Photosynthate distribution determines spatial patterns in the rhizosphere microbiota of the maize root system
The spatial variation and underlying mechanisms of pattern formation in the rhizosphere microbiome are not well understood. We demonstrate that specific patterns in the distribution of recently fixed carbon within the plant root system influence the spatial organization of the rhizosphere microbiota...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 7286 - 16 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.08.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The spatial variation and underlying mechanisms of pattern formation in the rhizosphere microbiome are not well understood. We demonstrate that specific patterns in the distribution of recently fixed carbon within the plant root system influence the spatial organization of the rhizosphere microbiota. Non-invasive analysis of carbon allocation in the maize root system by
11
C tracer-based positron emission tomography combined with magnetic resonance imaging reveals high spatial heterogeneity with highest
11
C-signal accumulations at root tips and differences between root types. Strong correlations exist between root internal carbon allocation and rhizodeposition as evident from
13
CO
2
labeling. These patterns are reflected in the bacterial, fungal and protistan community structure in rhizosphere soil with differences depending on root structure and related spatial heterogeneities in carbon allocation. Especially the active consumers of
13
C-labeled rhizodeposits are responsive to photosynthate distribution with differences in
13
C-labeling according to their spatial localization within the root system. Thus, root photosynthate allocation supports distinct habitats in the plant root system and is a key determinant of microbial food web development, evident from
13
C-labeling of diverse bacterial and protistan predators, especially at root bases, resulting in characteristic spatiotemporal patterns in the rhizosphere microbiome.
The combination of isotopic tracers with root phenotyping reveals specific patterns in photosynthate allocation. These patterns are reflected in rhizodeposition and result in spatially distinct microbiomes within the plant root system. |
---|---|
AbstractList | The spatial variation and underlying mechanisms of pattern formation in the rhizosphere microbiome are not well understood. We demonstrate that specific patterns in the distribution of recently fixed carbon within the plant root system influence the spatial organization of the rhizosphere microbiota. Non-invasive analysis of carbon allocation in the maize root system by 11C tracer-based positron emission tomography combined with magnetic resonance imaging reveals high spatial heterogeneity with highest 11C-signal accumulations at root tips and differences between root types. Strong correlations exist between root internal carbon allocation and rhizodeposition as evident from 13CO2 labeling. These patterns are reflected in the bacterial, fungal and protistan community structure in rhizosphere soil with differences depending on root structure and related spatial heterogeneities in carbon allocation. Especially the active consumers of 13C-labeled rhizodeposits are responsive to photosynthate distribution with differences in 13C-labeling according to their spatial localization within the root system. Thus, root photosynthate allocation supports distinct habitats in the plant root system and is a key determinant of microbial food web development, evident from 13C-labeling of diverse bacterial and protistan predators, especially at root bases, resulting in characteristic spatiotemporal patterns in the rhizosphere microbiome.The spatial variation and underlying mechanisms of pattern formation in the rhizosphere microbiome are not well understood. We demonstrate that specific patterns in the distribution of recently fixed carbon within the plant root system influence the spatial organization of the rhizosphere microbiota. Non-invasive analysis of carbon allocation in the maize root system by 11C tracer-based positron emission tomography combined with magnetic resonance imaging reveals high spatial heterogeneity with highest 11C-signal accumulations at root tips and differences between root types. Strong correlations exist between root internal carbon allocation and rhizodeposition as evident from 13CO2 labeling. These patterns are reflected in the bacterial, fungal and protistan community structure in rhizosphere soil with differences depending on root structure and related spatial heterogeneities in carbon allocation. Especially the active consumers of 13C-labeled rhizodeposits are responsive to photosynthate distribution with differences in 13C-labeling according to their spatial localization within the root system. Thus, root photosynthate allocation supports distinct habitats in the plant root system and is a key determinant of microbial food web development, evident from 13C-labeling of diverse bacterial and protistan predators, especially at root bases, resulting in characteristic spatiotemporal patterns in the rhizosphere microbiome. The spatial variation and underlying mechanisms of pattern formation in the rhizosphere microbiome are not well understood. We demonstrate that specific patterns in the distribution of recently fixed carbon within the plant root system influence the spatial organization of the rhizosphere microbiota. Non-invasive analysis of carbon allocation in the maize root system by 11C tracer-based positron emission tomography combined with magnetic resonance imaging reveals high spatial heterogeneity with highest 11C-signal accumulations at root tips and differences between root types. Strong correlations exist between root internal carbon allocation and rhizodeposition as evident from 13CO2 labeling. These patterns are reflected in the bacterial, fungal and protistan community structure in rhizosphere soil with differences depending on root structure and related spatial heterogeneities in carbon allocation. Especially the active consumers of 13C-labeled rhizodeposits are responsive to photosynthate distribution with differences in 13C-labeling according to their spatial localization within the root system. Thus, root photosynthate allocation supports distinct habitats in the plant root system and is a key determinant of microbial food web development, evident from 13C-labeling of diverse bacterial and protistan predators, especially at root bases, resulting in characteristic spatiotemporal patterns in the rhizosphere microbiome.The combination of isotopic tracers with root phenotyping reveals specific patterns in photosynthate allocation. These patterns are reflected in rhizodeposition and result in spatially distinct microbiomes within the plant root system. The spatial variation and underlying mechanisms of pattern formation in the rhizosphere microbiome are not well understood. We demonstrate that specific patterns in the distribution of recently fixed carbon within the plant root system influence the spatial organization of the rhizosphere microbiota. Non-invasive analysis of carbon allocation in the maize root system by C tracer-based positron emission tomography combined with magnetic resonance imaging reveals high spatial heterogeneity with highest C-signal accumulations at root tips and differences between root types. Strong correlations exist between root internal carbon allocation and rhizodeposition as evident from CO labeling. These patterns are reflected in the bacterial, fungal and protistan community structure in rhizosphere soil with differences depending on root structure and related spatial heterogeneities in carbon allocation. Especially the active consumers of C-labeled rhizodeposits are responsive to photosynthate distribution with differences in C-labeling according to their spatial localization within the root system. Thus, root photosynthate allocation supports distinct habitats in the plant root system and is a key determinant of microbial food web development, evident from C-labeling of diverse bacterial and protistan predators, especially at root bases, resulting in characteristic spatiotemporal patterns in the rhizosphere microbiome. The spatial variation and underlying mechanisms of pattern formation in the rhizosphere microbiome are not well understood. We demonstrate that specific patterns in the distribution of recently fixed carbon within the plant root system influence the spatial organization of the rhizosphere microbiota. Non-invasive analysis of carbon allocation in the maize root system by 11 C tracer-based positron emission tomography combined with magnetic resonance imaging reveals high spatial heterogeneity with highest 11 C-signal accumulations at root tips and differences between root types. Strong correlations exist between root internal carbon allocation and rhizodeposition as evident from 13 CO 2 labeling. These patterns are reflected in the bacterial, fungal and protistan community structure in rhizosphere soil with differences depending on root structure and related spatial heterogeneities in carbon allocation. Especially the active consumers of 13 C-labeled rhizodeposits are responsive to photosynthate distribution with differences in 13 C-labeling according to their spatial localization within the root system. Thus, root photosynthate allocation supports distinct habitats in the plant root system and is a key determinant of microbial food web development, evident from 13 C-labeling of diverse bacterial and protistan predators, especially at root bases, resulting in characteristic spatiotemporal patterns in the rhizosphere microbiome. The combination of isotopic tracers with root phenotyping reveals specific patterns in photosynthate allocation. These patterns are reflected in rhizodeposition and result in spatially distinct microbiomes within the plant root system. Abstract The spatial variation and underlying mechanisms of pattern formation in the rhizosphere microbiome are not well understood. We demonstrate that specific patterns in the distribution of recently fixed carbon within the plant root system influence the spatial organization of the rhizosphere microbiota. Non-invasive analysis of carbon allocation in the maize root system by 11C tracer-based positron emission tomography combined with magnetic resonance imaging reveals high spatial heterogeneity with highest 11C-signal accumulations at root tips and differences between root types. Strong correlations exist between root internal carbon allocation and rhizodeposition as evident from 13CO2 labeling. These patterns are reflected in the bacterial, fungal and protistan community structure in rhizosphere soil with differences depending on root structure and related spatial heterogeneities in carbon allocation. Especially the active consumers of 13C-labeled rhizodeposits are responsive to photosynthate distribution with differences in 13C-labeling according to their spatial localization within the root system. Thus, root photosynthate allocation supports distinct habitats in the plant root system and is a key determinant of microbial food web development, evident from 13C-labeling of diverse bacterial and protistan predators, especially at root bases, resulting in characteristic spatiotemporal patterns in the rhizosphere microbiome. The spatial variation and underlying mechanisms of pattern formation in the rhizosphere microbiome are not well understood. We demonstrate that specific patterns in the distribution of recently fixed carbon within the plant root system influence the spatial organization of the rhizosphere microbiota. Non-invasive analysis of carbon allocation in the maize root system by 11 C tracer-based positron emission tomography combined with magnetic resonance imaging reveals high spatial heterogeneity with highest 11 C-signal accumulations at root tips and differences between root types. Strong correlations exist between root internal carbon allocation and rhizodeposition as evident from 13 CO 2 labeling. These patterns are reflected in the bacterial, fungal and protistan community structure in rhizosphere soil with differences depending on root structure and related spatial heterogeneities in carbon allocation. Especially the active consumers of 13 C-labeled rhizodeposits are responsive to photosynthate distribution with differences in 13 C-labeling according to their spatial localization within the root system. Thus, root photosynthate allocation supports distinct habitats in the plant root system and is a key determinant of microbial food web development, evident from 13 C-labeling of diverse bacterial and protistan predators, especially at root bases, resulting in characteristic spatiotemporal patterns in the rhizosphere microbiome. |
ArticleNumber | 7286 |
Author | Knief, Claudia Becker, Maximilian F. Bonkowski, Michael Schultes, Sina R. Frindte, Katharina Freudenthal, Jule Chlubek, Antonia Niedeggen, Daniela Pflugfelder, Daniel Watt, Michelle van Dusschoten, Dagmar Rüger, Lioba Hinz, Carsten Metzner, Ralf Bauke, Sara L. Koller, Robert |
Author_xml | – sequence: 1 givenname: Sina R. orcidid: 0009-0005-6673-7325 surname: Schultes fullname: Schultes, Sina R. organization: Institute for Crop Science and Resource Conservation (INRES), Molecular Biology of the Rhizosphere, University of Bonn – sequence: 2 givenname: Lioba orcidid: 0000-0001-7168-0005 surname: Rüger fullname: Rüger, Lioba organization: Institute of Zoology, Terrestrial Ecology, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne – sequence: 3 givenname: Daniela orcidid: 0000-0003-4376-3473 surname: Niedeggen fullname: Niedeggen, Daniela organization: Institute of Zoology, Terrestrial Ecology, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne – sequence: 4 givenname: Jule orcidid: 0000-0002-1745-9171 surname: Freudenthal fullname: Freudenthal, Jule organization: Institute of Zoology, Terrestrial Ecology, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne – sequence: 5 givenname: Katharina orcidid: 0000-0002-6801-5853 surname: Frindte fullname: Frindte, Katharina organization: Institute for Crop Science and Resource Conservation (INRES), Molecular Biology of the Rhizosphere, University of Bonn – sequence: 6 givenname: Maximilian F. surname: Becker fullname: Becker, Maximilian F. organization: Institute for Crop Science and Resource Conservation (INRES), Molecular Biology of the Rhizosphere, University of Bonn – sequence: 7 givenname: Ralf orcidid: 0000-0001-6164-1141 surname: Metzner fullname: Metzner, Ralf organization: Institute of Bio- and Geosciences, IBG 2: Plant Sciences, Forschungszentrum Jülich GmbH – sequence: 8 givenname: Daniel surname: Pflugfelder fullname: Pflugfelder, Daniel organization: Institute of Bio- and Geosciences, IBG 2: Plant Sciences, Forschungszentrum Jülich GmbH – sequence: 9 givenname: Antonia surname: Chlubek fullname: Chlubek, Antonia organization: Institute of Bio- and Geosciences, IBG 2: Plant Sciences, Forschungszentrum Jülich GmbH – sequence: 10 givenname: Carsten orcidid: 0000-0002-7402-8394 surname: Hinz fullname: Hinz, Carsten organization: Institute of Bio- and Geosciences, IBG 2: Plant Sciences, Forschungszentrum Jülich GmbH – sequence: 11 givenname: Dagmar orcidid: 0000-0002-6251-1231 surname: van Dusschoten fullname: van Dusschoten, Dagmar organization: Institute of Bio- and Geosciences, IBG 2: Plant Sciences, Forschungszentrum Jülich GmbH – sequence: 12 givenname: Sara L. orcidid: 0000-0003-2284-9593 surname: Bauke fullname: Bauke, Sara L. organization: Institute for Crop Science and Resource Conservation (INRES), Soil Sciences, University of Bonn – sequence: 13 givenname: Michael orcidid: 0000-0003-2656-1183 surname: Bonkowski fullname: Bonkowski, Michael organization: Institute of Zoology, Terrestrial Ecology, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne – sequence: 14 givenname: Michelle orcidid: 0000-0001-7843-0957 surname: Watt fullname: Watt, Michelle organization: Institute of Bio- and Geosciences, IBG 2: Plant Sciences, Forschungszentrum Jülich GmbH, Adrienne Clarke Chair of Botany, School of BioSciences, Faculty of Science, University of Melbourne – sequence: 15 givenname: Robert orcidid: 0000-0001-7251-7242 surname: Koller fullname: Koller, Robert email: r.koller@fz-juelich.de organization: Institute of Bio- and Geosciences, IBG 2: Plant Sciences, Forschungszentrum Jülich GmbH – sequence: 16 givenname: Claudia orcidid: 0000-0001-9939-6241 surname: Knief fullname: Knief, Claudia email: knief@uni-bonn.de organization: Institute for Crop Science and Resource Conservation (INRES), Molecular Biology of the Rhizosphere, University of Bonn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40774973$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT9v3SAUxVGVqknTfIEOFVKXLm75a_BYRW0TKVIyJDPCgGOebHgFPDifPuQ5SasOZbno8jvnAuc9OAoxOAA-YvQVIyq_ZYZZKxpEeNMSzlGzvgEnBDHcYEHo0V_7Y3CW8w7VRTssGXsHjhkSgnWCnoD5Zowl5jWUURcHrc8l-X4pPgZoXXFp9sFlmPe6eD3BWmovZOgDLKODafQPMe9HlxycvUmx97FoGIfD6az9Q2ViLDCvubj5A3g76Cm7s-d6Cu5-_rg9v2iurn9dnn-_agzldG2EJMQMFmEhLZacU9IT46xGTHNkWq4Rb63sObJDJfvOSku0xLazmsmBcXoKLjdfG_VO7ZOfdVpV1F4dGjHdK52KN5NTwpBWSkk6IzvWSyJxK7VBPSa8Q9q11evL5rVP8fficlGzz8ZNkw4uLllRQoVoOcK4op__QXdxSaG-9EBxQRB6Mvz0TC397Ozr9V5CqQDZgPqfOSc3vCIYqafw1Ra-quGrQ_hqrSK6iXKFw71Lf2b_R_UIgeSx3A |
Cites_doi | 10.1016/j.soilbio.2011.01.005 10.1094/MPMI-06-13-0161-R 10.1111/gcb.13850 10.1016/j.rhisph.2024.100885 10.1093/nar/gks1219 10.1071/FP06029 10.1111/j.1574-6941.2010.00860.x 10.1016/j.cels.2019.08.002 10.3389/fmicb.2021.619499 10.1186/gb-2014-15-1-r1 10.3390/plants11050632 10.1104/pp.15.01388 10.1111/j.1365-313X.2009.03888.x 10.1038/s41477-021-00897-y 10.1111/ppa.13578 10.1016/j.soilbio.2019.05.011 10.1007/s00248-005-0012-7 10.1038/s41467-017-02088-w 10.1271/bbb.69.1995 10.1016/j.mex.2015.03.007 10.14806/ej.17.1.200 10.1038/s42003-021-01988-4 10.1128/mBio.00466-21 10.1371/journal.pone.0061217 10.1093/jxb/erad421 10.3390/microorganisms8050700 10.3389/fmicb.2017.00325 10.3389/fpls.2022.1094551 10.1186/1471-2105-10-421 10.1038/s41467-024-49643-w 10.1038/ismej.2008.80 10.1111/j.1469-8137.2011.03952.x 10.1016/0038-0717(80)90036-X 10.1111/j.1654-1103.2003.tb02228.x 10.1093/nar/gks1160 10.1093/molbev/mst010 10.1016/j.tplants.2003.11.003 10.1016/j.funeco.2020.100988 10.1093/bioinformatics/btr381 10.1093/aob/mcl028 10.1186/s40793-022-00427-z 10.1111/ppl.14649 10.1038/s41588-024-01761-3 10.1371/journal.pone.0189616 10.2136/vzj2015.06.0094 10.1093/nar/gkad1039 10.1007/s002480000030 10.1038/ismej.2017.90 10.1038/s41587-019-0209-9 10.1099/00207713-52-6-2241 10.3389/fmicb.2021.666010 10.1128/AEM.01541-09 10.1111/pce.12451 10.1093/bioinformatics/btm554 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 10.1038/s41579-020-0412-1 10.1071/FP20351 10.1093/femsre/fuy030 10.7717/peerj.2584 10.3389/fmicb.2021.614501 10.1101/gr.1239303 10.1038/nmeth.3869 10.1002/jpln.200900271 10.1094/PHP-11-18-0075-RS 10.1128/AEM.65.6.2685-2690.1999 10.1890/08-1884.1 10.1016/j.soilbio.2015.01.025 10.1094/PHYTO-06-17-0203-RVW 10.1111/j.1462-2920.2010.02283.x 10.1111/j.1574-6941.2012.01345.x 10.1038/s41396-019-0375-2 10.1111/1462-2920.13824 10.1371/journal.pone.0164533 10.1016/j.soilbio.2019.03.007 10.1038/s41598-020-73938-9 10.1007/s11104-009-9925-0 10.1071/SR05142 10.1038/s41564-018-0129-3 10.1093/jxb/erg017 10.1088/1361-6560/ad22a2 10.1111/j.1469-8137.2012.04120.x 10.1002/jpln.202000079 10.1186/s40168-023-01660-5 10.3389/fmicb.2019.01332 10.1007/s11101-022-09806-3 10.1016/j.chom.2024.02.014 10.1016/j.tplants.2013.04.010 10.1016/0038-0717(79)90094-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-025-62550-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_7c2688829c894b828168ac0b12590ae6 40774973 10_1038_s41467_025_62550_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: 403637614; 403635931; 403637614 funderid: https://doi.org/10.13039/501100001659 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: 403635931 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: 403637614 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AARCD AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c353y-7822cfd0178d185532b2ceda04a50c65a056d8b50df822b9d8d2a81d9da48f453 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:16:41 EDT 2025 Fri Aug 08 22:17:01 EDT 2025 Fri Aug 08 03:40:46 EDT 2025 Wed Aug 13 02:13:27 EDT 2025 Wed Aug 13 23:55:35 EDT 2025 Fri Aug 08 01:11:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353y-7822cfd0178d185532b2ceda04a50c65a056d8b50df822b9d8d2a81d9da48f453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1745-9171 0000-0002-6251-1231 0000-0001-7843-0957 0000-0002-6801-5853 0000-0003-2656-1183 0000-0002-7402-8394 0009-0005-6673-7325 0000-0001-7251-7242 0000-0001-9939-6241 0000-0003-2284-9593 0000-0001-7168-0005 0000-0001-6164-1141 0000-0003-4376-3473 |
OpenAccessLink | https://www.proquest.com/docview/3237572006?pq-origsite=%requestingapplication% |
PMID | 40774973 |
PQID | 3237572006 |
PQPubID | 546298 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7c2688829c894b828168ac0b12590ae6 proquest_miscellaneous_3237765011 proquest_journals_3237572006 pubmed_primary_40774973 crossref_primary_10_1038_s41467_025_62550_y springer_journals_10_1038_s41467_025_62550_y |
PublicationCentury | 2000 |
PublicationDate | 20250807 |
PublicationDateYYYYMMDD | 2025-08-07 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250807 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | J Van Vuurde (62550_CR40) 1980; 12 M Modrzewska (62550_CR55) 2022; 71 M Ahmad (62550_CR60) 2023; 13 S Flues (62550_CR65) 2017; 19 PG Dennis (62550_CR26) 2010; 72 C Camacho (62550_CR84) 2009; 10 J Pausch (62550_CR3) 2018; 24 EP-I Loo (62550_CR37) 2024; 32 C Quast (62550_CR77) 2012; 41 Y Kuzyakov (62550_CR8) 2019; 135 A Van Bruggen (62550_CR39) 2000; 40 BJ Callahan (62550_CR75) 2016; 13 K Zhalnina (62550_CR2) 2018; 3 M Hünninghaus (62550_CR7) 2019; 134 P Trivedi (62550_CR18) 2020; 18 LC Enns (62550_CR25) 2006; 33 62550_CR68 CH Jaeger (62550_CR62) 1999; 65 ND Youngblut (62550_CR87) 2018; 13 M Bonkowski (62550_CR41) 2021; 12 D Vetterlein (62550_CR66) 2021; 184 K Frindte (62550_CR72) 2020; 10 F el Zahar Haichar (62550_CR59) 2008; 2 F Hochholdinger (62550_CR19) 2004; 9 SE Hannula (62550_CR48) 2017; 11 L Hu (62550_CR1) 2018; 9 C Hinz (62550_CR67) 2024; 69 P Yu (62550_CR4) 2021; 7 DL Jones (62550_CR9) 2009; 321 PN Okello (62550_CR53) 2019; 20 J Xie (62550_CR47) 2021; 14 PD Schloss (62550_CR82) 2009; 75 Y Assenov (62550_CR92) 2008; 24 Y Kuzyakov (62550_CR36) 2015; 83 K Sivasithamparam (62550_CR42) 1979; 11 L Rüger (62550_CR10) 2021; 12 A Kawasaki (62550_CR11) 2021; 48 L Guillou (62550_CR85) 2012; 41 P Shannon (62550_CR91) 2003; 13 D Garrido-Sanz (62550_CR46) 2023; 11 J Ye (62550_CR54) 2013; 26 N Gesteiro (62550_CR51) 2024; 176 L Röttjers (62550_CR89) 2018; 42 J Tackmann (62550_CR90) 2019; 9 E Bolyen (62550_CR74) 2019; 37 S Jahnke (62550_CR21) 2009; 59 AA Blacutt (62550_CR52) 2018; 108 J Pausch (62550_CR27) 2011; 174 BA Hungate (62550_CR63) 2021; 12 FP Teste (62550_CR69) 2009; 90 T Galindo-Castañeda (62550_CR16) 2024; 75 R Metzner (62550_CR22) 2022; 11 P Yu (62550_CR23) 2024; 56 B Orman-Ligeza (62550_CR30) 2013; 18 K Katoh (62550_CR76) 2013; 30 MF Becker (62550_CR14) 2022; 17 H Poorter (62550_CR33) 2012; 193 62550_CR81 AM Fiore-Donno (62550_CR24) 2019; 10 AD Van Diepeningen (62550_CR38) 2005; 50 RC Edgar (62550_CR86) 2011; 27 K Abarenkov (62550_CR78) 2024; 52 J Farrar (62550_CR32) 2003; 84 JK Bell (62550_CR45) 2022; 88 M Watt (62550_CR44) 2006; 97 TA Cotton (62550_CR12) 2019; 13 M Watt (62550_CR29) 2006; 44 MI Love (62550_CR88) 2014; 15 MJ Darwent (62550_CR28) 2003; 54 62550_CR43 FeZ Haichar (62550_CR20) 2012; 81 M Potshangbam (62550_CR50) 2017; 8 P Dixon (62550_CR80) 2003; 14 M Martin (62550_CR73) 2011; 17 L Thoenen (62550_CR6) 2024; 15 MY Afzal (62550_CR56) 2024; 30 T Rognes (62550_CR83) 2016; 4 P Marschner (62550_CR34) 2011; 43 JP Lynch (62550_CR31) 2015; 38 SG Keel (62550_CR15) 2012; 194 62550_CR71 E Tournier (62550_CR70) 2015; 2 WL King (62550_CR13) 2021; 4 S Hannula (62550_CR49) 2020; 48 V Schütz (62550_CR5) 2021; 12 S Bag (62550_CR61) 2022; 21 S Waller (62550_CR17) 2020; 8 E Glücksman (62550_CR64) 2010; 12 PP Bosshard (62550_CR57) 2002; 52 Y Hamasaki (62550_CR58) 2005; 69 62550_CR35 62550_CR79 |
References_xml | – volume: 43 start-page: 883 year: 2011 ident: 62550_CR34 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.01.005 – volume: 26 start-page: 1417 year: 2013 ident: 62550_CR54 publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-06-13-0161-R – volume: 24 start-page: 1 year: 2018 ident: 62550_CR3 publication-title: Glob. Change Biol. doi: 10.1111/gcb.13850 – volume: 30 start-page: 100885 year: 2024 ident: 62550_CR56 publication-title: Rhizosphere doi: 10.1016/j.rhisph.2024.100885 – volume: 41 start-page: D590 year: 2012 ident: 62550_CR77 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1219 – volume: 33 start-page: 391 year: 2006 ident: 62550_CR25 publication-title: Funct. Plant Biol. doi: 10.1071/FP06029 – volume: 72 start-page: 313 year: 2010 ident: 62550_CR26 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2010.00860.x – volume: 9 start-page: 286 year: 2019 ident: 62550_CR90 publication-title: Cell Syst. doi: 10.1016/j.cels.2019.08.002 – volume: 12 start-page: 461 year: 2021 ident: 62550_CR41 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.619499 – volume: 15 start-page: 1 year: 2014 ident: 62550_CR88 publication-title: Genome Biol. doi: 10.1186/gb-2014-15-1-r1 – volume: 11 start-page: 632 year: 2022 ident: 62550_CR22 publication-title: Plants doi: 10.3390/plants11050632 – ident: 62550_CR68 doi: 10.1104/pp.15.01388 – volume: 59 start-page: 634 year: 2009 ident: 62550_CR21 publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.03888.x – volume: 7 start-page: 481 year: 2021 ident: 62550_CR4 publication-title: Nat. Plants doi: 10.1038/s41477-021-00897-y – volume: 71 start-page: 1471 year: 2022 ident: 62550_CR55 publication-title: Plant Pathol. doi: 10.1111/ppa.13578 – volume: 135 start-page: 343 year: 2019 ident: 62550_CR8 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.05.011 – volume: 50 start-page: 506 year: 2005 ident: 62550_CR38 publication-title: Microb. Ecol. doi: 10.1007/s00248-005-0012-7 – volume: 9 start-page: 1 year: 2018 ident: 62550_CR1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02088-w – volume: 69 start-page: 1995 year: 2005 ident: 62550_CR58 publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.69.1995 – volume: 2 start-page: 182 year: 2015 ident: 62550_CR70 publication-title: MethodsX doi: 10.1016/j.mex.2015.03.007 – volume: 17 start-page: 10 year: 2011 ident: 62550_CR73 publication-title: EMBnet J. doi: 10.14806/ej.17.1.200 – volume: 4 start-page: 483 year: 2021 ident: 62550_CR13 publication-title: Commun. Biol. doi: 10.1038/s42003-021-01988-4 – volume: 12 start-page: 00466 year: 2021 ident: 62550_CR63 publication-title: Mbio doi: 10.1128/mBio.00466-21 – ident: 62550_CR79 doi: 10.1371/journal.pone.0061217 – volume: 75 start-page: 594 year: 2024 ident: 62550_CR16 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erad421 – volume: 8 start-page: 700 year: 2020 ident: 62550_CR17 publication-title: Microorganisms doi: 10.3390/microorganisms8050700 – ident: 62550_CR71 – volume: 8 start-page: 325 year: 2017 ident: 62550_CR50 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00325 – volume: 13 year: 2023 ident: 62550_CR60 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.1094551 – volume: 10 start-page: 1 year: 2009 ident: 62550_CR84 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-10-421 – volume: 15 year: 2024 ident: 62550_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-024-49643-w – volume: 2 start-page: 1221 year: 2008 ident: 62550_CR59 publication-title: ISME J. doi: 10.1038/ismej.2008.80 – volume: 193 start-page: 30 year: 2012 ident: 62550_CR33 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03952.x – volume: 12 start-page: 559 year: 1980 ident: 62550_CR40 publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(80)90036-X – volume: 14 start-page: 927 year: 2003 ident: 62550_CR80 publication-title: J. Veg. Sci. doi: 10.1111/j.1654-1103.2003.tb02228.x – volume: 41 start-page: D597 year: 2012 ident: 62550_CR85 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1160 – volume: 30 start-page: 772 year: 2013 ident: 62550_CR76 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst010 – volume: 9 start-page: 42 year: 2004 ident: 62550_CR19 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2003.11.003 – volume: 48 start-page: 100988 year: 2020 ident: 62550_CR49 publication-title: Fungal Ecol. doi: 10.1016/j.funeco.2020.100988 – volume: 27 start-page: 2194 year: 2011 ident: 62550_CR86 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr381 – volume: 97 start-page: 839 year: 2006 ident: 62550_CR44 publication-title: Ann. Bot. doi: 10.1093/aob/mcl028 – volume: 17 start-page: 1 year: 2022 ident: 62550_CR14 publication-title: Environ. Microbiome doi: 10.1186/s40793-022-00427-z – volume: 176 year: 2024 ident: 62550_CR51 publication-title: Physiol. Plant. doi: 10.1111/ppl.14649 – volume: 56 start-page: 1245 year: 2024 ident: 62550_CR23 publication-title: Nat. Genet. doi: 10.1038/s41588-024-01761-3 – volume: 13 year: 2018 ident: 62550_CR87 publication-title: PLoS ONE doi: 10.1371/journal.pone.0189616 – ident: 62550_CR35 doi: 10.2136/vzj2015.06.0094 – volume: 52 start-page: D791 year: 2024 ident: 62550_CR78 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad1039 – volume: 40 start-page: 250 year: 2000 ident: 62550_CR39 publication-title: Microb. Ecol. doi: 10.1007/s002480000030 – volume: 11 start-page: 2294 year: 2017 ident: 62550_CR48 publication-title: ISME J. doi: 10.1038/ismej.2017.90 – volume: 37 start-page: 852 year: 2019 ident: 62550_CR74 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0209-9 – volume: 52 start-page: 2241 year: 2002 ident: 62550_CR57 publication-title: Int. J. Syst. Evolut. Microbiol. doi: 10.1099/00207713-52-6-2241 – volume: 12 year: 2021 ident: 62550_CR5 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.666010 – volume: 75 start-page: 7537 year: 2009 ident: 62550_CR82 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01541-09 – volume: 38 start-page: 1775 year: 2015 ident: 62550_CR31 publication-title: Plant Cell Environ. doi: 10.1111/pce.12451 – volume: 24 start-page: 282 year: 2008 ident: 62550_CR92 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm554 – volume: 84 start-page: 827 year: 2003 ident: 62550_CR32 publication-title: Ecology doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 – volume: 18 start-page: 607 year: 2020 ident: 62550_CR18 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-0412-1 – volume: 14 start-page: 1 year: 2021 ident: 62550_CR47 publication-title: Rice – volume: 48 start-page: 871 year: 2021 ident: 62550_CR11 publication-title: Funct. Plant Biol. doi: 10.1071/FP20351 – volume: 42 start-page: 761 year: 2018 ident: 62550_CR89 publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuy030 – volume: 4 year: 2016 ident: 62550_CR83 publication-title: PeerJ doi: 10.7717/peerj.2584 – volume: 12 start-page: 237 year: 2021 ident: 62550_CR10 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.614501 – volume: 13 start-page: 2498 year: 2003 ident: 62550_CR91 publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 13 start-page: 581 year: 2016 ident: 62550_CR75 publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – ident: 62550_CR81 – volume: 174 start-page: 12 year: 2011 ident: 62550_CR27 publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200900271 – volume: 20 start-page: 38 year: 2019 ident: 62550_CR53 publication-title: Plant Health Prog. doi: 10.1094/PHP-11-18-0075-RS – volume: 65 start-page: 2685 year: 1999 ident: 62550_CR62 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.6.2685-2690.1999 – volume: 90 start-page: 2808 year: 2009 ident: 62550_CR69 publication-title: Ecology doi: 10.1890/08-1884.1 – volume: 83 start-page: 184 year: 2015 ident: 62550_CR36 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.01.025 – volume: 108 start-page: 312 year: 2018 ident: 62550_CR52 publication-title: Phytopathology doi: 10.1094/PHYTO-06-17-0203-RVW – volume: 12 start-page: 3105 year: 2010 ident: 62550_CR64 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2010.02283.x – volume: 81 start-page: 291 year: 2012 ident: 62550_CR20 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2012.01345.x – volume: 13 start-page: 1647 year: 2019 ident: 62550_CR12 publication-title: ISME J. doi: 10.1038/s41396-019-0375-2 – volume: 19 start-page: 3297 year: 2017 ident: 62550_CR65 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13824 – ident: 62550_CR43 doi: 10.1371/journal.pone.0164533 – volume: 134 start-page: 122 year: 2019 ident: 62550_CR7 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.03.007 – volume: 88 start-page: e00273 year: 2022 ident: 62550_CR45 publication-title: Appl. Environ. Microbiol. – volume: 10 start-page: 1 year: 2020 ident: 62550_CR72 publication-title: Sci. Rep. doi: 10.1038/s41598-020-73938-9 – volume: 321 start-page: 5 year: 2009 ident: 62550_CR9 publication-title: Plant Soil doi: 10.1007/s11104-009-9925-0 – volume: 44 start-page: 299 year: 2006 ident: 62550_CR29 publication-title: Soil Res. doi: 10.1071/SR05142 – volume: 3 start-page: 470 year: 2018 ident: 62550_CR2 publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0129-3 – volume: 54 start-page: 325 year: 2003 ident: 62550_CR28 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erg017 – volume: 69 start-page: 055019 year: 2024 ident: 62550_CR67 publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ad22a2 – volume: 194 start-page: 972 year: 2012 ident: 62550_CR15 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04120.x – volume: 184 start-page: 35 year: 2021 ident: 62550_CR66 publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.202000079 – volume: 11 year: 2023 ident: 62550_CR46 publication-title: Microbiome doi: 10.1186/s40168-023-01660-5 – volume: 10 start-page: 1332 year: 2019 ident: 62550_CR24 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01332 – volume: 21 start-page: 1739 year: 2022 ident: 62550_CR61 publication-title: Phytochem. Rev. doi: 10.1007/s11101-022-09806-3 – volume: 32 start-page: 543 year: 2024 ident: 62550_CR37 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2024.02.014 – volume: 18 start-page: 459 year: 2013 ident: 62550_CR30 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.04.010 – volume: 11 start-page: 155 year: 1979 ident: 62550_CR42 publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(79)90094-4 |
SSID | ssj0000391844 |
Score | 2.4771414 |
Snippet | The spatial variation and underlying mechanisms of pattern formation in the rhizosphere microbiome are not well understood. We demonstrate that specific... Abstract The spatial variation and underlying mechanisms of pattern formation in the rhizosphere microbiome are not well understood. We demonstrate that... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 7286 |
SubjectTerms | 45/71 45/77 631/158/855 631/326/2565/2134 631/449/1736 704/47/4113 Bacteria - classification Bacteria - genetics Bacteria - metabolism Carbon Carbon - metabolism Carbon 13 Carbon Isotopes - metabolism Community structure Corn Food chains Food webs Fungi - metabolism Heterogeneity Humanities and Social Sciences Isotopic tracers Labeling Localization Magnetic resonance imaging Microbiomes Microbiota Microbiota - physiology Microorganisms multidisciplinary Pattern formation Phenotyping Photosynthesis - physiology Plant roots Plant Roots - metabolism Plant Roots - microbiology Positron emission Positron emission tomography Predators Rhizosphere Rhizosphere microorganisms Roots Science Science (multidisciplinary) Soil - chemistry Soil Microbiology Spatial discrimination Spatial heterogeneity Spatial variations Zea mays - metabolism Zea mays - microbiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_T90wELYQEhILKoXSAEWuxEYj8vwjdsYWgRAD6gASm-XYjnjDSxAJQ_rX987Oe4BaxMIan6z4zuf7Lr58R8ixKMGbfY01T7XIRa1FrgVXuXMuqGJmLXOx2uK6vLwVV3fy7kWrL6wJS_TASXGnyrESsjRWOV3BVAz7RFhX1BCYq8KGSLYNMe9FMhXPYF5B6iKmv2QKrk97Ec8E7N4KkF8W-fgqEkXC_v-hzH9uSGPgufhEtibESH-mN90ma6H9TDZSD8lxhyx-33dD14_tcA-wkXokwp16WFE_1bqEnvZYOQ3TPEQ-zban85YC9qOPWHPXI7dAoIt5YmUaLO2aOLqw8z8g03UDTZTPu-T24vzm7DKfeijkjks-5ggAXOPB77SH0Cw5q5kL3hbCysKV0gIA8rqWhW9Asq689swChq28FboRkn8h623Xhq-EllZDNhuaxqkg8KAMws1CqKxsSsxrMnKy1Kd5SFQZJl5xc22S9g1o30TtmzEjv1DlK0mkuY4PwPhmMr55z_gZOVwazEy-1xvOuJIKP5Vk5PtqGLwGr0JsG7qnJKMAnM5mGdlLhl69CaS4SlQK1vNjafnnyd9e0P5HLOiAbDLcoliTog7J-vD4FL4B6hnqo7jB_wJYcvzC priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVkhcUFu-Ai0yEjeIyDp27BwXRFXtAVWCSr1Zju3QPWxSbdJD-us74yRbIcqBazyx7BmP_WyP3wB8FAV6s68o5qkSqai0SLXIVeqcCypbWMtdjLb4UZxfitWVvNoDPr-FiUH7kdIyTtNzdNiXTkSXpuSriNhllg5P4ICo2nFsHyyXq5-r3ckKcZ5rIaYXMlmuH_n5j1UokvU_hjD_uh2Ni87ZITyf0CJbju07gr3QHMPTMX_k8AI2F9dt33ZD018jZGSeSHCn_FXMT3EuoWMdRU1jNTeRS7Pp2LphiPvYluLtOuIVCGyzHhmZesvaOpZu7PoOZdq2ZyPd80u4PPv-69t5OuVPSF0u8yGlxd_VHn1Oe1yWZc4r7oK3mbAyc4W0CH68rmTma5SsSq89t4hfS2-FrlG1r2C_aZvwBlhhNe5kQ107FQRNkkG4RQillXVBe5oEPs36NDcjTYaJ19u5NqP2DWrfRO2bIYGvpPKdJFFcxw_t9reZTG6U4wVuz3npdIljiFOCEOuyChFZmdlQJHAyG8xMfteZnOdKKjomSeDDrhg9hq5BbBPa21FGITBdLBJ4PRp61xLc3ipRKuzP59nyD5X_u0Nv_0_8HTzjNBgp8kSdwH6_vQ2niG366v00mO8BC431Nw priority: 102 providerName: Springer Nature |
Title | Photosynthate distribution determines spatial patterns in the rhizosphere microbiota of the maize root system |
URI | https://link.springer.com/article/10.1038/s41467-025-62550-y https://www.ncbi.nlm.nih.gov/pubmed/40774973 https://www.proquest.com/docview/3237572006 https://www.proquest.com/docview/3237765011 https://doaj.org/article/7c2688829c894b828168ac0b12590ae6 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgV0hcEG8CS2UkbhBtmtixc0Ldasuqh9UKWKk3y7EdtofGpckewq9nxnG7QjwuiRRblj2esb-xJ98Q8p6VYM22xpinmqWsliyVrBCpMcaJbKp1bkK0xWV5cc2WK76KB25dDKvcr4lhobbe4Bn5aZEXggt0gD9tf6SYNQpvV2MKjfvkGKnLUKvFShzOWJD9XDIW_5XJCnnasbAyYA5XAP48S4ff9qNA2_83rPnHPWnYfhaPyaOIG-lsnOgn5J5rn5IHYybJ4RnZXN343ndD298AeKQW6XBjJitqY8SL62iH8dPQzDawarYdXbcUECDdYeRdhwwDjm7WIzdTr6lvQulGr39CHe97OhI_PyfXi_Nv84s0ZlJITcGLIUUYYBoL1ictbNC8yOvcOKszpnlmSq4BBllZ88w2ULOurLS5BiRbWc1kw3jxghy1vnWvCC21BJ_WNY0RjuFy6ZiZOldp3pTo3STkw16eajsSZqhw0V1INUpfgfRVkL4aEnKGIj_URLLr8MHvvqtoO0qYvARHPa-MrECbckwVok1WAzarMu3KhJzsJ0xFC-zUnb4k5N2hGGwHL0R06_ztWEcARJ1OE_JynOhDT8DRFawSMJ6P-5m_a_zfA3r9_768IQ9zVD6MOREn5Kjf3bq3gGr6ehJUF55y8XlCjmez5dclvM_OL6--wNd5OZ-E84JfVtn7XA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguiDcLBYwEJ4iadZzYOSDEa9nSUnFopd6MYzt0D5ssm1Qo_Ch-IzNOshXices1sSxnPI9v4vF8AE9FhtbsCqp5KkQkCiUiJRIZWWu9jKfGcBuqLQ6z-bH4eJKebMHP8S4MlVWOPjE4aldb-ke-m_BEppIS4FerbxGxRtHp6kih0avFvu--Y8rWvNx7h_v7jPPZ-6O382hgFYhskiZdRCHRlo5o6R0GqzThBbfemViYNLZZahASOFWksStxZJE75bhBVJc7I1QpiCUCXf4lkWAkp5vpsw-bfzrUbV0JMdzNiRO124jgiYgzFhONNI663-JfoAn4G7b941w2hLvZdbg24FT2ulesG7Dlq5twuWeu7G7B8vNp3dZNV7WnCFaZo_a7A3MWc0OFjW9YQ_XaOM0qdPGsGraoGCJOtqZKv4Y6Gni2XPS9oFrD6jK8XZrFDxxT1y3rG03fhuMLkfEd2K7qyt8DlhmFObQvSyu9IPfshZ16n5u0zCibmsDzUZ561Tfo0OFgPVG6l75G6esgfd1N4A2JfDOSmmuHB_X6qx5sVUvLM4WZR25VjtrLiZrE2LhALJjHxmcT2Bk3TA8W3-hz_ZzAk81rtFU6gDGVr8_6MRIh8XQ6gbv9Rm9Wgom1FLnE73kx7vz55P_-oPv_X8tjuDI_-nSgD_YO9x_AVU6KSPUucge22_WZf4iIqi0eBTVm8OWi7eYXtyIyLw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4IN4sFDASnCDabOLEzgEhSrtqKVqtEJV6M47t0D1ssmxSofDT-HXMOMlWiMet19iy7PHM-Jt4PB_AC56iNduccp5yHvBc8kDyWATGGCfCqdaR8dkW8_TolH84S8524OfwFobSKgef6B21rQz9I5_EUSwSQQHwpOjTIhYHs7frbwExSNFN60Cn0anIiWu_Y_hWvzk-wL1-GUWzw8_vj4KeYSAwcRK3AR2PprBEUW_x4EriKI-MszrkOglNmmiEB1bmSWgL7JlnVtpII8LLrOay4MQYge5_V1BUNILd_cP54tP2Dw_VXpec9y91wlhOau79EjHIYtiRhEH722noSQP-hnT_uKX1h9_sFtzsUSt716nZbdhx5R241vFYtndhtTivmqpuy-YcoSuzVIy359Fits-3cTWrKXsbh1n7mp5lzZYlQ_zJNpT3V1N9A8dWy64yVKNZVfjWlV7-wD5V1bCu7PQ9OL0SKd-HUVmV7iGwVEuMqF1RGOE4OWvHzdS5TCdFSrHVGF4N8lTrrlyH8tfssVSd9BVKX3npq3YM-yTybU8qte0_VJuvqrdcJUyUSoxDMiMz1OWIiEq0CXNEhlmoXTqGvWHDVG__tbrU1jE83zaj5dJ1jC5dddH1EQiQp9MxPOg2ejsTVCjBM4HreT3s_OXg_17Qo__P5RlcR5tRH4_nJ4_hRkR6SMkvYg9GzebCPUF41eRPez1m8OWqTecXFYI3wQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photosynthate+distribution+determines+spatial+patterns+in+the+rhizosphere+microbiota+of+the+maize+root+system&rft.jtitle=Nature+communications&rft.au=Schultes%2C+Sina+R.&rft.au=R%C3%BCger%2C+Lioba&rft.au=Niedeggen%2C+Daniela&rft.au=Freudenthal%2C+Jule&rft.date=2025-08-07&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-62550-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_025_62550_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |