Methanol Steam Reforming over ZrO2-Supported Catalysts in Conventional and Membrane Reactors

Results of a study of the methanol steam reforming (MSR) catalytic process in conventional flow and membrane reactors in the presence of Ni 0.2 –Cu 0.8 and Ru 0.5 –Rh 0.5 catalysts supported on ZrO 2 with a monoclinic, tetragonal, and cubic structure have been described. The cubic structure of zirco...

Full description

Saved in:
Bibliographic Details
Published inPetroleum chemistry Vol. 57; no. 13; pp. 1219 - 1227
Main Authors Lytkina, A. A., Orekhova, N. V., Ermilova, M. M., Petriev, I. S., Baryshev, M. G., Yaroslavtsev, A. B.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.12.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Results of a study of the methanol steam reforming (MSR) catalytic process in conventional flow and membrane reactors in the presence of Ni 0.2 –Cu 0.8 and Ru 0.5 –Rh 0.5 catalysts supported on ZrO 2 with a monoclinic, tetragonal, and cubic structure have been described. The cubic structure of zirconia has been stabilized with ceria. The samples have been characterized by X-ray diffraction analysis, transmission electron microscopy, and the BET method. It has been shown that the catalytic activity of the composites depends on the type of the metals and the structure of the support. It has been found that the Ru–Rh/Ce 0.1 Zr 0.9 O 2–δ catalyst exhibits the highest activity, whereas Cu–Ni/Ce 0.1 Zr 0.9 O 2–δ is the most selective. A comparative study of the MSR process in conventional and membrane reactors with Pd–Ru and modified Pd–Ag membranes has been conducted. The membrane process with a membrane based on a Pd–Ag alloy in the presence of the Ru–Rh/Ce 0.1 Zr 0.9 O 2–δ catalyst provides a ~50% increase in the hydrogen yield.
AbstractList Results of a study of the methanol steam reforming (MSR) catalytic process in conventional flow and membrane reactors in the presence of Ni 0.2 –Cu 0.8 and Ru 0.5 –Rh 0.5 catalysts supported on ZrO 2 with a monoclinic, tetragonal, and cubic structure have been described. The cubic structure of zirconia has been stabilized with ceria. The samples have been characterized by X-ray diffraction analysis, transmission electron microscopy, and the BET method. It has been shown that the catalytic activity of the composites depends on the type of the metals and the structure of the support. It has been found that the Ru–Rh/Ce 0.1 Zr 0.9 O 2–δ catalyst exhibits the highest activity, whereas Cu–Ni/Ce 0.1 Zr 0.9 O 2–δ is the most selective. A comparative study of the MSR process in conventional and membrane reactors with Pd–Ru and modified Pd–Ag membranes has been conducted. The membrane process with a membrane based on a Pd–Ag alloy in the presence of the Ru–Rh/Ce 0.1 Zr 0.9 O 2–δ catalyst provides a ~50% increase in the hydrogen yield.
Results of a study of the methanol steam reforming (MSR) catalytic process in conventional flow and membrane reactors in the presence of Ni0.2–Cu0.8 and Ru0.5–Rh0.5 catalysts supported on ZrO2 with a monoclinic, tetragonal, and cubic structure have been described. The cubic structure of zirconia has been stabilized with ceria. The samples have been characterized by X-ray diffraction analysis, transmission electron microscopy, and the BET method. It has been shown that the catalytic activity of the composites depends on the type of the metals and the structure of the support. It has been found that the Ru–Rh/Ce0.1Zr0.9O2–δ catalyst exhibits the highest activity, whereas Cu–Ni/Ce0.1Zr0.9O2–δ is the most selective. A comparative study of the MSR process in conventional and membrane reactors with Pd–Ru and modified Pd–Ag membranes has been conducted. The membrane process with a membrane based on a Pd–Ag alloy in the presence of the Ru–Rh/Ce0.1Zr0.9O2–δ catalyst provides a ~50% increase in the hydrogen yield.
Author Yaroslavtsev, A. B.
Baryshev, M. G.
Petriev, I. S.
Ermilova, M. M.
Lytkina, A. A.
Orekhova, N. V.
Author_xml – sequence: 1
  givenname: A. A.
  surname: Lytkina
  fullname: Lytkina, A. A.
  email: lytkina@ips.ac.ru
  organization: Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
– sequence: 2
  givenname: N. V.
  surname: Orekhova
  fullname: Orekhova, N. V.
  organization: Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
– sequence: 3
  givenname: M. M.
  surname: Ermilova
  fullname: Ermilova, M. M.
  organization: Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
– sequence: 4
  givenname: I. S.
  surname: Petriev
  fullname: Petriev, I. S.
  organization: Kuban State University
– sequence: 5
  givenname: M. G.
  surname: Baryshev
  fullname: Baryshev, M. G.
  organization: Kuban State University
– sequence: 6
  givenname: A. B.
  surname: Yaroslavtsev
  fullname: Yaroslavtsev, A. B.
  organization: Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
BookMark eNp1kEtLAzEUhYNUsFZ_gLuA69E8JzNLGXxBS8HqRoQhM72pUzrJmKSF_ntTKrgQV_fC-c7h3nOORtZZQOiKkhtKubhdkDKXUghKFeWEKHaCxlRKmeWMlyM0PsjZQT9D5yGsCUmc4GP0MYP4qa3b4EUE3eMXMM73nV1htwOP3_2cZYvtMDgfYYkrHfVmH2LAncWVszuwsXNWb7C2SzyDvvHaQgrRbXQ-XKBTozcBLn_mBL093L9WT9l0_vhc3U2zlkseMwOgqdGlEC01rTINl4oVkHNQBQcq80aIwrRMksIoznlTtJqStEolKJOCT9D1MXfw7msLIdZrt_XprFAzkj4XTJUkUfRItd6F4MHUg-967fc1JfWhxPpPicnDjp6QWLsC_5v8v-kbfvl0sw
CitedBy_id crossref_primary_10_1016_j_ijhydene_2021_11_041
crossref_primary_10_3390_pr10010019
crossref_primary_10_3390_nano10102081
crossref_primary_10_1088_1757_899X_791_1_012058
crossref_primary_10_31857_S2218117223050073
crossref_primary_10_1016_j_rser_2023_114147
crossref_primary_10_1021_acscatal_1c03997
crossref_primary_10_1016_j_enss_2021_12_001
crossref_primary_10_1016_j_rser_2020_110523
crossref_primary_10_1088_1742_6596_1134_1_012045
crossref_primary_10_1134_S1028335819050057
crossref_primary_10_1088_1742_6596_1410_1_012218
crossref_primary_10_1088_1742_6596_1758_1_012032
crossref_primary_10_1134_S2517751623050074
crossref_primary_10_1016_j_rser_2023_113909
crossref_primary_10_1007_s11182_020_02056_w
crossref_primary_10_3390_membranes8040098
crossref_primary_10_1016_j_applthermaleng_2023_121762
crossref_primary_10_1134_S0965544120110158
crossref_primary_10_1088_1742_6596_1758_1_012029
crossref_primary_10_1134_S1070427220110038
crossref_primary_10_1007_s11182_019_01615_0
crossref_primary_10_3390_catal12070747
Cites_doi 10.1016/j.ijhydene.2011.08.117
10.1016/j.apcata.2013.11.025
10.1002/9783527627806
10.1081/SPM-120006115
10.1016/j.apcatb.2010.06.015
10.1021/cr050198b
10.1016/j.ijhydene.2014.11.082
10.1016/j.apcatb.2016.10.041
10.1016/j.ijhydene.2017.01.229
10.1016/j.jiec.2015.01.007
10.1016/0360-3199(86)90139-4
10.3103/S1062873816060241
10.1039/c0cy00012d
10.1016/j.jiec.2014.06.023
10.1021/ie400679h
10.1016/j.apcatb.2015.11.047
10.1016/S0920-5861(02)00230-4
