A comparative study of calibration methods for imbalanced class incremental learning
Deep learning approaches are successful in a wide range of AI problems and in particular for visual recognition tasks. However, there are still open problems among which is the capacity to handle streams of visual information and the management of class imbalance in datasets. Existing research appro...
Saved in:
Published in | Multimedia tools and applications Vol. 81; no. 14; pp. 19237 - 19256 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2022
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning approaches are successful in a wide range of AI problems and in particular for visual recognition tasks. However, there are still open problems among which is the capacity to handle streams of visual information and the management of class imbalance in datasets. Existing research approaches these two problems separately while they co-occur in real world applications. Here, we study the problem of learning incrementally from imbalanced datasets. We focus on algorithms which have a constant deep model complexity and use a bounded memory to store exemplars of old classes across incremental states. Since memory is bounded, old classes are learned with fewer images than new classes and an imbalance due to incremental learning is added to the initial dataset imbalance. A score prediction bias in favor of new classes appears and we evaluate a comprehensive set of score calibration methods to reduce it. Evaluation is carried with three datasets, using two dataset imbalance configurations and three bounded memory sizes. Results show that most calibration methods have beneficial effect and that they are most useful for lower bounded memory sizes, which are most interesting in practice. As a secondary contribution, we remove the usual distillation component from the loss function of incremental learning algorithms. We show that simpler vanilla fine tuning is a stronger backbone for imbalanced incremental learning algorithms. |
---|---|
AbstractList | Deep learning approaches are successful in a wide range of AI problems and in particular for visual recognition tasks. However, there are still open problems among which is the capacity to handle streams of visual information and the management of class imbalance in datasets. Existing research approaches these two problems separately while they co-occur in real world applications. Here, we study the problem of learning incrementally from imbalanced datasets. We focus on algorithms which have a constant deep model complexity and use a bounded memory to store exemplars of old classes across incremental states. Since memory is bounded, old classes are learned with fewer images than new classes and an imbalance due to incremental learning is added to the initial dataset imbalance. A score prediction bias in favor of new classes appears and we evaluate a comprehensive set of score calibration methods to reduce it. Evaluation is carried with three datasets, using two dataset imbalance configurations and three bounded memory sizes. Results show that most calibration methods have beneficial effect and that they are most useful for lower bounded memory sizes, which are most interesting in practice. As a secondary contribution, we remove the usual distillation component from the loss function of incremental learning algorithms. We show that simpler vanilla fine tuning is a stronger backbone for imbalanced incremental learning algorithms. |
Author | Aggarwal, Umang Belouadah, Eden Hudelot, Celine Popescu, Adrian |
Author_xml | – sequence: 1 givenname: Umang orcidid: 0000-0002-3982-9284 surname: Aggarwal fullname: Aggarwal, Umang email: umang.aggarwal@cea.fr organization: CEA-List, Université Paris-Saclay, Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes – sequence: 2 givenname: Adrian surname: Popescu fullname: Popescu, Adrian organization: CEA-List, Université Paris-Saclay – sequence: 3 givenname: Eden surname: Belouadah fullname: Belouadah, Eden organization: CEA-List, Université Paris-Saclay – sequence: 4 givenname: Celine surname: Hudelot fullname: Hudelot, Celine organization: Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes |
BackLink | https://hal.science/hal-04342305$$DView record in HAL |
BookMark | eNp9kM1LxDAQxYMoqKv_gKeAJw_VfDbtcRG_YMGLnsM0ne5W2mRNuoL_vVkrevM0j-H33gzvlBz64JGQC86uOWPmJnHOlCiYYEUWlS70ATnh2sjCGMEPs5YVK4xm_JicpvTGGC-1UCfkZUldGLcQYeo_kKZp137S0FEHQ9_sl8HTEadNaBPtQqT92MAA3mFL3QAp0d67iCP6CQY6IETf-_UZOepgSHj-Mxfk9f7u5faxWD0_PN0uV4WTWk5FBwgtb0TdVoZViI1ydYOVUG3tKuANq6tWCl4zDYAIruGN7krFq9IAmFLJBbmaczcw2G3sR4ifNkBvH5cru98xJZWQTH_wzF7O7DaG9x2myb6FXfT5PSvKMt8XXJlMiZlyMaQUsfuN5czum7Zz0zY3bb-btjqb5GxKGfZrjH_R_7i-AKpbguo |
CitedBy_id | crossref_primary_10_1371_journal_pdig_0000432 |
Cites_doi | 10.1109/CVPR.2016.90 10.1109/CVPR.2019.00046 10.1109/CVPR.2009.5206848 10.1007/11538059_91 10.1109/CIDM.2011.5949434 10.1007/978-3-319-46487-9_6 10.1109/CVPR.2019.00092 10.1007/978-3-319-46128-1_16 10.1109/LSP.2016.2603342 10.1162/neco.1991.3.4.461 10.1109/CVPR.2017.587 10.1109/CVPR.2017.753 10.1145/775047.775151 10.1007/s11263-015-0816-y 10.1109/TKDE.2008.239 10.1109/FG.2018.00020 10.1109/5326.983933 10.1016/j.neunet.2019.01.012 10.1145/312129.312267 10.1109/TPAMI.2013.83 10.1007/978-3-319-46493-0_37 10.1109/CVPR.2017.323 10.1145/1102351.1102430 10.1016/j.eswa.2016.12.035 10.1109/ICCV.2017.374 10.1016/j.neunet.2018.07.011 10.1007/978-3-030-01258-8_15 10.1613/jair.953 10.3233/IDA-2002-6504 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI Q9U 1XC VOOES |
DOI | 10.1007/s11042-020-10485-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI-INFORM Complete ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (ProQuest) Computing Database ProQuest Research Library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 19256 |
ExternalDocumentID | oai_HAL_hal_04342305v1 10_1007_s11042_020_10485_5 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA 7SC 7XB 8AL 8FD 8FK AAYZH JQ2 L.- L7M L~C L~D MBDVC PQEST PQUKI Q9U 1XC VOOES |
ID | FETCH-LOGICAL-c353t-faead1b29d8708eeb4c9be824d9c8a1b098d321905aaeeacb1b5f641867aa7643 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Tue Oct 15 16:01:30 EDT 2024 Wed Nov 13 03:55:51 EST 2024 Thu Sep 12 19:19:28 EDT 2024 Sat Dec 16 12:07:27 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Incremental learning Calibration Class imbalance Image classification |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-faead1b29d8708eeb4c9be824d9c8a1b098d321905aaeeacb1b5f641867aa7643 |
ORCID | 0000-0002-3982-9284 0000-0003-3849-4133 |
OpenAccessLink | https://hal.science/hal-04342305 |
PQID | 2667082147 |
PQPubID | 54626 |
PageCount | 20 |
ParticipantIDs | hal_primary_oai_HAL_hal_04342305v1 proquest_journals_2667082147 crossref_primary_10_1007_s11042_020_10485_5 springer_journals_10_1007_s11042_020_10485_5 |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | Wu Y, Chen Y, Wang L, Ye Y, Liu Z, Guo Y, Fu Y (2019) Large scale incremental learning. In: IEEE Conference on computer vision and pattern recognition, CVPR 2019, long beach, CA, USA, June 16-20, 2019, pp 374–382 Li Z, Hoiem D (2016) Learning without forgetting. In: European conference on computer vision, ECCV PolikarRUpdaLUpdaSSHonavarVGLearn++: an incremental learning algorithm for supervised neural networksIEEE Trans Syst Man Cybern Part C200131449750810.1109/5326.983933https://doi.org/10.1109/5326.983933 Aljundi R, Chakravarty P, Tuytelaars T (2017) Expert gate: Lifelong learning with a network of experts. In: Conference on computer vision and pattern recognition, CVPR Bengio Y, Mirza M, Goodfellow I, Courville A, Da X (2013) An empirical investigation of catastrophic forgeting in gradient-based neural networks Wang Y, Ramanan D, Hebert M (2017) Growing a brain: Fine-tuning by increasing model capacity. In: Conference on computer vision and pattern recognition, CVPR Javed K, Shafait F (2018) Revisiting distillation and incremental classifier learning. arXiv:1807.02802 Hammer B, He H, Martinetz T (2014) Learning and modeling big data. In: ESANN Niculescu-Mizil A, Caruana R (2005) Predicting good probabilities with supervised learning. In: Machine learning, Proceedings of the twenty-second international conference (ICML 2005), Bonn, Germany, August 7-11, 2005, pp 625–632. https://doi.org/10.1145/1102351.1102430 Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch. In: Advances in neural information processing systems workshops, NIPS-w Rebuffi S, Kolesnikov A, Sperl G, Lampert CH (2017) icarl: Incremental classifier and representation learning. In: Conference on computer vision and pattern recognition, CVPR Syed NA, Liu H, Sung KK (1999) Handling concept drifts in incremental learning with support vector machines. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 15-18, 1999, pp 317–321 JapkowiczNStephenSThe class imbalance problem: A systematic studyIntell Data Anal20026542944910.3233/IDA-2002-6504http://content.iospress.com/articles/intelligent-data-analysis/ida00103 Hou S, Pan X, Loy CC, Wang Z, Lin D (2019) Learning a unified classifier incrementally via rebalancing. In: IEEE Conference on computer vision and pattern recognition, CVPR 2019, long beach, CA, USA, June 16-20, 2019, pp 831–839 Maciejewski T, Stefanowski J (2011) Local neighbourhood extension of SMOTE for mining imbalanced data. In: Proceedings of the IEEE symposium on computational intelligence and data mining, CIDM 2011, part of the IEEE symposium series on computational intelligence 2011, April 11-15, 2011, Paris, France, pp 104–111 RichardMDLippmannRPNeural network classifiers estimate bayesian a posteriori probabilitiesNeural Comput19913446148310.1162/neco.1991.3.4.461https://doi.org/10.1162/neco.1991.3.4.461 MensinkTVerbeekJJPerronninFCsurkaGDistance-based image classification: Generalizing to new classes at near-zero costIEEE Trans Pattern Anal Mach Intell201335112624263710.1109/TPAMI.2013.83 RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMSBergACLiFImagenet large scale visual recognition challengeInt J Comput Vis20151153211252342248210.1007/s11263-015-0816-yhttps://doi.org/10.1007/s11263-015-0816-y Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K, Pascanu R, Hadsell R (2016) Progressive neural networks. arXiv:1606.04671 Castro FM, Marín-Jiménez MJ, Guil N, Schmid C, Alahari K (2018) End-to-end incremental learning. In: Computer vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XII, pp 241–257. https://doi.org/10.1007/978-3-030-01258-8_15 Deng J, Dong W, Socher R, Li L, Li K, Li F (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Computer society conference on computer vision and pattern recognition (CVPR 2009), 20-25 june 2009, miami, florida, USA, pp 248–255 HeHGarciaEALearning from imbalanced dataIEEE Trans Knowl Data Eng20092191263128410.1109/TKDE.2008.239 GuoHLiYShangJMingyunGYuanyueHBingGLearning from class-imbalanced data: Review of methods and applicationsExpert Syst Appl20177322023910.1016/j.eswa.2016.12.035https://doi.org/10.1016/j.eswa.2016.12.035 PlattJProbabilistic outputs for support vector machines and comparisons to regularized likelihood methodsAdv Large Margin Classif19991036174 Han H, Wang W, Mao B (2005) Borderline-smote: A new over-sampling method in imbalanced data sets learning. In: Advances in intelligent computing, international conference on intelligent computing, ICIC 2005, hefei, china, August 23-26, 2005, proceedings, Part I, pp 878–887 Noh H, Araujo A, Sim J, Weyand T, Han B (2017) Large-scale image retrieval with attentive deep local features. In: ICCV, pp 3476–3485. IEEE Computer Society Guo Y, Zhang L, Hu Y, He X, Gao J (2016) Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In: Computer vision - ECCV 2016 - 14th european conference, amsterdam, the netherlands, October 11-14, 2016, proceedings, Part III, pp 87–102 Jenks GF (1977) Optimal data classification for choropleth maps, vol. 2 University of Kansas Department of Geography Occasional Paper BudaMMakiAMazurowskiMAA systematic study of the class imbalance problem in convolutional neural networksNeural Netw201810624925910.1016/j.neunet.2018.07.011https://doi.org/10.1016/j.neunet.2018.07.011 Kubat M, Matwin S (1997) Addressing the curse of imbalanced training sets: One-sided selection. In: Proceedings of the fourteenth international conference on machine learning (ICML 1997), Nashville, Tennessee, USA, July 8-12, 1997, pp 179–186 ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: Synthetic minority over-sampling techniqueJ Artif Intell Res20021632135710.1613/jair.953https://doi.org/10.1613/jair.953 Zadrozny B, Elkan C (2002) Transforming classifier scores into accurate multiclass probability estimates. In: Proceedings of the Eighth ACM SIGKDD international conference on knowledge discovery and data mining, July 23-26, 2002, Edmonton, Alberta, Canada, pp 694–699. https://doi.org/10.1145/775047.775151 Guo C, Pleiss G, Sun Y, Weinberger KQ (2017) On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp 1321–1330. http://proceedings.mlr.press/v70/guo17a.html Hinton GE, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. arXiv:1503.02531 Parisi GI, Kemker R, Part JL, Kanan C, Wermter S (2019) Continual lifelong learning with neural networks: A review. Neural Netw 113 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Conference on computer vision and pattern recognition, CVPR Bellinger C, Drummond C, Japkowicz N (2016) Beyond the boundaries of SMOTE - A framework for manifold-based synthetically oversampling. In: Machine learning and knowledge discovery in databases-european conference, ECML PKDD 2016, riva del garda, italy, september 19-23, 2016, proceedings, Part I, pp 248–263 Venkatesan R, Venkateswara H, Panchanathan S, Li B (2017) A strategy for an uncompromising incremental learner. arXiv:1705.00744 Cao Q, Shen L, Xie W, Parkhi OM, Zisserman A (2018) Vggface2: a dataset for recognising faces across pose and age. In: 13th IEEE international conference on automatic face & gesture recognition, FG 2018, xi’an, china, may 15-19, 2018, pp 67–74. https://doi.org/10.1109/FG.2018.00020 Krasin I, Duerig T, Alldrin N, Ferrari V, Abu-El-Haija S, Kuznetsova A, Rom H, Uijlings J, Popov S, Kamali S, Malloci M, Pont-Tuset J, Veit A, Belongie S, Gomes V, Gupta A, Sun C, Chechik G, Cai D, Feng Z, Narayanan D, Murphy K (2017) Openimages: A public dataset for large-scale multi-label and multi-class image classification. Dataset available from https://storage.googleapis.com/openimages/web/index.html ZhangKZhangZLiZQiaoYJoint face detection and alignment using multitask cascaded convolutional networksIEEE Signal Process Lett201623101499150310.1109/LSP.2016.2603342https://doi.org/10.1109/LSP.2016.2603342 MccloskeyMCohenNJCatastrophic interference in connectionist networks: The sequential learning problemPsychol Learn Motiv198924104169 O Russakovsky (10485_CR35) 2015; 115 10485_CR15 R Polikar (10485_CR32) 2001; 31 10485_CR37 10485_CR16 10485_CR38 10485_CR17 10485_CR39 NV Chawla (10485_CR7) 2002; 16 N Japkowicz (10485_CR18) 2002; 6 T Mensink (10485_CR26) 2013; 35 H Guo (10485_CR10) 2017; 73 10485_CR19 M Buda (10485_CR4) 2018; 106 10485_CR40 10485_CR41 10485_CR20 10485_CR21 10485_CR22 10485_CR23 10485_CR24 M Mccloskey (10485_CR25) 1989; 24 10485_CR8 10485_CR9 10485_CR5 10485_CR6 MD Richard (10485_CR34) 1991; 3 10485_CR1 10485_CR27 10485_CR2 10485_CR28 10485_CR3 H He (10485_CR14) 2009; 21 10485_CR29 10485_CR30 10485_CR11 10485_CR33 10485_CR12 10485_CR13 10485_CR36 K Zhang (10485_CR42) 2016; 23 J Platt (10485_CR31) 1999; 10 |
References_xml | – ident: 10485_CR15 doi: 10.1109/CVPR.2016.90 – ident: 10485_CR30 – ident: 10485_CR40 doi: 10.1109/CVPR.2019.00046 – ident: 10485_CR8 doi: 10.1109/CVPR.2009.5206848 – ident: 10485_CR13 doi: 10.1007/11538059_91 – ident: 10485_CR24 doi: 10.1109/CIDM.2011.5949434 – ident: 10485_CR11 doi: 10.1007/978-3-319-46487-9_6 – ident: 10485_CR17 doi: 10.1109/CVPR.2019.00092 – ident: 10485_CR2 doi: 10.1007/978-3-319-46128-1_16 – volume: 23 start-page: 1499 issue: 10 year: 2016 ident: 10485_CR42 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2603342 contributor: fullname: K Zhang – volume: 3 start-page: 461 issue: 4 year: 1991 ident: 10485_CR34 publication-title: Neural Comput doi: 10.1162/neco.1991.3.4.461 contributor: fullname: MD Richard – ident: 10485_CR33 doi: 10.1109/CVPR.2017.587 – ident: 10485_CR1 doi: 10.1109/CVPR.2017.753 – ident: 10485_CR41 doi: 10.1145/775047.775151 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10485_CR35 publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y contributor: fullname: O Russakovsky – ident: 10485_CR38 – ident: 10485_CR19 – ident: 10485_CR20 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10485_CR14 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2008.239 contributor: fullname: H He – ident: 10485_CR22 – ident: 10485_CR5 doi: 10.1109/FG.2018.00020 – volume: 31 start-page: 497 issue: 4 year: 2001 ident: 10485_CR32 publication-title: IEEE Trans Syst Man Cybern Part C doi: 10.1109/5326.983933 contributor: fullname: R Polikar – ident: 10485_CR36 – ident: 10485_CR29 doi: 10.1016/j.neunet.2019.01.012 – ident: 10485_CR37 doi: 10.1145/312129.312267 – volume: 35 start-page: 2624 issue: 11 year: 2013 ident: 10485_CR26 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.83 contributor: fullname: T Mensink – volume: 10 start-page: 61 issue: 3 year: 1999 ident: 10485_CR31 publication-title: Adv Large Margin Classif contributor: fullname: J Platt – ident: 10485_CR23 doi: 10.1007/978-3-319-46493-0_37 – ident: 10485_CR12 – ident: 10485_CR39 doi: 10.1109/CVPR.2017.323 – ident: 10485_CR27 doi: 10.1145/1102351.1102430 – ident: 10485_CR9 – volume: 73 start-page: 220 year: 2017 ident: 10485_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.12.035 contributor: fullname: H Guo – ident: 10485_CR28 doi: 10.1109/ICCV.2017.374 – ident: 10485_CR21 – ident: 10485_CR3 – volume: 106 start-page: 249 year: 2018 ident: 10485_CR4 publication-title: Neural Netw doi: 10.1016/j.neunet.2018.07.011 contributor: fullname: M Buda – ident: 10485_CR16 – ident: 10485_CR6 doi: 10.1007/978-3-030-01258-8_15 – volume: 24 start-page: 104 year: 1989 ident: 10485_CR25 publication-title: Psychol Learn Motiv contributor: fullname: M Mccloskey – volume: 16 start-page: 321 year: 2002 ident: 10485_CR7 publication-title: J Artif Intell Res doi: 10.1613/jair.953 contributor: fullname: NV Chawla – volume: 6 start-page: 429 issue: 5 year: 2002 ident: 10485_CR18 publication-title: Intell Data Anal doi: 10.3233/IDA-2002-6504 contributor: fullname: N Japkowicz |
SSID | ssj0016524 |
Score | 2.3438427 |
Snippet | Deep learning approaches are successful in a wide range of AI problems and in particular for visual recognition tasks. However, there are still open problems... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 19237 |
SubjectTerms | 1182: Deep Processing of Multimedia Data Algorithms Artificial Intelligence Calibration Comparative studies Computer Communication Networks Computer Science Computer Vision and Pattern Recognition Data Structures and Information Theory Datasets Deep learning Distillation Information management Machine learning Multimedia Information Systems Special Purpose and Application-Based Systems Visual tasks |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI4YXODAY4AYL0WIG0Q0bdKmJzQhxoQQp03iVuVV2IFtsMHvx27TDZDgVrVVIvlLbMexPxNyHhkXJdKVTORpzoTWOTOlF0zmyvEoqUw4Zls8pv2huH-STyHgNgtplY1OrBS1m1iMkV-BIcnAXHGRXU_fGHaNwtvV0EKjRdZ4nGV4-FK9u8UtQipDU1sVMbCMPBTN1KVzHAtT8PAED0oy-cMwtV4wLfKbz_nrmrSyPr1tshncRtqtcd4hK37cJltNSwYadmibbHzjF9wlgy61S3ZvWlHJ0klJARc8JSMmtG4hPaPgvNLRq8FMR-sdtehV09HY1vFDmDv0l3jeI8Pe7eCmz0IbBWYTmcxZqWG1cBPnDvam8t4ImxuvYuFyqzQ3EcCSgOKKpNYe9LDhRpapQKY7rTPwWPbJ6ngy9geEWiRPtFLHeeoEN0rDwMqBitTKA-K8Qy4aGRbTmi2jWPIio8QLkHhRSbyQHXIGYl78iETX_e5Dge8igcyEkfyEIY8bFIqwvWbFcjF0yGWDzPLz31Me_j_aEVmPsbyhirIck9X5-4c_Aadjbk6rlfUF_HPSSA priority: 102 providerName: ProQuest |
Title | A comparative study of calibration methods for imbalanced class incremental learning |
URI | https://link.springer.com/article/10.1007/s11042-020-10485-5 https://www.proquest.com/docview/2667082147 https://hal.science/hal-04342305 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYYu8CBN2I8pghxg0h9JCU9FrSHACGEmDROVZKmsAMbYoPfj921KyA4cGrVRqnqL7GdxP4McOKZzAtllnMRRzEXWsfc5E5wGavM98LChFO0xW3UH4iroRzWedxFsHt1Ilko6jrXzadMElrt4I2SXDagKYkODQfxIEgWRweRLCvZKo-jOfTLTJnf-_hmjRrPFAv5xdH8cTZamJzuBqyVviJL5uBuwpIbb8F6VYeBldNyC1a_kApuw0PCbE3pzQr-WDbJGYJBS2MCgs3rRk8Zeqxs9GIovNG6jFlypdlobOebhvjtsqjE0w4Mup2Hyz4vaydwG8pwxnONQ8Q3QZzhhFTOGWFj41Qgstgq7RsPsQhRW3lSa4fK1_hG5pEgejutz9FN2YXl8WTs9oBZYky0UgdxlAnfKI0dqwz1olYOYfZbcFrJMH2dU2SkNRkySTxFiaeFxFPZgmMU86IhsVv3k5uUnnmC6Ag9-YFdHlYopOWcmqboSuCvUF2lFpxVyNSv__7k_v-aH8BKQDkOxVbLISzP3t7dEXoeM9OGhur22tBMeo_XHbxedG7v7tvF-PsEhgrSug |
link.rule.ids | 230,315,783,787,888,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246,74363,74630 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB4VOAAH2gJVw6NYVW9gsc7aG-8JpQiU0jSqUJC4WX4t5dAEmpTfz8yulwBSe1vtrmxpPntmPJ75BuBL5kKWq1BxWRYll9aW3FVRclXqILK8NuGUbTEqBlfy4lpdp4DbLKVVtjqxVtRh6ilGfoyGpIfmSsjeyd09p65RdLuaWmgswQpRVeHha-Xr2ejn5dM9QqFSW1udcbSNIpXNNMVzgkpT6PiED1px9cI0Lf2ixMhnXueri9La_py_g43kOLJ-g_R7eBMnm_C2bcrA0h7dhPVnDINbMO4zv-D3ZjWZLJtWDJGhczKhwpom0jOG7iu7_e0o19HHwDz51ex24psIIs6dOkzcbMPV-dn4dMBTIwXuc5XPeWVxvQjXLQPuTh2jk750UXdlKL22wmUITI6qK1PWRtTETjhVFZK47qztoc_yAZYn00n8CMwTfaJXtlsWQQqnLQ6sAypJqyNiLjpw2MrQ3DV8GWbBjEwSNyhxU0vcqA58RjE__UhU14P-0NC7TBI3YaYecMi9FgWTNtjMLJZDB45aZBaf_z3lzv9HO4DVwfjH0Ay_jb7vwlqXih3qmMseLM___I376ILM3ae0zh4Bnx_WmQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dTxQxEJ_IkRh9EEWNx4c2xjdpaG_bve4TOZDLgeRCDCS8Nf1a5ME79E7-fmd2uxyS6Ntmd9MmM9OZaTvz-wF8Ej6KQseaq6qsuHKu4r5OiuvKRCmKJoRTtcW0nFyq0yt9leufFrmssvOJjaOO80Bn5PsYSIYYrqQa7te5LOL8y_jg9icnBim6ac10GmuwPlRlIXqwfng8Pf92f6dQ6kxxawTHOClzC03bSCepTYW2UvhgNNd_ham171Qk-SADfXRp2sSi8Ut4kZNINmq1_gqepNkmbHQEDSyv1014_gBt8DVcjFhYYX2zBliWzWuGWqI9M2mItYTSC4apLLv54anuMaTIAuXY7GYW2tNEnDuzTVy_gcvx8cXRhGdSBR4KXSx57dB2pB9UEVeqScmrUPlkBipWwTjpBSqpQDcmtHMJvbKXXtelItw754aYv7yF3mw-S--ABYJSDNoNqjIq6Y3DgU1Eh-lMQv3LPnzuZGhvW-wMu0JJJolblLhtJG51Hz6imO9_JNjryejM0juhCKdQ6DsccqfTgs2LbWFXptGHvU4zq8__nnLr_6N9gKdoYvbsZPp1G54NqO-hOX7Zgd7y1--0i9nI0r_PZvYHrqDaxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+calibration+methods+for+imbalanced+class+incremental+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Aggarwal%2C+Umang&rft.au=Popescu%2C+Adrian&rft.au=Belouadah%2C+Eden&rft.au=Hudelot%2C+Celine&rft.date=2022-06-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=14&rft.spage=19237&rft.epage=19256&rft_id=info:doi/10.1007%2Fs11042-020-10485-5&rft.externalDocID=10_1007_s11042_020_10485_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |