A comparative study of calibration methods for imbalanced class incremental learning

Deep learning approaches are successful in a wide range of AI problems and in particular for visual recognition tasks. However, there are still open problems among which is the capacity to handle streams of visual information and the management of class imbalance in datasets. Existing research appro...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 14; pp. 19237 - 19256
Main Authors Aggarwal, Umang, Popescu, Adrian, Belouadah, Eden, Hudelot, Celine
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2022
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning approaches are successful in a wide range of AI problems and in particular for visual recognition tasks. However, there are still open problems among which is the capacity to handle streams of visual information and the management of class imbalance in datasets. Existing research approaches these two problems separately while they co-occur in real world applications. Here, we study the problem of learning incrementally from imbalanced datasets. We focus on algorithms which have a constant deep model complexity and use a bounded memory to store exemplars of old classes across incremental states. Since memory is bounded, old classes are learned with fewer images than new classes and an imbalance due to incremental learning is added to the initial dataset imbalance. A score prediction bias in favor of new classes appears and we evaluate a comprehensive set of score calibration methods to reduce it. Evaluation is carried with three datasets, using two dataset imbalance configurations and three bounded memory sizes. Results show that most calibration methods have beneficial effect and that they are most useful for lower bounded memory sizes, which are most interesting in practice. As a secondary contribution, we remove the usual distillation component from the loss function of incremental learning algorithms. We show that simpler vanilla fine tuning is a stronger backbone for imbalanced incremental learning algorithms.
AbstractList Deep learning approaches are successful in a wide range of AI problems and in particular for visual recognition tasks. However, there are still open problems among which is the capacity to handle streams of visual information and the management of class imbalance in datasets. Existing research approaches these two problems separately while they co-occur in real world applications. Here, we study the problem of learning incrementally from imbalanced datasets. We focus on algorithms which have a constant deep model complexity and use a bounded memory to store exemplars of old classes across incremental states. Since memory is bounded, old classes are learned with fewer images than new classes and an imbalance due to incremental learning is added to the initial dataset imbalance. A score prediction bias in favor of new classes appears and we evaluate a comprehensive set of score calibration methods to reduce it. Evaluation is carried with three datasets, using two dataset imbalance configurations and three bounded memory sizes. Results show that most calibration methods have beneficial effect and that they are most useful for lower bounded memory sizes, which are most interesting in practice. As a secondary contribution, we remove the usual distillation component from the loss function of incremental learning algorithms. We show that simpler vanilla fine tuning is a stronger backbone for imbalanced incremental learning algorithms.
Author Aggarwal, Umang
Belouadah, Eden
Hudelot, Celine
Popescu, Adrian
Author_xml – sequence: 1
  givenname: Umang
  orcidid: 0000-0002-3982-9284
  surname: Aggarwal
  fullname: Aggarwal, Umang
  email: umang.aggarwal@cea.fr
  organization: CEA-List, Université Paris-Saclay, Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes
– sequence: 2
  givenname: Adrian
  surname: Popescu
  fullname: Popescu, Adrian
  organization: CEA-List, Université Paris-Saclay
– sequence: 3
  givenname: Eden
  surname: Belouadah
  fullname: Belouadah, Eden
  organization: CEA-List, Université Paris-Saclay
– sequence: 4
  givenname: Celine
  surname: Hudelot
  fullname: Hudelot, Celine
  organization: Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes
BackLink https://hal.science/hal-04342305$$DView record in HAL
BookMark eNp9kM1LxDAQxYMoqKv_gKeAJw_VfDbtcRG_YMGLnsM0ne5W2mRNuoL_vVkrevM0j-H33gzvlBz64JGQC86uOWPmJnHOlCiYYEUWlS70ATnh2sjCGMEPs5YVK4xm_JicpvTGGC-1UCfkZUldGLcQYeo_kKZp137S0FEHQ9_sl8HTEadNaBPtQqT92MAA3mFL3QAp0d67iCP6CQY6IETf-_UZOepgSHj-Mxfk9f7u5faxWD0_PN0uV4WTWk5FBwgtb0TdVoZViI1ydYOVUG3tKuANq6tWCl4zDYAIruGN7krFq9IAmFLJBbmaczcw2G3sR4ifNkBvH5cru98xJZWQTH_wzF7O7DaG9x2myb6FXfT5PSvKMt8XXJlMiZlyMaQUsfuN5czum7Zz0zY3bb-btjqb5GxKGfZrjH_R_7i-AKpbguo
CitedBy_id crossref_primary_10_1371_journal_pdig_0000432
Cites_doi 10.1109/CVPR.2016.90
10.1109/CVPR.2019.00046
10.1109/CVPR.2009.5206848
10.1007/11538059_91
10.1109/CIDM.2011.5949434
10.1007/978-3-319-46487-9_6
10.1109/CVPR.2019.00092
10.1007/978-3-319-46128-1_16
10.1109/LSP.2016.2603342
10.1162/neco.1991.3.4.461
10.1109/CVPR.2017.587
10.1109/CVPR.2017.753
10.1145/775047.775151
10.1007/s11263-015-0816-y
10.1109/TKDE.2008.239
10.1109/FG.2018.00020
10.1109/5326.983933
10.1016/j.neunet.2019.01.012
10.1145/312129.312267
10.1109/TPAMI.2013.83
10.1007/978-3-319-46493-0_37
10.1109/CVPR.2017.323
10.1145/1102351.1102430
10.1016/j.eswa.2016.12.035
10.1109/ICCV.2017.374
10.1016/j.neunet.2018.07.011
10.1007/978-3-030-01258-8_15
10.1613/jair.953
10.3233/IDA-2002-6504
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
Q9U
1XC
VOOES
DOI 10.1007/s11042-020-10485-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI-INFORM Complete
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (ProQuest)
Computing Database
ProQuest Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 19256
ExternalDocumentID oai_HAL_hal_04342305v1
10_1007_s11042_020_10485_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
7SC
7XB
8AL
8FD
8FK
AAYZH
JQ2
L.-
L7M
L~C
L~D
MBDVC
PQEST
PQUKI
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c353t-faead1b29d8708eeb4c9be824d9c8a1b098d321905aaeeacb1b5f641867aa7643
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Tue Oct 15 16:01:30 EDT 2024
Wed Nov 13 03:55:51 EST 2024
Thu Sep 12 19:19:28 EDT 2024
Sat Dec 16 12:07:27 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Incremental learning
Calibration
Class imbalance
Image classification
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-faead1b29d8708eeb4c9be824d9c8a1b098d321905aaeeacb1b5f641867aa7643
