometrical parameters of fabric (Tex, twist, ply, and weave density) are investigated and shows how can tune the piezoresponse by changing these parameters. The results of the present work can be used for the fabrication of flexible and breathable nanogenerators or sensors.
Abstract Piezoelectric polymers are potential energizers for wearable electronics due to the possibility of developing their yarns for various textile products. The present study is aimed at understanding the effect of geometrical parameters, viz., yarn linear density (measured as Tex), twist per meter (TPM), plying, as well as weft and warp density on the piezoelectric voltage of electrospun yarns of polyvinylidene fluoride (PVDF) polymer and poly[(vinylidene fluoride)‐ co ‐trifluoroethylene] [P(VDF‐TrFE)] copolymer. Yarns are developed by twisting and plying electrospun nanofibers and their mechanical and piezoelectric properties are systematically investigated. Relative advantages of the yarns of the copolymer with respect to PVDF in both aligned and random fiber geometries are evaluated. The studies show that piezoresponse of the woven nanogenerators can be enhanced by decreasing Tex and increasing the TPM, the plying number, and the fabric density. A record piezovoltage of ≈2.5 V is achieved through this work. The results of the present work can be used for the fabrication of flexible and breathable nanogenerators or sensors.
Piezoelectric polymers are potential energizers for wearable electronics due to the possibility of developing their yarns for various textile products. The present study is aimed at understanding the effect of geometrical parameters, viz., yarn linear density (measured as Tex), twist per meter (TPM), plying, as well as weft and warp density on the piezoelectric voltage of electrospun yarns of polyvinylidene fluoride (PVDF) polymer and poly[(vinylidene fluoride)‐co‐trifluoroethylene] [P(VDF‐TrFE)] copolymer. Yarns are developed by twisting and plying electrospun nanofibers and their mechanical and piezoelectric properties are systematically investigated. Relative advantages of the yarns of the copolymer with respect to PVDF in both aligned and random fiber geometries are evaluated. The studies show that piezoresponse of the woven nanogenerators can be enhanced by decreasing Tex and increasing the TPM, the plying number, and the fabric density. A record piezovoltage of ≈2.5 V is achieved through this work. The results of the present work can be used for the fabrication of flexible and breathable nanogenerators or sensors.
Author Yousefzadeh, Maryam
Forouzan, Amin
Latifi, Masoud
Jose, Rajan
Author_xml – sequence: 1
  givenname: Amin
  orcidid: 0000-0002-8599-2859
  surname: Forouzan
  fullname: Forouzan, Amin
  organization: Amirkabir University of Technology (Tehran Polytechnic)
– sequence: 2
  givenname: Maryam
  orcidid: 0000-0001-9157-1826
  surname: Yousefzadeh
  fullname: Yousefzadeh, Maryam
  email: Yousefzadeh@aut.ac.ir
  organization: Amirkabir University of Technology (Tehran Polytechnic)
– sequence: 3
  givenname: Masoud
  orcidid: 0000-0002-0030-9919
  surname: Latifi
  fullname: Latifi, Masoud
  organization: Amirkabir University of Technology (Tehran Polytechnic)
– sequence: 4
  givenname: Rajan
  orcidid: 0000-0003-4540-321X
  surname: Jose
  fullname: Jose, Rajan
  organization: Universiti Malaysia Pahang
BookMark eNqFkMFLwzAUxoNMcJtePQc8d76mLW2OY8w52HQHh8eQJi_Q0TY16RgK_u9mVvTo6X2H3_d78E3IqLUtEnIbwywGYPeNbHDGgAFAFsMFGcdpwiMGWTr6zkWUp5xdkYn3B4A4L3gyJp9LY1D11Bq6Qttg7yola7qTLth6dJ7alu4q_LAOfWdbj2f0SbbWVKWzR09fMbBljQOFdbAFx4DIMkRP961GRzf2RNdNJ8O3XZD5o8Nrcmlk7fHm507J_mH5sniMNs-r9WK-iVSSpRDFJWeZKZROOVdZgZnWPDMMDShmNChIygRSleRYaNAqzXkRUqk0lIXUEpMpuRu8nbNvR_S9ONija8NLwdI852GOrAjUbKCUs947NKJzVSPdu4hBnCcW54nF78ShwIfCqarx_R9abOfb5V_3C-7WhMU
CitedBy_id crossref_primary_10_3390_polym16060839
crossref_primary_10_1007_s12221_024_00479_7
crossref_primary_10_1016_j_mattod_2023_05_005
crossref_primary_10_1016_j_rser_2024_114285
crossref_primary_10_1177_00219983221144696
crossref_primary_10_1002_mame_202200442
crossref_primary_10_1002_mame_202300243
crossref_primary_10_1080_09603123_2023_2211529
crossref_primary_10_1002_admt_202201161
crossref_primary_10_1016_j_compositesb_2021_109098
crossref_primary_10_1016_j_cclet_2023_108533
crossref_primary_10_3390_s21186297
crossref_primary_10_1038_s41467_024_47810_7
crossref_primary_10_1016_j_esci_2022_07_002
crossref_primary_10_1002_aenm_202101443
crossref_primary_10_1016_j_nanoen_2023_108414
crossref_primary_10_1063_5_0077959
crossref_primary_10_1109_JSEN_2022_3185104
Cites_doi 10.1021/acsami.7b06032
10.1021/acsaem.8b00216
10.1021/acsami.8b02133
10.1039/D0TA00227E
10.1016/j.nanoen.2019.03.097
10.1002/adfm.201804456
10.1016/j.nanoen.2019.03.025
10.1002/pat.4463
10.3390/s18082474
10.1088/1361-665X/aad718
10.1038/s41928-018-0189-7
10.1002/adma.201400633
10.1002/mame.202000162
10.1016/j.ceramint.2003.12.025
10.1016/j.matdes.2019.108176
10.1016/j.nanoen.2015.01.038
10.1088/0964-1726/23/3/033001
10.1002/admt.201700397
10.1016/j.matdes.2019.107889
10.1021/acsami.8b01862
10.1109/JSEN.2019.2928797
10.1016/j.proeng.2014.11.585
10.1016/j.nanoen.2018.03.033
10.1016/j.sna.2012.10.021
10.1177/0583102404043275
10.1016/j.nanoen.2015.02.034
10.1088/1361-665X/ab0d4d
10.1088/1361-665X/aab865
10.1016/j.sna.2014.11.012
10.1002/admt.201901060
10.1039/C7TA10175A
10.1016/j.enconman.2018.08.018
10.1002/adma.201902549
10.1016/B978-0-08-100907-9.00013-1
10.1021/acsami.8b15320
10.1088/0964-1726/20/4/045009
10.1021/acsomega.8b03325
10.3390/polym10070745
10.1016/j.compositesb.2019.01.050
10.1016/j.polymer.2016.10.055
10.1109/TBME.2014.2344052
10.1039/C8TA08064J
10.1021/nl9040719
10.1039/C8TA10964H
10.1002/mame.201800463
10.1038/ncomms2639
10.1007/s40684-019-00132-2
10.1021/cm702601t
10.1007/s10832-004-5130-y
10.1016/j.nanoen.2019.103933
10.1021/acsami.8b16023
10.1080/14686996.2019.1650396
10.1002/admt.201800016
10.1016/j.nanoen.2018.11.052
10.1016/j.compositesa.2018.10.019
10.1016/j.nanoen.2018.08.036
10.1002/adfm.201804533
10.1002/admt.201900900
10.1002/admt.201900100
10.1002/advs.201801883
10.1021/am508812a
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/mame.202000510
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1439-2054
EndPage n/a
ExternalDocumentID 10_1002_mame_202000510
MAME202000510
Genre article
GrantInformation_xml – fundername: Iran's National Elites Foundation
  funderid: 15/64553
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AVUZU
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HCIFZ
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KB.
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PDBOC
PTHSS
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c3540-1b925f8cd499c58e5dd95f2ef0c2fd0c03b304c37e8d0dc4798e8dbcd0b8adae3
IEDL.DBID DR2
ISSN 1438-7492
IngestDate Fri Sep 13 10:13:57 EDT 2024
Thu Sep 12 16:47:42 EDT 2024
Sat Aug 24 01:04:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3540-1b925f8cd499c58e5dd95f2ef0c2fd0c03b304c37e8d0dc4798e8dbcd0b8adae3
ORCID 0000-0003-4540-321X
0000-0002-0030-9919
0000-0001-9157-1826
0000-0002-8599-2859
PQID 2477900158
PQPubID 1016395
PageCount 10
ParticipantIDs proquest_journals_2477900158
crossref_primary_10_1002_mame_202000510
wiley_primary_10_1002_mame_202000510_MAME202000510
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular materials and engineering
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 10
2013; 4
2019; 11
2015; 222
2019; 56
2019; 59
2014; 26
2016; 106
2019; 163
2014; 62
2014; 23
2017; 9
2018; 48
2020; 8
2018; 174
2018; 6
2004; 30
2020; 5
2018; 3
2019; 60
2019; 64
2019; 20
2018; 1
2004; 36
2011; 20
2019; 28
2019; 116
2019; 29
2008; 114
2015; 13
2019; 7
2007; 19
2015; 14
2018; 28
2019; 4
2019; 6
2019; 30
2019; 2
2019; 32
2013; 189
2020; 305
2006
2019; 304
2019; 184
2015; 7
2018; 27
2014; 87
2018; 18
2004; 13
2019; 179
2017
2018; 10
2018; 53
e_1_2_7_5_1
Bauer S. (e_1_2_7_48_1) 2008
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
Mattila H. (e_1_2_7_64_1) 2006
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
e_1_2_7_29_1
Shin Y. E. (e_1_2_7_26_1) 2018; 6
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 14
  start-page: 226
  year: 2015
  publication-title: Nano Energy
– volume: 20
  start-page: 6810
  year: 2019
  publication-title: IEEE Sens. J.
– volume: 60
  start-page: 620
  year: 2019
  publication-title: Nano Energy
– volume: 179
  year: 2019
  publication-title: Mater. Des.
– volume: 87
  start-page: 1509
  year: 2014
  publication-title: Procedia Eng.
– volume: 10
  start-page: 726
  year: 2010
  publication-title: Nano Lett.
– volume: 30
  start-page: 1079
  year: 2004
  publication-title: Ceram. Int.
– volume: 114
  start-page: 157
  year: 2008
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 222
  start-page: 293
  year: 2015
  publication-title: Sens. Actuators, A
– start-page: 344
  year: 2006
– volume: 7
  start-page: 5358
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 304
  year: 2019
  publication-title: Macromol. Mater. Eng.
– volume: 48
  start-page: 152
  year: 2018
  publication-title: Nano Energy
– volume: 19
  start-page: 6536
  year: 2007
  publication-title: Chem. Mater.
– volume: 1
  start-page: 3103
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 245
  year: 2018
  publication-title: Nano Energy
– volume: 11
  start-page: 5200
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 106
  start-page: 62
  year: 2016
  publication-title: Polymer
– volume: 13
  start-page: 385
  year: 2004
  publication-title: J. Electroceram.
– volume: 2
  start-page: 26
  year: 2019
  publication-title: Nat. Electron.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 279
  year: 2019
  publication-title: Polym. Adv. Technol.
– volume: 184
  year: 2019
  publication-title: Mater. Des.
– volume: 4
  start-page: 1633
  year: 2013
  publication-title: Nat. Commun.
– volume: 62
  start-page: 188
  year: 2014
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 28
  year: 2019
  publication-title: Smart Mater. Struct.
– volume: 6
  start-page: 691
  year: 2019
  publication-title: Int. J. Precis. Eng. Manuf. Green Technol.
– volume: 3
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 23
  year: 2014
  publication-title: Smart Mater. Struct.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 8245
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 5
  year: 2020
  publication-title: J. Adv. Mater. Technol.
– volume: 174
  start-page: 188
  year: 2018
  publication-title: Energy Convers. Manag.
– volume: 8
  start-page: 9496
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 56
  start-page: 216
  year: 2019
  publication-title: Nano Energy
– volume: 26
  start-page: 5310
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 3500
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 2474
  year: 2018
  publication-title: Sensors
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 745
  year: 2018
  publication-title: Polymers
– volume: 305
  year: 2020
  publication-title: Macromol. Mater. Eng.
– volume: 189
  start-page: 328
  year: 2013
  publication-title: Sens. Actuators, A
– volume: 13
  start-page: 298
  year: 2015
  publication-title: Nano Energy
– volume: 4
  start-page: 2610
  year: 2019
  publication-title: ACS Omega
– volume: 20
  start-page: 837
  year: 2019
  publication-title: Sci. Technol. Adv. Mater.
– volume: 59
  start-page: 745
  year: 2019
  publication-title: Nano Energy
– volume: 36
  start-page: 197
  year: 2004
  publication-title: Shock Vib. Dig.
– volume: 32
  year: 2019
  publication-title: Adv. Mater.
– volume: 116
  start-page: 79
  year: 2019
  publication-title: Composites, Part A
– volume: 27
  year: 2018
  publication-title: Smart Mater. Struct.
– volume: 20
  year: 2011
  publication-title: Smart Mater. Struct.
– start-page: 303
  year: 2017
  end-page: 337
– volume: 163
  start-page: 690
  year: 2019
  publication-title: Composites, Part B
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_7_45_1
  doi: 10.1021/acsami.7b06032
– ident: e_1_2_7_4_1
  doi: 10.1021/acsaem.8b00216
– ident: e_1_2_7_7_1
  doi: 10.1021/acsami.8b02133
– ident: e_1_2_7_38_1
  doi: 10.1039/D0TA00227E
– ident: e_1_2_7_32_1
  doi: 10.1016/j.nanoen.2019.03.097
– ident: e_1_2_7_30_1
  doi: 10.1002/adfm.201804456
– ident: e_1_2_7_21_1
  doi: 10.1016/j.nanoen.2019.03.025
– ident: e_1_2_7_11_1
  doi: 10.1002/pat.4463
– ident: e_1_2_7_29_1
  doi: 10.3390/s18082474
– ident: e_1_2_7_44_1
  doi: 10.1088/1361-665X/aad718
– ident: e_1_2_7_23_1
  doi: 10.1038/s41928-018-0189-7
– ident: e_1_2_7_60_1
  doi: 10.1002/adma.201400633
– ident: e_1_2_7_54_1
  doi: 10.1002/mame.202000162
– ident: e_1_2_7_42_1
  doi: 10.1016/j.ceramint.2003.12.025
– ident: e_1_2_7_12_1
  doi: 10.1016/j.matdes.2019.108176
– ident: e_1_2_7_10_1
  doi: 10.1016/j.nanoen.2015.01.038
– ident: e_1_2_7_33_1
  doi: 10.1088/0964-1726/23/3/033001
– ident: e_1_2_7_9_1
  doi: 10.1002/admt.201700397
– ident: e_1_2_7_13_1
  doi: 10.1016/j.matdes.2019.107889
– volume: 6
  start-page: 22888
  year: 2018
  ident: e_1_2_7_26_1
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Shin Y. E.
– ident: e_1_2_7_3_1
  doi: 10.1021/acsami.8b01862
– ident: e_1_2_7_24_1
  doi: 10.1109/JSEN.2019.2928797
– start-page: 157
  volume-title: Piezoelectricity, Springer Series in Materials Science
  year: 2008
  ident: e_1_2_7_48_1
  contributor:
    fullname: Bauer S.
– ident: e_1_2_7_47_1
  doi: 10.1016/j.proeng.2014.11.585
– ident: e_1_2_7_27_1
  doi: 10.1016/j.nanoen.2018.03.033
– ident: e_1_2_7_49_1
  doi: 10.1016/j.sna.2012.10.021
– ident: e_1_2_7_34_1
  doi: 10.1177/0583102404043275
– ident: e_1_2_7_16_1
  doi: 10.1016/j.nanoen.2015.02.034
– ident: e_1_2_7_57_1
  doi: 10.1088/1361-665X/ab0d4d
– start-page: 344
  volume-title: Intelligent Textiles and Cclothing
  year: 2006
  ident: e_1_2_7_64_1
  contributor:
    fullname: Mattila H.
– ident: e_1_2_7_18_1
  doi: 10.1088/1361-665X/aab865
– ident: e_1_2_7_46_1
  doi: 10.1016/j.sna.2014.11.012
– ident: e_1_2_7_20_1
  doi: 10.1002/admt.201901060
– ident: e_1_2_7_58_1
  doi: 10.1039/C7TA10175A
– ident: e_1_2_7_25_1
  doi: 10.1016/j.enconman.2018.08.018
– ident: e_1_2_7_53_1
  doi: 10.1002/adma.201902549
– ident: e_1_2_7_63_1
  doi: 10.1016/B978-0-08-100907-9.00013-1
– ident: e_1_2_7_8_1
  doi: 10.1021/acsami.8b15320
– ident: e_1_2_7_56_1
  doi: 10.1088/0964-1726/20/4/045009
– ident: e_1_2_7_6_1
  doi: 10.1021/acsomega.8b03325
– ident: e_1_2_7_28_1
  doi: 10.3390/polym10070745
– ident: e_1_2_7_40_1
  doi: 10.1016/j.compositesb.2019.01.050
– ident: e_1_2_7_51_1
  doi: 10.1016/j.polymer.2016.10.055
– ident: e_1_2_7_43_1
  doi: 10.1109/TBME.2014.2344052
– ident: e_1_2_7_62_1
  doi: 10.1039/C8TA08064J
– ident: e_1_2_7_50_1
  doi: 10.1021/nl9040719
– ident: e_1_2_7_14_1
  doi: 10.1039/C8TA10964H
– ident: e_1_2_7_36_1
  doi: 10.1002/mame.201800463
– ident: e_1_2_7_52_1
  doi: 10.1038/ncomms2639
– ident: e_1_2_7_1_1
  doi: 10.1007/s40684-019-00132-2
– ident: e_1_2_7_55_1
  doi: 10.1021/cm702601t
– ident: e_1_2_7_41_1
  doi: 10.1007/s10832-004-5130-y
– ident: e_1_2_7_22_1
  doi: 10.1016/j.nanoen.2019.103933
– ident: e_1_2_7_15_1
  doi: 10.1021/acsami.8b16023
– ident: e_1_2_7_39_1
  doi: 10.1080/14686996.2019.1650396
– ident: e_1_2_7_31_1
  doi: 10.1002/admt.201800016
– ident: e_1_2_7_35_1
  doi: 10.1016/j.nanoen.2018.11.052
– ident: e_1_2_7_17_1
  doi: 10.1016/j.compositesa.2018.10.019
– ident: e_1_2_7_37_1
  doi: 10.1016/j.nanoen.2018.08.036
– ident: e_1_2_7_61_1
  doi: 10.1002/adfm.201804533
– ident: e_1_2_7_19_1
  doi: 10.1002/admt.201900900
– ident: e_1_2_7_5_1
  doi: 10.1002/admt.201900100
– ident: e_1_2_7_2_1
  doi: 10.1002/advs.201801883
– ident: e_1_2_7_59_1
  doi: 10.1021/am508812a
SSID ssj0017893
Score 2.4303298
Snippet Piezoelectric polymers are potential energizers for wearable electronics due to the possibility of developing their yarns for various textile products. The...
Abstract Piezoelectric polymers are potential energizers for wearable electronics due to the possibility of developing their yarns for various textile...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Copolymers
Density
Electrospinning
Fluorides
Impact loads
Nanofibers
Nanogenerators
Parameters
piezoelectric nanofabrics
Piezoelectricity
Polyvinylidene fluorides
sensors
Twisting
Vinylidene fluoride
Warp
Wearable technology
weave factors
Weft
Yarn
yarn twisting
Yarns
Title Effect of Geometrical Parameters on Piezoresponse of Nanofibrous Wearable Piezoelectric Nanofabrics Under Low Impact Pressure
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmame.202000510
https://www.proquest.com/docview/2477900158/abstract/
Volume 306
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3La9wwEIdFyaXNoWmSlmweRYdCTk60smxZxxDyJFtCSGhuRiONIJRdh31QCPR_j0dabza5FNKbDZKxNRrpZzHzDWM_0JvSKtRZkACZ0gqzqihk5oMArbwxUFI28uBneX6nLu-L-6Us_sSHWBy4kWfE9Zoc3MLk8AUaOrRDwlzKqELop51oeqSKbhb8qL6uInWXSnxnWhnZURuFPHzd_fWu9CI1lwVr3HFO15jt3jUFmvw-mE3hwD29wTj-z8d8YZ_ncpQfpfmzzj7gaIN9PO6qwG2w1SVg4Sb7m2DHvAn8DJshVeNqbcyvLYV4EaeTNyN-_YBPzTjF3iI1bVfwdgrDuJlN-K_WsyhbK7VKRXgeXGpiob2c8FiKiV81f_hFTOHkKYVxjF_Z3enJ7fF5Ni_gkDk6Tsr6YGQRqDySMa6osPDeFEFiEE4GL5zIIRfK5RorL7xT2lTtFTgvoLLeYv6NrYyaEW4xDiKoUJYeCIefaw0WLFYorAPQfZQ9tt8ZsH5MnI46EZllTYNbLwa3x3Y7-9Zzf53UUhF3sZVGVY_JaKh_PKUeHA1OFnfb7-m0wz5JCpCJ5zm7bGU6nuFeq3Cm8D3O4mdrXvZN
link.rule.ids 315,786,790,1382,27957,27958,46329,46753,50849,50958
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3daxQxEMAHqQ_VBz-q4tWqeRB82jaXzW42j6W0XvWuFGnRtyWTDyhyt3IfFAr-72aS22vri6BvWUiW3UwmmQwzvwH44J2ujfSqCAKxkEr6oqkqUbjAUUmnNdaUjTw5q0eX8vP3qo8mpFyYzIfYONxIM9J-TQpODumDW2ro1EyJcymSGRJv7Q-jzlfpVvV1Q5AaqiZxd6nId6GkFj23kYuD--Pvn0u3xuZdkzWdOSdPAfuvzaEmP_ZXS9y3N3-AHP_rd57Bk7VFyg7zEnoOD_xsB7aP-kJwO_D4DrPwBfzKvGPWBfbJd1MqyBXFzM4NRXkRqpN1M3Z-5W-6eQ6_9dQ1buJxFeO8Wy3Yt6hclLCVe-U6PFc2dzEYmwuWqjGxcXfNTlMWJ8tZjHP_Ei5Pji-ORsW6hkNhyaNUDFGLKlCFJK1t1fjKOV0F4QO3IjhueYkll7ZUvnHcWal0E1toHcfGOOPLV7A162b-NTDkQYa6dkhE_FIpNGh847mxiGroxQA-9hJsf2ZUR5uhzKKlyW03kzuAvV7A7VplF62QhF6M1lEzAJEk9Ze3tJPDyfHmafdfBr2H7dHFZNyOT8--vIFHguJlkntnD7aW85V_Gw2eJb5LS_o34Iz6bw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6i4OMgPrE-cxA8LcZsdrM5FrU-Kz1YFS9LJpmAh3alVQTB_26yaWs9Cd6ykM0hM5N8OzvzfYQcolW5FigTxwESIQUmRZbxxDoGUlilIA_dyO27_LIrrp-yp6ku_sgPMUm4hcioz-sQ4K_WHf-QhvZ0L9Bc8hqF-I_2OQ81hPfrueZD97k7-ZMgi5p4N6h8J1IoPiZuZPz49wq_L6YftDmNWetLp7VClkdokTajeVfJDPbXyMLpWKRtjSxN8Qmuk6_IRUwrRy-w6gWxLG8C2tGhAivQaNKqTzsv-FkNYmkshqn-gPUeBoPqfUgfveOHZqo4K2rkvJg4RYMfDmmtlERvqw96VXdY0thhOMAN0m2d359eJiN9hcSEbE9yAopnLqgXKWWyAjNrVeY4Oma4s8ywFFImTCqxsMwaIVXhR2Asg0Jbjekmme1XfdwiFJgTLs8tBLb6VErQoLFApg2APEHeIEfjzS1fI41GGQmTeRnMUE7M0CC7470vR-E0LLkItIgeuRQNwmt7_LFK2W62zydP2_956YDMd85a5e3V3c0OWeShlKXOvOyS2bfBO-55LPIG-yN3-wa2hNmU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Geometrical+Parameters+on+Piezoresponse+of+Nanofibrous+Wearable+Piezoelectric+Nanofabrics+Under+Low+Impact+Pressure&rft.jtitle=Macromolecular+materials+and+engineering&rft.au=Amin+Forouzan&rft.au=Yousefzadeh%2C+Maryam&rft.au=Latifi%2C+Masoud&rft.au=Rajan%2C+Jose&rft.date=2021-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1438-7492&rft.eissn=1439-2054&rft.volume=306&rft.issue=1&rft_id=info:doi/10.1002%2Fmame.202000510&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-7492&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-7492&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-7492&client=summon