10.1016/j.cattod.2011.03.068
10.1016/j.fuel.2016.11.058
10.1016/j.jpowsour.2015.01.168
10.1016/j.apsusc.2014.09.017
10.1016/j.ijhydene.2015.05.094
10.1016/j.apcatb.2015.02.039
10.1134/S0036023608030029
10.1016/j.ijhydene.2008.12.058
10.1016/j.ijhydene.2017.05.022
10.1016/j.ijhydene.2011.12.060
10.1016/j.ijhydene.2009.07.063
10.1016/j.rser.2013.08.032
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Pleiades Publishing, Ltd. 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1134/S0965544117130072
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1555-6239
EndPage 1227
ExternalDocumentID 10_1134_S0965544117130072
GroupedDBID --K
-58
-5G
-BR
-EM
-Y2
-~C
.VR
06C
06D
0R~
0VY
123
1B1
1N0
29O
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAGR
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EBU
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ITC
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K1G
KOV
L8X
LLZTM
M41
M4Y
MA-
MK~
N2Q
NB0
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9J
P2P
P9N
PF0
PT4
QOR
QOS
R89
R9I
RIG
RNS
ROL
RPZ
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TSG
TUC
TUS
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z5O
Z7V
Z7X
Z7Y
Z7Z
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c353t-feea1fa944c1fc7fb35728e63e783e156b448fc2508f7333b8ca10f7357412543
IEDL.DBID AGYKE
ISSN 0965-5441
IngestDate Fri Sep 13 03:24:53 EDT 2024
Thu Sep 12 18:07:12 EDT 2024
Sat Dec 16 11:59:43 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Ru–Rh catalysts
zirconia
methanol steam reforming
hydrogen production
Ni–Cu catalysts
membrane catalysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-feea1fa944c1fc7fb35728e63e783e156b448fc2508f7333b8ca10f7357412543
PQID 2009642790
PQPubID 2043666
PageCount 9
ParticipantIDs proquest_journals_2009642790
crossref_primary_10_1134_S0965544117130072
springer_journals_10_1134_S0965544117130072
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Petroleum chemistry
PublicationTitleAbbrev Pet. Chem
PublicationYear 2017
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References AmjadU.VitaA.GallettiC.Ind. Eng. Chem. Res.201352154281:CAS:528:DC%2BC3sXotVSmu7g%3D10.1021/ie400679h
PaglieriS. N.WayJ. D.Sep. Purif. Rev.20023111:CAS:528:DC%2BD38XmsFagt78%3D10.1081/SPM-120006115
HuangY. H.WangS. F.TsaiA. P.KameokaS.J. Power Sources20152811381:CAS:528:DC%2BC2MXhslSnur8%3D10.1016/j.jpowsour.2015.01.168
MierczynskiP.VasilevK.MierczynskaA.Appl. Catal., B20161852811:CAS:528:DC%2BC28XhtFGrsA%3D%3D10.1016/j.apcatb.2015.11.047
IulianelliA.RibeirinhaP.MendesA.BasileA.Renew. Sustain. Energy Rev.20142435510.1016/j.rser.2013.08.032
DocekalJ.Int. J. Hydrogen Energy1986117091:CAS:528:DyaL2sXntVCj10.1016/0360-3199(86)90139-4
OlahG. A.GoeppertA.PrakashG. K. S.Beyond Oil and Gas: The Methanol Economy2009WeinheimWiley–VCH10.1002/9783527627806
IulianelliA.LongoT.LiguoriS.Int. J. Hydrogen Energy20093485581:CAS:528:DC%2BD1MXht1WqsrvJ10.1016/j.ijhydene.2009.07.063
MironovaE. Yu.LytkinaA. A.ErmilovaM. M.Int. J. Hydrogen Energy20154035571:CAS:528:DC%2BC2cXitFaiu7bF10.1016/j.ijhydene.2014.11.082
JeongD. W.JangW. J.NaH. S.J. Ind. Eng. Chem.201527351:CAS:528:DC%2BC2MXhtF2rurY%3D10.1016/j.jiec.2015.01.007
LytkinaA. A.ZhilyaevaN. A.ErmilovaM. M.Int. J. Hydrogen Energy20154096771:CAS:528:DC%2BC2MXhtVegurnI10.1016/j.ijhydene.2015.05.094
GrashoffG. J.PilkingtonC. E.CortiC. W.Met. Rev.1983271571:CAS:528:DyaL2cXitl2msQ%3D%3D
SrisiriwatN.TherdthianwongS.TherdthianwongA.Int. J. Hydrogen Energy20093422241:CAS:528:DC%2BD1MXisFWjurk%3D10.1016/j.ijhydene.2008.12.058
SoriaM. A.Mateos-PedreroC.Guerrero-RuizA.Rodríguez-RamosI.Int. J. Hydrogen Energy201136152121:CAS:528:DC%2BC3MXhtlagtb%2FN10.1016/j.ijhydene.2011.08.117
JampaS.JamiesonA. M.ChaisuwanT.h.Int. J. Hydrogen Energy201742150731:CAS:528:DC%2BC2sXotVOrur8%3D10.1016/j.ijhydene.2017.05.022
IulianelliA.BasileA.Catal. Sci. Technol.201113661:CAS:528:DC%2BC3MXmsVCmtL4%3D10.1039/c0cy00012d
Carbajal RamosI. A.MontiniT.LorenzutB.Catal. Today20121809610.1016/j.cattod.2011.03.068
ZhouW.KeY.WangQ.Fuel2017191461:CAS:528:DC%2BC28XhvFegtLrJ10.1016/j.fuel.2016.11.058
MradM.HammoudD.GennequinC.Appl. Catal., A2014471841:CAS:528:DC%2BC2cXht1Gqt7k%3D10.1016/j.apcata.2013.11.025
PojanavaraphanC.SatitthaiU.LuengnaruemitchaiA.GulariE.J. Ind. Eng. Chem.201522411:CAS:528:DC%2BC2cXhtFOrsrbE10.1016/j.jiec.2014.06.023
HeJ.YangZ.ZhangL.Int. J. Hydrogen Energy20174299301:CAS:528:DC%2BC2sXlvVSjs7Y%3D10.1016/j.ijhydene.2017.01.229
SaS.SilvaH.BrandaoL.Appl. Catal., B201099431:CAS:528:DC%2BC3cXhtVGmtL%2FN10.1016/j.apcatb.2010.06.015
PetrievI. S.BolotinS. N.FrolovV. Yu.Bull. Russ. Acad. Sci.: Phys.2016806241:CAS:528:DC%2BC28XhtFOgsLbL10.3103/S1062873816060241
Mateos-PedreroC.SilvaH.TanakaD. A. P.Appl. Catal., B2015174/1756710.1016/j.apcatb.2015.02.039
PaloD. R.DagleA. D.HolladayJ. D.Chem. Rev.200710739921:CAS:528:DC%2BD2sXhtVWisL3J10.1021/cr050198b
HungC. C.ChenS. L.LiaoY. K.Int. J. Hydrogen Energy20123749551:CAS:528:DC%2BC38XjtFSjtLc%3D10.1016/j.ijhydene.2011.12.060
SteninaI. A.VoropaevaE. Yu.VeresovA. G.Russ. J. Inorg. Chem.20085335010.1134/S0036023608030029
AzenhC. S. R.Mateos-PedreroC.QueirosS.Appl. Catal., B201720340010.1016/j.apcatb.2016.10.041
KrumpeltM.KrauseT.CarterJ.Catal. Today20027731:CAS:528:DC%2BD38Xoslyqtbc%3D10.1016/S0920-5861(02)00230-4
ZhangQ.XuL.NingP.Appl. Surf. Sci.20143179551:CAS:528:DC%2BC2cXhsFGlsLjO10.1016/j.apsusc.2014.09.017
G. J. Grashoff (6982_CR23) 1983; 27
J. He (6982_CR18) 2017; 42
C. S. R. Azenh (6982_CR4) 2017; 203
D. W. Jeong (6982_CR21) 2015; 27
Y. H. Huang (6982_CR5) 2015; 281
M. Krumpelt (6982_CR7) 2002; 77
S. Jampa (6982_CR17) 2017; 42
J. Docekal (6982_CR24) 1986; 11
M. A. Soria (6982_CR9) 2011; 36
G. A. Olah (6982_CR2) 2009
C. Mateos-Pedrero (6982_CR3) 2015; 174/175
M. Mrad (6982_CR14) 2014; 471
S. N. Paglieri (6982_CR25) 2002; 31
C. Pojanavaraphan (6982_CR19) 2015; 22
A. Iulianelli (6982_CR8) 2009; 34
Q. Zhang (6982_CR22) 2014; 317
A. Iulianelli (6982_CR27) 2011; 1
E. Yu. Mironova (6982_CR28) 2015; 40
I. A. Stenina (6982_CR29) 2008; 53
C. C. Hung (6982_CR10) 2012; 37
A. Iulianelli (6982_CR26) 2014; 24
I. A. Carbajal Ramos (6982_CR11) 2012; 180
U. Amjad (6982_CR12) 2013; 52
N. Srisiriwat (6982_CR13) 2009; 34
A. A. Lytkina (6982_CR20) 2015; 40
I. S. Petriev (6982_CR30) 2016; 80
D. R. Palo (6982_CR6) 2007; 107
S. Sa (6982_CR1) 2010; 99
W. Zhou (6982_CR16) 2017; 191
P. Mierczynski (6982_CR15) 2016; 185
References_xml – volume: 36
  start-page: 15212
  year: 2011
  ident: 6982_CR9
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.08.117
  contributor:
    fullname: M. A. Soria
– volume: 27
  start-page: 157
  year: 1983
  ident: 6982_CR23
  publication-title: Met. Rev.
  contributor:
    fullname: G. J. Grashoff
– volume: 471
  start-page: 84
  year: 2014
  ident: 6982_CR14
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2013.11.025
  contributor:
    fullname: M. Mrad
– volume-title: Beyond Oil and Gas: The Methanol Economy
  year: 2009
  ident: 6982_CR2
  doi: 10.1002/9783527627806
  contributor:
    fullname: G. A. Olah
– volume: 31
  start-page: 1
  year: 2002
  ident: 6982_CR25
  publication-title: Sep. Purif. Rev.
  doi: 10.1081/SPM-120006115
  contributor:
    fullname: S. N. Paglieri
– volume: 99
  start-page: 43
  year: 2010
  ident: 6982_CR1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2010.06.015
  contributor:
    fullname: S. Sa
– volume: 107
  start-page: 3992
  year: 2007
  ident: 6982_CR6
  publication-title: Chem. Rev.
  doi: 10.1021/cr050198b
  contributor:
    fullname: D. R. Palo
– volume: 40
  start-page: 3557
  year: 2015
  ident: 6982_CR28
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.11.082
  contributor:
    fullname: E. Yu. Mironova
– volume: 203
  start-page: 400
  year: 2017
  ident: 6982_CR4
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.10.041
  contributor:
    fullname: C. S. R. Azenh
– volume: 42
  start-page: 9930
  year: 2017
  ident: 6982_CR18
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.01.229
  contributor:
    fullname: J. He
– volume: 27
  start-page: 35
  year: 2015
  ident: 6982_CR21
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.01.007
  contributor:
    fullname: D. W. Jeong
– volume: 11
  start-page: 709
  year: 1986
  ident: 6982_CR24
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(86)90139-4
  contributor:
    fullname: J. Docekal
– volume: 80
  start-page: 624
  year: 2016
  ident: 6982_CR30
  publication-title: Bull. Russ. Acad. Sci.: Phys.
  doi: 10.3103/S1062873816060241
  contributor:
    fullname: I. S. Petriev
– volume: 1
  start-page: 366
  year: 2011
  ident: 6982_CR27
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c0cy00012d
  contributor:
    fullname: A. Iulianelli
– volume: 22
  start-page: 41
  year: 2015
  ident: 6982_CR19
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2014.06.023
  contributor:
    fullname: C. Pojanavaraphan
– volume: 52
  start-page: 15428
  year: 2013
  ident: 6982_CR12
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie400679h
  contributor:
    fullname: U. Amjad
– volume: 185
  start-page: 281
  year: 2016
  ident: 6982_CR15
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.11.047
  contributor:
    fullname: P. Mierczynski
– volume: 77
  start-page: 3
  year: 2002
  ident: 6982_CR7
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(02)00230-4
  contributor:
    fullname: M. Krumpelt
– volume: 180
  start-page: 96
  year: 2012
  ident: 6982_CR11
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2011.03.068
  contributor:
    fullname: I. A. Carbajal Ramos
– volume: 191
  start-page: 46
  year: 2017
  ident: 6982_CR16
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.11.058
  contributor:
    fullname: W. Zhou
– volume: 281
  start-page: 138
  year: 2015
  ident: 6982_CR5
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.168
  contributor:
    fullname: Y. H. Huang
– volume: 317
  start-page: 955
  year: 2014
  ident: 6982_CR22
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.09.017
  contributor:
    fullname: Q. Zhang
– volume: 40
  start-page: 9677
  year: 2015
  ident: 6982_CR20
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.05.094
  contributor:
    fullname: A. A. Lytkina
– volume: 174/175
  start-page: 67
  year: 2015
  ident: 6982_CR3
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.02.039
  contributor:
    fullname: C. Mateos-Pedrero
– volume: 53
  start-page: 350
  year: 2008
  ident: 6982_CR29
  publication-title: Russ. J. Inorg. Chem.
  doi: 10.1134/S0036023608030029
  contributor:
    fullname: I. A. Stenina
– volume: 34
  start-page: 2224
  year: 2009
  ident: 6982_CR13
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.12.058
  contributor:
    fullname: N. Srisiriwat
– volume: 42
  start-page: 15073
  year: 2017
  ident: 6982_CR17
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.05.022
  contributor:
    fullname: S. Jampa
– volume: 37
  start-page: 4955
  year: 2012
  ident: 6982_CR10
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.12.060
  contributor:
    fullname: C. C. Hung
– volume: 34
  start-page: 8558
  year: 2009
  ident: 6982_CR8
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.07.063
  contributor:
    fullname: A. Iulianelli
– volume: 24
  start-page: 355
  year: 2014
  ident: 6982_CR26
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.08.032
  contributor:
    fullname: A. Iulianelli
SSID ssj0017143
Score 2.205487
Snippet Results of a study of the methanol steam reforming (MSR) catalytic process in conventional flow and membrane reactors in the presence of Ni 0.2 –Cu 0.8 and Ru...
Results of a study of the methanol steam reforming (MSR) catalytic process in conventional flow and membrane reactors in the presence of Ni0.2–Cu0.8 and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1219
SubjectTerms Catalysis
Catalysts
Catalytic activity
Cerium oxides
Chemistry
Chemistry and Materials Science
Copper
Electron microscopy
Industrial Chemistry/Chemical Engineering
Membrane reactors
Methanol
Nickel
Palladium base alloys
Reactors
Reforming
Ruthenium
Silver base alloys
Zirconium dioxide
Title Methanol Steam Reforming over ZrO2-Supported Catalysts in Conventional and Membrane Reactors
URI https://link.springer.com/article/10.1134/S0965544117130072
https://www.proquest.com/docview/2009642790/abstract/
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4QOKgHH6gRRbIHT5oidLfdcgQCEg2YqCRoTMi23U0MUgyUg_56Z_oAFD1wa7LdSdp9zDc7s99HyIWvtZQSFpKtBAQo4IIMx1HSAOjscB9ckhuzffbsTp_fDqxBhpiLo4tgVE4zktFGHcuO8OtHpClBwayqwAyMgG03Z6EqdZbk6jfPd61F7gAVvSOGPdsysEOSy_zTyE9vtISYv7KikbNp78UXAGcRRyHWmIzK89Ate1_rDI4bfMc-2U2wJ63Hk-WAZFSQJ1vNVPItT3ZW2AkPyWtX4bn65J1i0e-YPigEuNBEseyTvkzvTQNFQbFc16dNPAf6nIUz-hbQ5kotO5WBT7tqDGF5oMBILPBzRPrt1lOzYyRiDIbHLBYaWilZ1bLGuVfVntAus4TpKJsp4TAFUaALgZ72AFE5WjDGXMeT1Qo8WoBZ8Mb9MckGk0CdEKo0F7qmuFeRJmcVV3o2-FHUPXElF3alQC7TQRl-xJwbwyhWYXy49vsKpJgO2zBZfjPU1qxBYCVqYOsqHYZl87_GTjd6-4xsm-jko-KWIsmG07k6B4gSuiWYk-1Go1dK5uY3NSPauQ
link.rule.ids 315,786,790,27957,27958,41116,42185,52146
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4YOKAHH6gRRd2DJ02RsttuORKCojxMFBI0Js227CZGKQbKQX-9s30Ioh64Ndl20nYf883Ot_MBnA2VEkLgRLIlxwAFXZDhOFIYCJ0dNkSX5MXVPrt2s89uB9YgOcc9TdnuaUoyWqlj3RF2-aDrlGjFLJPrFAzHdTfL0EFZGcjWrh9bje_kgZb0jkrs2ZahH0iSmX8a-emO5hhzKS0aeZurLeil7xmTTF5Ls9Ar-Z9LJRxX_JBt2EzQJ6nFw2UH1mSQh1w9FX3Lw8ZCfcJdeO5IvbM-fiOa9jsi91JDXGwimvhJniZ3FUPLgmrC7pDU9U7QxzSckpeA1BfY7EQEQ9KRIwzMA4lGYomfPehfNXr1ppHIMRg-tWhoKCmFqUSVMd9UPlcetXjFkTaV3KES40APQz3lI6ZyFKeUeo4vzDJeWoha9Jn7fcgE40AeAJGKcVWVzC-LCqNlT_g2elKtfOIJxu1yAc7TXnHf46obbhStUOb--n0FKKb95iYTcKrVNasYWvEq2rpIu2He_K-xw5XuPoVcs9dpu-2bbusI1iva5UdUlyJkwslMHiNgCb2TZIB-AUpr3RE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN6Ymvg4-Kgaq1X34ElDX7uw9NjU1mptNWqTakxwgd3EaKkRPOivd6aArVUPxhtkYQLsLvPNzrfzEbLvay2lhIlkKQEBCrggw7aVNAA629wHl-TG1T67VqvHT_tmP9E5DVO2e5qSjPc0YJWmICo--zrRIOHFK6xZgupZZYHpGAH_4Fk4wTztbO34pt34TCSgvPeo3J5lGnhDktj80chX1zTGm1Mp0pHnaS6T-_SZY8LJY-E1cgve-1Q5x3-81ApZSlAprcXDaJXMqCBL5uupGFyWLE7ULVwjdx2FK-7DJ4p04AG9VAh9oYkiIZTevpxXDJQLRSKvT-u4QvQWRiF9CGh9guVOZeDTjhpAwB4oMBJL_6yTXrNxXW8ZiUyD4TGTRYZWSpa1rHLulbUntMtMUbGVxZSwmYL40IUQUHuAtWwtGGOu7clyCQ5NQDO4F3-DZIJhoDYJVZoLXVXcK8kKZyVXehZ4WFREcSUXVilHDtIecp7jahzOKIph3Pn2-XIkn_ahk0zMEFU3qxByiSrYOky7ZNz8q7GtP129R-YujprO2Um3vU0WKogERgyYPMlEL69qB3BM5O4mY_UDaHbl7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methanol+Steam+Reforming+over+ZrO2-Supported+Catalysts+in+Conventional+and+Membrane+Reactors&rft.jtitle=Petroleum+chemistry&rft.au=Lytkina%2C+A.+A.&rft.au=Orekhova%2C+N.+V.&rft.au=Ermilova%2C+M.+M.&rft.au=Petriev%2C+I.+S.&rft.date=2017-12-01&rft.pub=Pleiades+Publishing&rft.issn=0965-5441&rft.eissn=1555-6239&rft.volume=57&rft.issue=13&rft.spage=1219&rft.epage=1227&rft_id=info:doi/10.1134%2FS0965544117130072&rft.externalDocID=10_1134_S0965544117130072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-5441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-5441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-5441&client=summon