ORCID 0000-0002-3982-9284
0000-0003-3849-4133
OpenAccessLink https://hal.science/hal-04342305
PQID 2667082147
PQPubID 54626
PageCount 20
ParticipantIDs hal_primary_oai_HAL_hal_04342305v1
proquest_journals_2667082147
crossref_primary_10_1007_s11042_020_10485_5
springer_journals_10_1007_s11042_020_10485_5
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Wu Y, Chen Y, Wang L, Ye Y, Liu Z, Guo Y, Fu Y (2019) Large scale incremental learning. In: IEEE Conference on computer vision and pattern recognition, CVPR 2019, long beach, CA, USA, June 16-20, 2019, pp 374–382
Li Z, Hoiem D (2016) Learning without forgetting. In: European conference on computer vision, ECCV
PolikarRUpdaLUpdaSSHonavarVGLearn++: an incremental learning algorithm for supervised neural networksIEEE Trans Syst Man Cybern Part C200131449750810.1109/5326.983933https://doi.org/10.1109/5326.983933
Aljundi R, Chakravarty P, Tuytelaars T (2017) Expert gate: Lifelong learning with a network of experts. In: Conference on computer vision and pattern recognition, CVPR
Bengio Y, Mirza M, Goodfellow I, Courville A, Da X (2013) An empirical investigation of catastrophic forgeting in gradient-based neural networks
Wang Y, Ramanan D, Hebert M (2017) Growing a brain: Fine-tuning by increasing model capacity. In: Conference on computer vision and pattern recognition, CVPR
Javed K, Shafait F (2018) Revisiting distillation and incremental classifier learning. arXiv:1807.02802
Hammer B, He H, Martinetz T (2014) Learning and modeling big data. In: ESANN
Niculescu-Mizil A, Caruana R (2005) Predicting good probabilities with supervised learning. In: Machine learning, Proceedings of the twenty-second international conference (ICML 2005), Bonn, Germany, August 7-11, 2005, pp 625–632. https://doi.org/10.1145/1102351.1102430
Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch. In: Advances in neural information processing systems workshops, NIPS-w
Rebuffi S, Kolesnikov A, Sperl G, Lampert CH (2017) icarl: Incremental classifier and representation learning. In: Conference on computer vision and pattern recognition, CVPR
Syed NA, Liu H, Sung KK (1999) Handling concept drifts in incremental learning with support vector machines. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 15-18, 1999, pp 317–321
JapkowiczNStephenSThe class imbalance problem: A systematic studyIntell Data Anal20026542944910.3233/IDA-2002-6504http://content.iospress.com/articles/intelligent-data-analysis/ida00103
Hou S, Pan X, Loy CC, Wang Z, Lin D (2019) Learning a unified classifier incrementally via rebalancing. In: IEEE Conference on computer vision and pattern recognition, CVPR 2019, long beach, CA, USA, June 16-20, 2019, pp 831–839
Maciejewski T, Stefanowski J (2011) Local neighbourhood extension of SMOTE for mining imbalanced data. In: Proceedings of the IEEE symposium on computational intelligence and data mining, CIDM 2011, part of the IEEE symposium series on computational intelligence 2011, April 11-15, 2011, Paris, France, pp 104–111
RichardMDLippmannRPNeural network classifiers estimate bayesian a posteriori probabilitiesNeural Comput19913446148310.1162/neco.1991.3.4.461https://doi.org/10.1162/neco.1991.3.4.461
MensinkTVerbeekJJPerronninFCsurkaGDistance-based image classification: Generalizing to new classes at near-zero costIEEE Trans Pattern Anal Mach Intell201335112624263710.1109/TPAMI.2013.83
RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMSBergACLiFImagenet large scale visual recognition challengeInt J Comput Vis20151153211252342248210.1007/s11263-015-0816-yhttps://doi.org/10.1007/s11263-015-0816-y
Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K, Pascanu R, Hadsell R (2016) Progressive neural networks. arXiv:1606.04671
Castro FM, Marín-Jiménez MJ, Guil N, Schmid C, Alahari K (2018) End-to-end incremental learning. In: Computer vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XII, pp 241–257. https://doi.org/10.1007/978-3-030-01258-8_15
Deng J, Dong W, Socher R, Li L, Li K, Li F (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Computer society conference on computer vision and pattern recognition (CVPR 2009), 20-25 june 2009, miami, florida, USA, pp 248–255
HeHGarciaEALearning from imbalanced dataIEEE Trans Knowl Data Eng20092191263128410.1109/TKDE.2008.239
GuoHLiYShangJMingyunGYuanyueHBingGLearning from class-imbalanced data: Review of methods and applicationsExpert Syst Appl20177322023910.1016/j.eswa.2016.12.035https://doi.org/10.1016/j.eswa.2016.12.035
PlattJProbabilistic outputs for support vector machines and comparisons to regularized likelihood methodsAdv Large Margin Classif19991036174
Han H, Wang W, Mao B (2005) Borderline-smote: A new over-sampling method in imbalanced data sets learning. In: Advances in intelligent computing, international conference on intelligent computing, ICIC 2005, hefei, china, August 23-26, 2005, proceedings, Part I, pp 878–887
Noh H, Araujo A, Sim J, Weyand T, Han B (2017) Large-scale image retrieval with attentive deep local features. In: ICCV, pp 3476–3485. IEEE Computer Society
Guo Y, Zhang L, Hu Y, He X, Gao J (2016) Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In: Computer vision - ECCV 2016 - 14th european conference, amsterdam, the netherlands, October 11-14, 2016, proceedings, Part III, pp 87–102
Jenks GF (1977) Optimal data classification for choropleth maps, vol. 2 University of Kansas Department of Geography Occasional Paper
BudaMMakiAMazurowskiMAA systematic study of the class imbalance problem in convolutional neural networksNeural Netw201810624925910.1016/j.neunet.2018.07.011https://doi.org/10.1016/j.neunet.2018.07.011
Kubat M, Matwin S (1997) Addressing the curse of imbalanced training sets: One-sided selection. In: Proceedings of the fourteenth international conference on machine learning (ICML 1997), Nashville, Tennessee, USA, July 8-12, 1997, pp 179–186
ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: Synthetic minority over-sampling techniqueJ Artif Intell Res20021632135710.1613/jair.953https://doi.org/10.1613/jair.953
Zadrozny B, Elkan C (2002) Transforming classifier scores into accurate multiclass probability estimates. In: Proceedings of the Eighth ACM SIGKDD international conference on knowledge discovery and data mining, July 23-26, 2002, Edmonton, Alberta, Canada, pp 694–699. https://doi.org/10.1145/775047.775151
Guo C, Pleiss G, Sun Y, Weinberger KQ (2017) On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp 1321–1330. http://proceedings.mlr.press/v70/guo17a.html
Hinton GE, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. arXiv:1503.02531
Parisi GI, Kemker R, Part JL, Kanan C, Wermter S (2019) Continual lifelong learning with neural networks: A review. Neural Netw 113
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Conference on computer vision and pattern recognition, CVPR
Bellinger C, Drummond C, Japkowicz N (2016) Beyond the boundaries of SMOTE - A framework for manifold-based synthetically oversampling. In: Machine learning and knowledge discovery in databases-european conference, ECML PKDD 2016, riva del garda, italy, september 19-23, 2016, proceedings, Part I, pp 248–263
Venkatesan R, Venkateswara H, Panchanathan S, Li B (2017) A strategy for an uncompromising incremental learner. arXiv:1705.00744
Cao Q, Shen L, Xie W, Parkhi OM, Zisserman A (2018) Vggface2: a dataset for recognising faces across pose and age. In: 13th IEEE international conference on automatic face & gesture recognition, FG 2018, xi’an, china, may 15-19, 2018, pp 67–74. https://doi.org/10.1109/FG.2018.00020
Krasin I, Duerig T, Alldrin N, Ferrari V, Abu-El-Haija S, Kuznetsova A, Rom H, Uijlings J, Popov S, Kamali S, Malloci M, Pont-Tuset J, Veit A, Belongie S, Gomes V, Gupta A, Sun C, Chechik G, Cai D, Feng Z, Narayanan D, Murphy K (2017) Openimages: A public dataset for large-scale multi-label and multi-class image classification. Dataset available from https://storage.googleapis.com/openimages/web/index.html
ZhangKZhangZLiZQiaoYJoint face detection and alignment using multitask cascaded convolutional networksIEEE Signal Process Lett201623101499150310.1109/LSP.2016.2603342https://doi.org/10.1109/LSP.2016.2603342
MccloskeyMCohenNJCatastrophic interference in connectionist networks: The sequential learning problemPsychol Learn Motiv198924104169
O Russakovsky (10485_CR35) 2015; 115
10485_CR15
R Polikar (10485_CR32) 2001; 31
10485_CR37
10485_CR16
10485_CR38
10485_CR17
10485_CR39
NV Chawla (10485_CR7) 2002; 16
N Japkowicz (10485_CR18) 2002; 6
T Mensink (10485_CR26) 2013; 35
H Guo (10485_CR10) 2017; 73
10485_CR19
M Buda (10485_CR4) 2018; 106
10485_CR40
10485_CR41
10485_CR20
10485_CR21
10485_CR22
10485_CR23
10485_CR24
M Mccloskey (10485_CR25) 1989; 24
10485_CR8
10485_CR9
10485_CR5
10485_CR6
MD Richard (10485_CR34) 1991; 3
10485_CR1
10485_CR27
10485_CR2
10485_CR28
10485_CR3
H He (10485_CR14) 2009; 21
10485_CR29
10485_CR30
10485_CR11
10485_CR33
10485_CR12
10485_CR13
10485_CR36
K Zhang (10485_CR42) 2016; 23
J Platt (10485_CR31) 1999; 10
References_xml – ident: 10485_CR15
  doi: 10.1109/CVPR.2016.90
– ident: 10485_CR30
– ident: 10485_CR40
  doi: 10.1109/CVPR.2019.00046
– ident: 10485_CR8
  doi: 10.1109/CVPR.2009.5206848
– ident: 10485_CR13
  doi: 10.1007/11538059_91
– ident: 10485_CR24
  doi: 10.1109/CIDM.2011.5949434
– ident: 10485_CR11
  doi: 10.1007/978-3-319-46487-9_6
– ident: 10485_CR17
  doi: 10.1109/CVPR.2019.00092
– ident: 10485_CR2
  doi: 10.1007/978-3-319-46128-1_16
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  ident: 10485_CR42
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2016.2603342
  contributor:
    fullname: K Zhang
– volume: 3
  start-page: 461
  issue: 4
  year: 1991
  ident: 10485_CR34
  publication-title: Neural Comput
  doi: 10.1162/neco.1991.3.4.461
  contributor:
    fullname: MD Richard
– ident: 10485_CR33
  doi: 10.1109/CVPR.2017.587
– ident: 10485_CR1
  doi: 10.1109/CVPR.2017.753
– ident: 10485_CR41
  doi: 10.1145/775047.775151
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10485_CR35
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
  contributor:
    fullname: O Russakovsky
– ident: 10485_CR38
– ident: 10485_CR19
– ident: 10485_CR20
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10485_CR14
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.239
  contributor:
    fullname: H He
– ident: 10485_CR22
– ident: 10485_CR5
  doi: 10.1109/FG.2018.00020
– volume: 31
  start-page: 497
  issue: 4
  year: 2001
  ident: 10485_CR32
  publication-title: IEEE Trans Syst Man Cybern Part C
  doi: 10.1109/5326.983933
  contributor:
    fullname: R Polikar
– ident: 10485_CR36
– ident: 10485_CR29
  doi: 10.1016/j.neunet.2019.01.012
– ident: 10485_CR37
  doi: 10.1145/312129.312267
– volume: 35
  start-page: 2624
  issue: 11
  year: 2013
  ident: 10485_CR26
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.83
  contributor:
    fullname: T Mensink
– volume: 10
  start-page: 61
  issue: 3
  year: 1999
  ident: 10485_CR31
  publication-title: Adv Large Margin Classif
  contributor:
    fullname: J Platt
– ident: 10485_CR23
  doi: 10.1007/978-3-319-46493-0_37
– ident: 10485_CR12
– ident: 10485_CR39
  doi: 10.1109/CVPR.2017.323
– ident: 10485_CR27
  doi: 10.1145/1102351.1102430
– ident: 10485_CR9
– volume: 73
  start-page: 220
  year: 2017
  ident: 10485_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.12.035
  contributor:
    fullname: H Guo
– ident: 10485_CR28
  doi: 10.1109/ICCV.2017.374
– ident: 10485_CR21
– ident: 10485_CR3
– volume: 106
  start-page: 249
  year: 2018
  ident: 10485_CR4
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.07.011
  contributor:
    fullname: M Buda
– ident: 10485_CR16
– ident: 10485_CR6
  doi: 10.1007/978-3-030-01258-8_15
– volume: 24
  start-page: 104
  year: 1989
  ident: 10485_CR25
  publication-title: Psychol Learn Motiv
  contributor:
    fullname: M Mccloskey
– volume: 16
  start-page: 321
  year: 2002
  ident: 10485_CR7
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
  contributor:
    fullname: NV Chawla
– volume: 6
  start-page: 429
  issue: 5
  year: 2002
  ident: 10485_CR18
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-2002-6504
  contributor:
    fullname: N Japkowicz
SSID ssj0016524
Score 2.3438427
Snippet Deep learning approaches are successful in a wide range of AI problems and in particular for visual recognition tasks. However, there are still open problems...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 19237
SubjectTerms 1182: Deep Processing of Multimedia Data
Algorithms
Artificial Intelligence
Calibration
Comparative studies
Computer Communication Networks
Computer Science
Computer Vision and Pattern Recognition
Data Structures and Information Theory
Datasets
Deep learning
Distillation
Information management
Machine learning
Multimedia Information Systems
Special Purpose and Application-Based Systems
Visual tasks
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI4YXODAY4AYL0WIG0Q0bdKmJzQhxoQQp03iVuVV2IFtsMHvx27TDZDgVrVVIvlLbMexPxNyHhkXJdKVTORpzoTWOTOlF0zmyvEoqUw4Zls8pv2huH-STyHgNgtplY1OrBS1m1iMkV-BIcnAXHGRXU_fGHaNwtvV0EKjRdZ4nGV4-FK9u8UtQipDU1sVMbCMPBTN1KVzHAtT8PAED0oy-cMwtV4wLfKbz_nrmrSyPr1tshncRtqtcd4hK37cJltNSwYadmibbHzjF9wlgy61S3ZvWlHJ0klJARc8JSMmtG4hPaPgvNLRq8FMR-sdtehV09HY1vFDmDv0l3jeI8Pe7eCmz0IbBWYTmcxZqWG1cBPnDvam8t4ImxuvYuFyqzQ3EcCSgOKKpNYe9LDhRpapQKY7rTPwWPbJ6ngy9geEWiRPtFLHeeoEN0rDwMqBitTKA-K8Qy4aGRbTmi2jWPIio8QLkHhRSbyQHXIGYl78iETX_e5Dge8igcyEkfyEIY8bFIqwvWbFcjF0yGWDzPLz31Me_j_aEVmPsbyhirIck9X5-4c_Aadjbk6rlfUF_HPSSA
  priority: 102
  providerName: ProQuest
Title A comparative study of calibration methods for imbalanced class incremental learning
URI https://link.springer.com/article/10.1007/s11042-020-10485-5
https://www.proquest.com/docview/2667082147
https://hal.science/hal-04342305
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYYu8CBN2I8pghxg0h9JCU9FrSHACGEmDROVZKmsAMbYoPfj921KyA4cGrVRqnqL7GdxP4McOKZzAtllnMRRzEXWsfc5E5wGavM98LChFO0xW3UH4iroRzWedxFsHt1Ilko6jrXzadMElrt4I2SXDagKYkODQfxIEgWRweRLCvZKo-jOfTLTJnf-_hmjRrPFAv5xdH8cTZamJzuBqyVviJL5uBuwpIbb8F6VYeBldNyC1a_kApuw0PCbE3pzQr-WDbJGYJBS2MCgs3rRk8Zeqxs9GIovNG6jFlypdlobOebhvjtsqjE0w4Mup2Hyz4vaydwG8pwxnONQ8Q3QZzhhFTOGWFj41Qgstgq7RsPsQhRW3lSa4fK1_hG5pEgejutz9FN2YXl8WTs9oBZYky0UgdxlAnfKI0dqwz1olYOYfZbcFrJMH2dU2SkNRkySTxFiaeFxFPZgmMU86IhsVv3k5uUnnmC6Ag9-YFdHlYopOWcmqboSuCvUF2lFpxVyNSv__7k_v-aH8BKQDkOxVbLISzP3t7dEXoeM9OGhur22tBMeo_XHbxedG7v7tvF-PsEhgrSug
link.rule.ids 230,315,783,787,888,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246,74363,74630
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB4VOAAH2gJVw6NYVW9gsc7aG-8JpQiU0jSqUJC4WX4t5dAEmpTfz8yulwBSe1vtrmxpPntmPJ75BuBL5kKWq1BxWRYll9aW3FVRclXqILK8NuGUbTEqBlfy4lpdp4DbLKVVtjqxVtRh6ilGfoyGpIfmSsjeyd09p65RdLuaWmgswQpRVeHha-Xr2ejn5dM9QqFSW1udcbSNIpXNNMVzgkpT6PiED1px9cI0Lf2ixMhnXueri9La_py_g43kOLJ-g_R7eBMnm_C2bcrA0h7dhPVnDINbMO4zv-D3ZjWZLJtWDJGhczKhwpom0jOG7iu7_e0o19HHwDz51ex24psIIs6dOkzcbMPV-dn4dMBTIwXuc5XPeWVxvQjXLQPuTh2jk750UXdlKL22wmUITI6qK1PWRtTETjhVFZK47qztoc_yAZYn00n8CMwTfaJXtlsWQQqnLQ6sAypJqyNiLjpw2MrQ3DV8GWbBjEwSNyhxU0vcqA58RjE__UhU14P-0NC7TBI3YaYecMi9FgWTNtjMLJZDB45aZBaf_z3lzv9HO4DVwfjH0Ay_jb7vwlqXih3qmMseLM___I376ILM3ae0zh4Bnx_WmQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dTxQxEJ_IkRh9EEWNx4c2xjdpaG_bve4TOZDLgeRCDCS8Nf1a5ME79E7-fmd2uxyS6Ntmd9MmM9OZaTvz-wF8Ej6KQseaq6qsuHKu4r5OiuvKRCmKJoRTtcW0nFyq0yt9leufFrmssvOJjaOO80Bn5PsYSIYYrqQa7te5LOL8y_jg9icnBim6ac10GmuwPlRlIXqwfng8Pf92f6dQ6kxxawTHOClzC03bSCepTYW2UvhgNNd_ham171Qk-SADfXRp2sSi8Ut4kZNINmq1_gqepNkmbHQEDSyv1014_gBt8DVcjFhYYX2zBliWzWuGWqI9M2mItYTSC4apLLv54anuMaTIAuXY7GYW2tNEnDuzTVy_gcvx8cXRhGdSBR4KXSx57dB2pB9UEVeqScmrUPlkBipWwTjpBSqpQDcmtHMJvbKXXtelItw754aYv7yF3mw-S--ABYJSDNoNqjIq6Y3DgU1Eh-lMQv3LPnzuZGhvW-wMu0JJJolblLhtJG51Hz6imO9_JNjryejM0juhCKdQ6DsccqfTgs2LbWFXptGHvU4zq8__nnLr_6N9gKdoYvbsZPp1G54NqO-hOX7Zgd7y1--0i9nI0r_PZvYHrqDaxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+calibration+methods+for+imbalanced+class+incremental+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Aggarwal%2C+Umang&rft.au=Popescu%2C+Adrian&rft.au=Belouadah%2C+Eden&rft.au=Hudelot%2C+Celine&rft.date=2022-06-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=14&rft.spage=19237&rft.epage=19256&rft_id=info:doi/10.1007%2Fs11042-020-10485-5&rft.externalDocID=10_1007_s11042_020_10485_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon