The empirical Christoffel function with applications in data analysis
We illustrate the potential applications in machine learning of the Christoffel function, or, more precisely, its empirical counterpart associated with a counting measure uniformly supported on a finite set of points. Firstly, we provide a thresholding scheme which allows approximating the support o...
Saved in:
Published in | Advances in computational mathematics Vol. 45; no. 3; pp. 1439 - 1468 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2019
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We illustrate the potential applications in machine learning of the Christoffel function, or, more precisely, its empirical counterpart associated with a counting measure uniformly supported on a finite set of points. Firstly, we provide a thresholding scheme which allows approximating the support of a measure from a finite subset of its moments with strong asymptotic guaranties. Secondly, we provide a consistency result which relates the empirical Christoffel function and its population counterpart in the limit of large samples. Finally, we illustrate the relevance of our results on simulated and real-world datasets for several applications in statistics and machine learning: (a) density and support estimation from finite samples, (b) outlier and novelty detection, and (c) affine matching. |
---|---|
AbstractList | We illustrate the potential applications in machine learning of the Christoffel function, or, more precisely, its empirical counterpart associated with a counting measure uniformly supported on a finite set of points. Firstly, we provide a thresholding scheme which allows approximating the support of a measure from a finite subset of its moments with strong asymptotic guaranties. Secondly, we provide a consistency result which relates the empirical Christoffel function and its population counterpart in the limit of large samples. Finally, we illustrate the relevance of our results on simulated and real-world datasets for several applications in statistics and machine learning: (a) density and support estimation from finite samples, (b) outlier and novelty detection, and (c) affine matching. We illustrate the potential applications in machine learning of theChristoffel function, or more precisely, its empirical counterpart associatedwith a counting measure uniformly supported on a finite set of points.Firstly, we provide a thresholding scheme which allows to approximatethe support of a measure from a finite subset of its moments with strongasymptotic guaranties. Secondly, we provide a consistency result whichrelates the empirical Christoffel function and its population counterpartin the limit of large samples. Finally, we illustrate the relevance of ourresults on simulated and real world datasets for several applications instatistics and machine learning: (a) density and support estimation fromfinite samples, (b) outlier and novelty detection and (c) affine matching |
Author | Pauwels, Edouard Lasserre, Jean B. |
Author_xml | – sequence: 1 givenname: Jean B. surname: Lasserre fullname: Lasserre, Jean B. organization: LAAS-CNRS and Institute of Mathematics, University of Toulouse – sequence: 2 givenname: Edouard orcidid: 0000-0002-8180-075X surname: Pauwels fullname: Pauwels, Edouard email: edouard.pauwels@irit.fr organization: IRIT, Université Toulouse 3 Paul Sabatier |
BackLink | https://hal.science/hal-01511624$$DView record in HAL |
BookMark | eNp9kDFPwzAQhS1UJNrCH2CyxMQQsGM7rseqKhSpEkuZrUtqE1dpEuwU1H-P0yCQGDrd6e57705vgkZ1UxuEbil5oITIx0AJ5zwhVCVEZZIl9AKNqZBpouJiFPt-JWk2u0KTEHaE9JgYo-WmNNjsW-ddARVelN6FrrHWVNge6qJzTY2_XFdiaNsqIv0gYFfjLXSAoYbqGFy4RpcWqmBufuoUvT0tN4tVsn59flnM10nBBOsSa8HYWc6A5jITlhMQrCCWWJMrxqTgSlJQeboFSXLLaS5SY-xWMgU2ShSbovvBt4RKt97twR91A06v5mvdzwgVlGYp_6SRvRvY1jcfBxM6vWsOPj4cdJoyyjNOuIhUOlCFb0Lwxv7aUqL7aPUQbXRW-hSt7q1n_0SF607RdB5cdV7KBmmId-p34_--OqP6Bhzij2o |
CitedBy_id | crossref_primary_10_5802_crmath_358 crossref_primary_10_1051_ps_2022003 crossref_primary_10_1109_LSP_2023_3341005 crossref_primary_10_1007_s00211_024_01422_x crossref_primary_10_1007_s11590_020_01680_2 crossref_primary_10_1007_s41060_024_00581_2 crossref_primary_10_1090_tran_8648 crossref_primary_10_1109_TAC_2023_3281749 crossref_primary_10_1016_j_jat_2023_105955 crossref_primary_10_2139_ssrn_3229363 crossref_primary_10_1007_s10208_020_09451_2 crossref_primary_10_1016_j_automatica_2022_110836 crossref_primary_10_3934_naco_2024011 crossref_primary_10_1137_21M1458338 crossref_primary_10_5802_crmath_380 crossref_primary_10_1007_s00365_024_09686_0 crossref_primary_10_1007_s10107_020_01468_3 crossref_primary_10_1007_s10208_020_09458_9 crossref_primary_10_1137_23M1592584 crossref_primary_10_1007_s00365_021_09535_4 crossref_primary_10_1109_TCAD_2024_3438072 |
Cites_doi | 10.1016/0021-9045(86)90016-X 10.1214/aoms/1177728190 10.2307/1971219 10.1007/s10474-012-0283-7 10.1111/j.1467-842X.2006.00421.x 10.1007/BF02788993 10.1214/13-AOS1188 10.1137/0138038 10.1016/j.aim.2009.06.010 10.1017/CBO9780511565717 10.2307/3315915 10.2307/2944352 10.1016/j.jmva.2016.01.003 10.1214/aos/1069362732 10.1214/aos/1030741073 10.1006/jmva.1995.1075 10.1214/07-AOP365 10.1214/08-AOS661 10.1214/15-AOS1366 10.3150/09-BEJ184 10.1214/aos/1176324533 10.1006/jath.1998.3312 10.1006/jath.1995.1075 10.1111/1467-9469.00100 10.1214/aoms/1177704472 10.1162/089976601750264965 10.1512/iumj.2009.58.3644 10.1214/aos/1176324626 10.1145/1143844.1143874 10.1145/1060590.1060636 10.4310/MAA.1996.v3.n2.a6 10.2139/ssrn.3239041 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1007/s10444-019-09673-1 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISSN | 1572-9044 |
EndPage | 1468 |
ExternalDocumentID | oai_HAL_hal_01511624v1 10_1007_s10444_019_09673_1 |
GrantInformation_xml | – fundername: H2020 European Research Council grantid: 666981 TAMING funderid: https://doi.org/10.13039/100010663 |
GroupedDBID | -52 -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MK~ N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z83 ZMTXR ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW AMVHM ATHPR AYFIA BBWZM CAG CITATION COF H13 HZ~ KOW N2Q NDZJH O9- OVD R4E RNI RZC RZE RZK S1Z S26 S28 SCLPG T16 TEORI UZXMN VFIZW ZWQNP ABRTQ 1XC |
ID | FETCH-LOGICAL-c353t-ffaef8b3a1b765f40a53c0f0feb933754971a9b2da70bf41b52eefd739af1b793 |
IEDL.DBID | U2A |
ISSN | 1019-7168 |
IngestDate | Fri May 09 12:28:33 EDT 2025 Fri Jul 25 11:03:18 EDT 2025 Thu Apr 24 23:05:09 EDT 2025 Tue Jul 01 02:55:33 EDT 2025 Fri Feb 21 02:38:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Density estimation Support inference 68T05 Consistency 62-07 62H99 Christoffel function Statistics |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-ffaef8b3a1b765f40a53c0f0feb933754971a9b2da70bf41b52eefd739af1b793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8180-075X 0000-0003-0860-9913 |
PQID | 2231464045 |
PQPubID | 2043875 |
PageCount | 30 |
ParticipantIDs | hal_primary_oai_HAL_hal_01511624v1 proquest_journals_2231464045 crossref_primary_10_1007_s10444_019_09673_1 crossref_citationtrail_10_1007_s10444_019_09673_1 springer_journals_10_1007_s10444_019_09673_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationTitleAbbrev | Adv Comput Math |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | Mammen, Tsybakov (CR26) 1995; 23 Helton, Lasserre, Putinar (CR20) 2008; 36 Máté, Nevai, Totik (CR28) 1991; 134 Cholaquidis, Cuevas, Fraiman (CR9) 2014; 42 Parzen (CR31) 1962; 33 Polonik (CR33) 1995; 23 Cuevas, González-Manteiga, Rodríguez-casal (CR12) 2006; 48 Cuevas, Fraiman (CR11) 1997; 25 Totik (CR41) 2000; 81 Geffroy (CR17) 1964; 13 CR13 Nevai (CR30) 1986; 48 Xu (CR46) 1999; 99 Chevalier (CR8) 1976; 12 Devroye, Wise (CR15) 1980; 38 CR10 Tsybakov (CR42) 1997; 25 Kroó, Lubinsky (CR22) 2013; 140 Máté, Nevai (CR27) 1980; 111 Xu (CR45) 1996; 3 Kroò, Lubinsky (CR21) 2012; 65 Molchanov (CR29) 1998; 25 Rosenblatt (CR37) 1956; 27 Dunkl, Xu (CR16) 2001 Bos, Della Vecchia, Mastroianni (CR7) 1998; 2 Rényi, Sulanke (CR34) 1963; 2 Bos (CR6) 1994; 23 Schölkopf, Platt, Shawe-Taylor, Smola, Williamson (CR38) 2001; 13 CR4 Robbins (CR36) 1955; 62 Ash (CR2) 1972 Aaron, Bodart (CR1) 2016; 147 Gustafsson, Putinar, Saff, Stylianopoulos (CR18) 2009; 222 CR25 Rigollet, Vert (CR35) 2009; 15 CR24 CR23 CR43 Patschkowski, Rohde (CR32) 2016; 44 Berman (CR5) 2009; 58 CR40 Singh, Scott, Nowak (CR39) 2009; 37 Baíllo, Cuevas, Justel (CR3) 2000; 28 Zeileis, Hornik, Smola, Karatzoglou (CR47) 2004; 11 Hardle, Park, Tsybakov (CR19) 1995; 55 Xu (CR44) 1995; 82 De Marchi, Sommariva (CR14) 2014; 7 9673_CR10 9673_CR13 RB Ash (9673_CR2) 1972 Y Xu (9673_CR44) 1995; 82 H Robbins (9673_CR36) 1955; 62 L Devroye (9673_CR15) 1980; 38 M Rosenblatt (9673_CR37) 1956; 27 A Baíllo (9673_CR3) 2000; 28 L Bos (9673_CR7) 1998; 2 J Chevalier (9673_CR8) 1976; 12 J Geffroy (9673_CR17) 1964; 13 P Nevai (9673_CR30) 1986; 48 JW Helton (9673_CR20) 2008; 36 B Schölkopf (9673_CR38) 2001; 13 A Máté (9673_CR27) 1980; 111 A Kroò (9673_CR21) 2012; 65 A Kroó (9673_CR22) 2013; 140 9673_CR4 A Singh (9673_CR39) 2009; 37 E Parzen (9673_CR31) 1962; 33 W Polonik (9673_CR33) 1995; 23 A Cholaquidis (9673_CR9) 2014; 42 T Patschkowski (9673_CR32) 2016; 44 9673_CR43 9673_CR23 9673_CR24 Y Xu (9673_CR45) 1996; 3 9673_CR40 A Máté (9673_CR28) 1991; 134 Y Xu (9673_CR46) 1999; 99 S Marchi De (9673_CR14) 2014; 7 9673_CR25 A Cuevas (9673_CR12) 2006; 48 IS Molchanov (9673_CR29) 1998; 25 V Totik (9673_CR41) 2000; 81 A Zeileis (9673_CR47) 2004; 11 E Mammen (9673_CR26) 1995; 23 A Cuevas (9673_CR11) 1997; 25 P Rigollet (9673_CR35) 2009; 15 W Hardle (9673_CR19) 1995; 55 A Rényi (9673_CR34) 1963; 2 CF Dunkl (9673_CR16) 2001 B Gustafsson (9673_CR18) 2009; 222 L Bos (9673_CR6) 1994; 23 AB Tsybakov (9673_CR42) 1997; 25 RJ Berman (9673_CR5) 2009; 58 C Aaron (9673_CR1) 2016; 147 |
References_xml | – volume: 12 start-page: 339 issue: 4 year: 1976 end-page: 364 ident: CR8 article-title: Estimation du Support et du Contour du Support d’une Loi de probabilité publication-title: Annales de l’Institut Henri poincaré, Section B – ident: CR43 – volume: 2 start-page: 277 issue: 52 year: 1998 end-page: 290 ident: CR7 article-title: On the asymptotics of Christoffel functions for centrally symmetric weight functions on the ball in $\mathbb {R}\mathbb {R}^{d}$ ℝℝd publication-title: Rendiconti del Circolo Matematico di Palermo – volume: 11 start-page: 1 issue: 9 year: 2004 end-page: 20 ident: CR47 article-title: Kernlab-an S4 package for kernel methods in R publication-title: J. Stat. Softw. – volume: 3 start-page: 257 year: 1996 end-page: 272 ident: CR45 article-title: Asymptotics for orthogonal polynomials and Christoffel functions on a ball publication-title: Methods Appl. Anal. – ident: CR4 – volume: 65 start-page: 600620 issue: 3 year: 2012 ident: CR21 article-title: Christoffel functions and universality in the bulk for multivariate orthogonal polynomials publication-title: Can. J. Math. – ident: CR10 – volume: 48 start-page: 3 issue: 1 year: 1986 end-page: 167 ident: CR30 article-title: Géza Freud, orthogonal polynomials and Christoffel functions. A case study publication-title: Journal of Approximation Theory doi: 10.1016/0021-9045(86)90016-X – volume: 27 start-page: 832 issue: 3 year: 1956 end-page: 837 ident: CR37 article-title: Remarks on some nonparametric estimates of a density function publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177728190 – volume: 111 start-page: 145 issue: 1 year: 1980 end-page: 154 ident: CR27 article-title: Bernstein’s Inequality in Lp for 0 < p < 1 and (C, 1) Bounds for Orthogonal Polynomials publication-title: Ann. Math. doi: 10.2307/1971219 – volume: 62 start-page: 26 issue: 1 year: 1955 end-page: 29 ident: CR36 article-title: A remark on Stirling’s formula publication-title: Am. Math. Mon. – volume: 140 start-page: 117 year: 2013 end-page: 133 ident: CR22 article-title: Christoffel functions and universality on the boundary of the ball publication-title: Acta Math. Hungar. doi: 10.1007/s10474-012-0283-7 – volume: 48 start-page: 7 issue: 1 year: 2006 end-page: 19 ident: CR12 article-title: Plug-in estimation of general level sets publication-title: Aust. N. Z. J. Stat. doi: 10.1111/j.1467-842X.2006.00421.x – ident: CR40 – ident: CR25 – volume: 81 start-page: 283 issue: 1 year: 2000 end-page: 303 ident: CR41 article-title: Asymptotics for Christoffel functions for general measures on the real line publication-title: Journal d’Analyse Mathématique doi: 10.1007/BF02788993 – volume: 42 start-page: 255 issue: 1 year: 2014 end-page: 284 ident: CR9 article-title: On poincaré cone property publication-title: Ann. Stat. doi: 10.1214/13-AOS1188 – volume: 38 start-page: 480 issue: 3 year: 1980 end-page: 488 ident: CR15 article-title: Detection of abnormal behavior via nonparametric estimation of the support publication-title: SIAM J. Appl. Math. doi: 10.1137/0138038 – volume: 222 start-page: 1405 issue: 4 year: 2009 end-page: 1460 ident: CR18 article-title: Bergman polynomials on an archipelago: estimates, zeros and shape reconstruction publication-title: Adv. Math. doi: 10.1016/j.aim.2009.06.010 – ident: CR23 – year: 2001 ident: CR16 publication-title: Orthogonal Polynomials of Several Variables doi: 10.1017/CBO9780511565717 – volume: 28 start-page: 765 issue: 4 year: 2000 end-page: 782 ident: CR3 article-title: Set estimation and nonparametric detection publication-title: Can. J. Stat. doi: 10.2307/3315915 – volume: 134 start-page: 433 issue: 2 year: 1991 end-page: 453 ident: CR28 article-title: Szegö’s extremum problem on the unit circle publication-title: Ann. Math. doi: 10.2307/2944352 – volume: 147 start-page: 82 year: 2016 end-page: 101 ident: CR1 article-title: Local convex hull support and boundary estimation publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2016.01.003 – volume: 25 start-page: 948 issue: 3 year: 1997 end-page: 969 ident: CR42 article-title: On nonparametric estimation of density level sets publication-title: Ann. Stat. doi: 10.1214/aos/1069362732 – volume: 25 start-page: 2300 year: 1997 end-page: 2312 ident: CR11 article-title: A plug-in approach to support estimation publication-title: Ann. Stat. doi: 10.1214/aos/1030741073 – volume: 13 start-page: 191 year: 1964 end-page: 210 ident: CR17 article-title: Sur un problème d’estimation géométrique publication-title: Publications de l’Institut de Statistique des Universités de Paris – volume: 55 start-page: 205 issue: 2 year: 1995 end-page: 218 ident: CR19 article-title: Estimation of non-sharp support boundaries publication-title: J. Multivar. Anal. doi: 10.1006/jmva.1995.1075 – volume: 36 start-page: 1453 issue: 4 year: 2008 end-page: 1471 ident: CR20 article-title: Measures with zeros in the inverse of their moment matrix publication-title: Ann. Probab. doi: 10.1214/07-AOP365 – volume: 37 start-page: 2760 issue: 5B year: 2009 end-page: 2782 ident: CR39 article-title: Adaptive Hausdorff estimation of density level sets publication-title: Ann. Stat. doi: 10.1214/08-AOS661 – year: 1972 ident: CR2 publication-title: Real Analysis and Probability – volume: 44 start-page: 255 issue: 1 year: 2016 end-page: 287 ident: CR32 article-title: Adaptation to lowest density regions with application to support recovery publication-title: Ann. Stat. doi: 10.1214/15-AOS1366 – volume: 15 start-page: 1154 issue: 4 year: 2009 end-page: 1178 ident: CR35 article-title: Optimal rates for plug-in estimators of density level sets publication-title: Bernoulli doi: 10.3150/09-BEJ184 – volume: 23 start-page: 502 issue: 2 year: 1995 end-page: 524 ident: CR26 article-title: Asymptotical minimax recovery of sets with smooth boundaries publication-title: Ann. Stat. doi: 10.1214/aos/1176324533 – ident: CR13 – volume: 23 start-page: 109 issue: 99 year: 1994 end-page: 116 ident: CR6 article-title: Asymptotics for the Christoffel function for Jacobi like weights on a ball in $\mathbb {R}\mathbb {R}^{m}$ ℝℝm publication-title: New Zealand Journal of Mathematics – volume: 7 start-page: 26 year: 2014 end-page: 3 ident: CR14 article-title: M. Vianello Multivariate Christoffel functions and hyperinterpolation publication-title: Dolomites Research Notes on Approximation – volume: 99 start-page: 122 issue: 1 year: 1999 end-page: 133 ident: CR46 article-title: Asymptotics of the christoffel functions on a simplex in $\mathbb {R}\mathbb {R}^{d}$ ℝℝd publication-title: Journal of Approximation Theory doi: 10.1006/jath.1998.3312 – volume: 82 start-page: 205 issue: 2 year: 1995 end-page: 239 ident: CR44 article-title: Christoffel functions and Fourier series for multivariate orthogonal polynomials publication-title: Journal of Approximation Theory doi: 10.1006/jath.1995.1075 – volume: 25 start-page: 235 issue: 1 year: 1998 end-page: 242 ident: CR29 article-title: A limit theorem for solutions of inequalities publication-title: Scand. J. Stat. doi: 10.1111/1467-9469.00100 – volume: 33 start-page: 1065 issue: 3 year: 1962 end-page: 1076 ident: CR31 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704472 – volume: 2 start-page: 75 issue: 1 year: 1963 end-page: 84 ident: CR34 article-title: ÜBer die konvexe hülle von n zufällig gewählten Punkten publication-title: Probab. Theory Relat. Fields – volume: 13 start-page: 1443 issue: 7 year: 2001 end-page: 1471 ident: CR38 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput. doi: 10.1162/089976601750264965 – volume: 58 start-page: 1921 issue: 4 year: 2009 end-page: 1946 ident: CR5 article-title: Bergman kernels for weighted polynomials and weighted equilibrium measures of $\mathbb {C}^{n}$ ℂn publication-title: Indiana University Mathematics Journal doi: 10.1512/iumj.2009.58.3644 – volume: 23 start-page: 855 issue: 3 year: 1995 end-page: 881 ident: CR33 article-title: Measuring mass concentrations and estimating density contour clusters, an excess mass approach publication-title: Ann. Stat. doi: 10.1214/aos/1176324626 – ident: CR24 – volume: 65 start-page: 600620 issue: 3 year: 2012 ident: 9673_CR21 publication-title: Can. J. Math. – ident: 9673_CR13 doi: 10.1145/1143844.1143874 – volume: 81 start-page: 283 issue: 1 year: 2000 ident: 9673_CR41 publication-title: Journal d’Analyse Mathématique doi: 10.1007/BF02788993 – volume: 99 start-page: 122 issue: 1 year: 1999 ident: 9673_CR46 publication-title: Journal of Approximation Theory doi: 10.1006/jath.1998.3312 – volume: 37 start-page: 2760 issue: 5B year: 2009 ident: 9673_CR39 publication-title: Ann. Stat. doi: 10.1214/08-AOS661 – volume-title: Real Analysis and Probability year: 1972 ident: 9673_CR2 – volume: 44 start-page: 255 issue: 1 year: 2016 ident: 9673_CR32 publication-title: Ann. Stat. doi: 10.1214/15-AOS1366 – volume: 23 start-page: 855 issue: 3 year: 1995 ident: 9673_CR33 publication-title: Ann. Stat. doi: 10.1214/aos/1176324626 – volume: 12 start-page: 339 issue: 4 year: 1976 ident: 9673_CR8 publication-title: Annales de l’Institut Henri poincaré, Section B – volume: 38 start-page: 480 issue: 3 year: 1980 ident: 9673_CR15 publication-title: SIAM J. Appl. Math. doi: 10.1137/0138038 – ident: 9673_CR24 – volume: 111 start-page: 145 issue: 1 year: 1980 ident: 9673_CR27 publication-title: Ann. Math. doi: 10.2307/1971219 – volume: 48 start-page: 3 issue: 1 year: 1986 ident: 9673_CR30 publication-title: Journal of Approximation Theory doi: 10.1016/0021-9045(86)90016-X – ident: 9673_CR40 – volume: 42 start-page: 255 issue: 1 year: 2014 ident: 9673_CR9 publication-title: Ann. Stat. doi: 10.1214/13-AOS1188 – ident: 9673_CR4 doi: 10.1145/1060590.1060636 – volume: 7 start-page: 26 year: 2014 ident: 9673_CR14 publication-title: Dolomites Research Notes on Approximation – volume: 15 start-page: 1154 issue: 4 year: 2009 ident: 9673_CR35 publication-title: Bernoulli doi: 10.3150/09-BEJ184 – volume: 222 start-page: 1405 issue: 4 year: 2009 ident: 9673_CR18 publication-title: Adv. Math. doi: 10.1016/j.aim.2009.06.010 – volume: 13 start-page: 1443 issue: 7 year: 2001 ident: 9673_CR38 publication-title: Neural Comput. doi: 10.1162/089976601750264965 – volume: 25 start-page: 2300 year: 1997 ident: 9673_CR11 publication-title: Ann. Stat. doi: 10.1214/aos/1030741073 – volume: 3 start-page: 257 year: 1996 ident: 9673_CR45 publication-title: Methods Appl. Anal. doi: 10.4310/MAA.1996.v3.n2.a6 – ident: 9673_CR10 – volume: 2 start-page: 277 issue: 52 year: 1998 ident: 9673_CR7 publication-title: Rendiconti del Circolo Matematico di Palermo – volume: 62 start-page: 26 issue: 1 year: 1955 ident: 9673_CR36 publication-title: Am. Math. Mon. – volume: 27 start-page: 832 issue: 3 year: 1956 ident: 9673_CR37 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177728190 – volume: 23 start-page: 109 issue: 99 year: 1994 ident: 9673_CR6 publication-title: New Zealand Journal of Mathematics – volume: 82 start-page: 205 issue: 2 year: 1995 ident: 9673_CR44 publication-title: Journal of Approximation Theory doi: 10.1006/jath.1995.1075 – volume: 11 start-page: 1 issue: 9 year: 2004 ident: 9673_CR47 publication-title: J. Stat. Softw. – volume: 23 start-page: 502 issue: 2 year: 1995 ident: 9673_CR26 publication-title: Ann. Stat. doi: 10.1214/aos/1176324533 – volume: 25 start-page: 235 issue: 1 year: 1998 ident: 9673_CR29 publication-title: Scand. J. Stat. doi: 10.1111/1467-9469.00100 – volume-title: Orthogonal Polynomials of Several Variables year: 2001 ident: 9673_CR16 doi: 10.1017/CBO9780511565717 – volume: 48 start-page: 7 issue: 1 year: 2006 ident: 9673_CR12 publication-title: Aust. N. Z. J. Stat. doi: 10.1111/j.1467-842X.2006.00421.x – volume: 33 start-page: 1065 issue: 3 year: 1962 ident: 9673_CR31 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704472 – volume: 25 start-page: 948 issue: 3 year: 1997 ident: 9673_CR42 publication-title: Ann. Stat. doi: 10.1214/aos/1069362732 – ident: 9673_CR43 – volume: 36 start-page: 1453 issue: 4 year: 2008 ident: 9673_CR20 publication-title: Ann. Probab. doi: 10.1214/07-AOP365 – ident: 9673_CR23 – ident: 9673_CR25 doi: 10.2139/ssrn.3239041 – volume: 140 start-page: 117 year: 2013 ident: 9673_CR22 publication-title: Acta Math. Hungar. doi: 10.1007/s10474-012-0283-7 – volume: 2 start-page: 75 issue: 1 year: 1963 ident: 9673_CR34 publication-title: Probab. Theory Relat. Fields – volume: 58 start-page: 1921 issue: 4 year: 2009 ident: 9673_CR5 publication-title: Indiana University Mathematics Journal doi: 10.1512/iumj.2009.58.3644 – volume: 55 start-page: 205 issue: 2 year: 1995 ident: 9673_CR19 publication-title: J. Multivar. Anal. doi: 10.1006/jmva.1995.1075 – volume: 13 start-page: 191 year: 1964 ident: 9673_CR17 publication-title: Publications de l’Institut de Statistique des Universités de Paris – volume: 147 start-page: 82 year: 2016 ident: 9673_CR1 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2016.01.003 – volume: 134 start-page: 433 issue: 2 year: 1991 ident: 9673_CR28 publication-title: Ann. Math. doi: 10.2307/2944352 – volume: 28 start-page: 765 issue: 4 year: 2000 ident: 9673_CR3 publication-title: Can. J. Stat. doi: 10.2307/3315915 |
SSID | ssj0009675 |
Score | 2.4295619 |
Snippet | We illustrate the potential applications in machine learning of the Christoffel function, or, more precisely, its empirical counterpart associated with a... We illustrate the potential applications in machine learning of theChristoffel function, or more precisely, its empirical counterpart associatedwith a counting... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1439 |
SubjectTerms | Artificial intelligence Asymptotic methods Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Computer Science Data analysis Empirical analysis Machine Learning Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Outliers (statistics) Statistical methods Visualization |
Title | The empirical Christoffel function with applications in data analysis |
URI | https://link.springer.com/article/10.1007/s10444-019-09673-1 https://www.proquest.com/docview/2231464045 https://hal.science/hal-01511624 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6veiDH1NxOiWIb1pomvTrsZPNoW5PDuZTSdoEB7MON_37vevSbYoKPhXSSwt3Se53yd0vhFyqXEpmeOZo1_ccoUPlyCjKHTcHcB_oXPEIi5P7g6A3FHcjf2SLwmZVtnt1JFmu1GvFbkJgxgSm-AQhdyDmqfsYu8MoHnrJimo3KOl1GUpCNBDZUpmfv_HFHW0-YzLkGtL8djha-pzuHtmxYJEmC-vukw1dNMiuBY7UTstZg2z3l-SrswPSAdNT_TIdl-wf1NIHGKMnFL0YWoLi9itdP7ym44JitiiVlqXkkAy7ncebnmNvS3Ay7vO5Y4zUJlJcMhUGvhGu9HnmGtdoFXO86DYOmYyVl8vQVUYw5XtamzzksTTQJeZHpFa8FvqYUAiRYgUKyj1wXjoyMc98oRigBcCHxuRNwiqlpZmlEscbLSbpigQZFZ2CotNS0Slrkqtln-mCSONP6QuwxVIQObB7yUOKbYBfGAs88QFCrcpUqZ15sxTgDiz-ApBqk1xX5lu9_v2XJ_8TPyVbXjmOcEOmRWrzt3d9Bvhkrs5JPem22wN83j7dd87L4fkJwDTdCQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8UH9QHP1AjitoY33TJunZfj8RApgJPkPDWtGsbSRCJQ_9-r6MDNGri63bdkru297ve3a8I3UglBDE097QfBh7TsfREkijPVwDuI60kTWxzcq8fZUP2OApHrimsqKrdq5RkuVOvNbsxZismbIlPFFMPYp4tAAOJLeQaBq0V1W5U0usSKwnRQOJaZX7-xhd3tPlsiyHXkOa35GjpczoHaM-BRdxaWPcQbehpHe074IjdsizqaLe3JF8tjlAbTI_1y2xcsn9gRx9gjJ5g68WsJbA9fsXryWs8nmJbLYqFYyk5RsNOe3Cfee62BC-nIZ17xghtEkkFkXEUGuaLkOa-8Y2WKbUX3aYxEakMlIh9aRiRYaC1UTFNhYEhKT1BtenrVJ8iDCFSKkFBKgDnpROT0jxkkgBaAHxojGogUimN545K3N5oMeErEmSraA6K5qWiOWmg2-WY2YJI40_pa7DFUtByYGetLrfPAL8QEgXsA4Salam4W3kFB7gDmz8DpNpAd5X5Vq9__-XZ_8Sv0HY26HV596H_dI52gnJO2cOZJqrN3971BWCVubwsp-Ynd3Pc7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfTgoypWqwbxpoubTfZ1LGqpWsWDBW8h2SQo6Fps9fc7s00figpedye7MDPJfMnMfCHkSBulmONFYMM4CoRNdaCyzAShAXCfWKN5hs3JN7dJpyeuHuKHmS7-qtp9nJIc9TQgS1M5PO0bdzrT-CYEVk9guU-S8gD2PwuwHDP0617UmtLuJhXVLkNJ2Blkvm3m5298CU3zj1gYOYM6vyVKq_jTXiMrHjjS1sjS62TOlnWy6kEk9VN0UCfLNxMi1sEGuQA3oPal_1QxgVBPJeCcfaYY0dAqFI9i6Wwimz6VFCtHqfKMJZuk1764P-sE_uaEoOAxHwbOKesyzRXTaRI7EaqYF6ELndU5x0tv85SpXEdGpaF2guk4staZlOfKwZCcb5Fa-VrabUJhu5RrUJCJIJDZzOW8iIVmgBwAKzpnGoSNlSYLTyuOt1s8yykhMipagqJlpWjJGuR4MqY_ItX4U_oQbDERRD7sTqsr8RlgGcaSSHyAUHNsKuln4UAC9IFAIAC1NsjJ2HzT17__cud_4gdk8e68LbuXt9e7ZCmqXArPaZqkNnx7t3sAW4Z6v_LMT3h44Sg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+empirical+Christoffel+function+with+applications+in+data+analysis&rft.jtitle=Advances+in+computational+mathematics&rft.au=Lasserre%2C+Jean+B&rft.au=Pauwels%2C+Edouard&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=45&rft.issue=3&rft.spage=1439&rft.epage=1468&rft_id=info:doi/10.1007%2Fs10444-019-09673-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |