A machine-learning framework for rapid adaptive digital-twin based fire-propagation simulation in complex environments
The objective of this work is to illustrate how to algorithmically integrate Machine-Learning Algorithms (MLA’s) with multistage/multicomponent fire spread models. In order to tangibly illustrate this process, this work develops a framework for a specific model problem combining: (I) a meshless disc...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 363; pp. 112907 - 19 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.05.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of this work is to illustrate how to algorithmically integrate Machine-Learning Algorithms (MLA’s) with multistage/multicomponent fire spread models. In order to tangibly illustrate this process, this work develops a framework for a specific model problem combining: (I) a meshless discrete element “submodel” that tracks the trajectory of airborne hot particles/embers, subject to prevailing wind velocities and updrafts, (II) a topographical “submodel” of the ambient combustible material whereby airborne embers that make contact are allowed to start secondary fires (if conditions are appropriate), combined with ground-based surface spread and burn rates for generating new embers, new updrafts (due to hot air), etc., and (III) a Machine-Learning Algorithm to rapidly ascertain the multi-submodel system parameters that force the overall model to match observations. The submodels compute both ground and airborne hot-ember driven fire propagation, as well as subsequent distribution of debris/soot, which is important for air-quality assessment. The overall framework is designed for use in digital twin technology, which refers to an adaptive digital replica of a physical system, whereby model updates are continuously in near real-time. This necessitates a rapid simulation paradigm that can easily interface with telecommunications, cameras and sensors. The presented framework is designed to run quickly on laptops and hand held devices, with the guiding principle being to make it potentially useful for first-responders in real-time. |
---|---|
AbstractList | The objective of this work is to illustrate how to algorithmically integrate Machine-Learning Algorithms (MLA’s) with multistage/multicomponent fire spread models. In order to tangibly illustrate this process, this work develops a framework for a specific model problem combining: (I) a meshless discrete element “submodel” that tracks the trajectory of airborne hot particles/embers, subject to prevailing wind velocities and updrafts, (II) a topographical “submodel” of the ambient combustible material whereby airborne embers that make contact are allowed to start secondary fires (if conditions are appropriate), combined with ground-based surface spread and burn rates for generating new embers, new updrafts (due to hot air), etc., and (III) a Machine-Learning Algorithm to rapidly ascertain the multi-submodel system parameters that force the overall model to match observations. The submodels compute both ground and airborne hot-ember driven fire propagation, as well as subsequent distribution of debris/soot, which is important for air-quality assessment. The overall framework is designed for use in digital twin technology, which refers to an adaptive digital replica of a physical system, whereby model updates are continuously in near real-time. This necessitates a rapid simulation paradigm that can easily interface with telecommunications, cameras and sensors. The presented framework is designed to run quickly on laptops and hand held devices, with the guiding principle being to make it potentially useful for first-responders in real-time. |
ArticleNumber | 112907 |
Author | Zohdi, T.I. |
Author_xml | – sequence: 1 givenname: T.I. surname: Zohdi fullname: Zohdi, T.I. email: zohdi@berkeley.edu organization: Department of Mechanical Engineering 6195 Etcheverry Hall, University of California, Berkeley, CA, 94720-1740, USA |
BookMark | eNp9kE1PxCAQhjlo4ucP8EbiuStQ2tJ4MsavxMSLnsksna6sLVRgV_33sqknD8tlmOR9ZibPCTlw3iEhF5wtOOP11XphRlgIJnLPRcuaA3LMmKyKRonqiJzEuGb5KS6OyfaGjmDercNiQAjOuhXtA4z45cMH7X2gASbbUehgSnaLtLMrm2Ao0pd1dAkRO9rbgMUU_AQrSNY7Gu24GeZvDhk_TgN-U3RbG7wb0aV4Rg57GCKe_9VT8nZ_93r7WDy_PDzd3jwXpqzKVPR1r6RS9dIAtlgzJZeiUo2oTCcYKOzYUsmaNVxJ3piyFaLhPZZGCl5yCW15Si7nufm8zw3GpNd-E1xeqYWsRFXWivP9qZKxWratyCk-p0zwMQbs9RTsCOFHc6Z34vVaZ_F6J17P4jPT_GNMtrczkwLYYS95PZOY9WwtBh2NRWewy7ZN0p23e-hfw3mhcA |
CitedBy_id | crossref_primary_10_3390_systems11070375 crossref_primary_10_1016_j_cma_2023_116571 crossref_primary_10_1038_s41598_022_12845_7 crossref_primary_10_1109_COMST_2022_3208773 crossref_primary_10_3390_aerospace11040267 crossref_primary_10_1109_ACCESS_2023_3278267 crossref_primary_10_1007_s00466_020_01875_5 crossref_primary_10_1016_j_ress_2022_108874 crossref_primary_10_1109_ACCESS_2022_3222805 crossref_primary_10_1016_j_aei_2024_102592 crossref_primary_10_1016_j_cma_2022_115316 crossref_primary_10_1016_j_cma_2022_115315 crossref_primary_10_1007_s00466_024_02575_0 crossref_primary_10_1016_j_knosys_2023_111198 crossref_primary_10_3390_mi15010102 crossref_primary_10_1016_j_cma_2023_116220 crossref_primary_10_1016_j_firesaf_2023_103871 crossref_primary_10_1016_j_cma_2021_114121 crossref_primary_10_1007_s00170_022_09632_z crossref_primary_10_1016_j_cma_2024_117250 crossref_primary_10_1016_j_cma_2023_116261 crossref_primary_10_1115_1_4049861 crossref_primary_10_1016_j_cad_2020_102948 crossref_primary_10_1007_s00466_023_02421_9 crossref_primary_10_1016_j_cma_2020_113446 crossref_primary_10_3390_app14051801 crossref_primary_10_1007_s00707_023_03507_4 crossref_primary_10_1007_s10462_024_10781_8 crossref_primary_10_1186_s42162_022_00222_7 crossref_primary_10_1109_TNSE_2024_3390797 crossref_primary_10_1007_s00158_022_03425_4 crossref_primary_10_1016_j_envsoft_2024_106253 crossref_primary_10_1115_1_4052390 crossref_primary_10_1109_ACCESS_2021_3131391 crossref_primary_10_1007_s00466_022_02212_8 crossref_primary_10_1007_s00466_022_02216_4 crossref_primary_10_1016_j_seta_2021_101897 crossref_primary_10_1016_j_aei_2025_103117 crossref_primary_10_1007_s00466_022_02152_3 crossref_primary_10_1007_s11831_021_09609_3 crossref_primary_10_1016_j_cma_2023_116107 crossref_primary_10_1007_s40430_024_04973_0 crossref_primary_10_1016_j_ijengsci_2024_104120 crossref_primary_10_1109_ACCESS_2024_3519704 crossref_primary_10_1016_j_cma_2023_116444 crossref_primary_10_3390_app14219873 crossref_primary_10_1007_s00466_021_02035_z crossref_primary_10_3389_fbuil_2022_959475 crossref_primary_10_3390_inventions7010015 crossref_primary_10_1115_1_4056817 |
Cites_doi | 10.1002/aic.690180219 10.1002/prep.200900101 10.1109/ENERGYCON.2014.6850494 10.1016/j.ijengsci.2017.05.007 10.1007/s00466-011-0617-2 10.1016/0010-2180(70)90006-4 10.1016/S0082-0784(65)80244-2 10.1016/j.jhin.2005.01.016 10.1016/0379-7112(93)90020-Q 10.1098/rsta.2003.1179 10.1002/cnm.1193 10.1016/j.firesaf.2017.04.040 10.1080/03052159908941385 10.1108/02644409810200668 10.1016/S0045-7825(97)00215-6 10.1016/j.cma.2007.06.005 10.1007/BF02384146 10.1016/j.ijsolstr.2012.02.032 10.1007/s40571-014-0013-8 10.1016/j.proci.2016.09.014 10.1016/j.cma.2006.10.040 10.1260/0266351991494830 10.1103/PhysRevE.80.011128 10.1016/S0045-7949(02)00027-5 10.1016/j.combustflame.2007.04.008 10.1146/annurev-environ-102017-025912 10.1016/S0045-7825(99)00380-1 10.3801/IAFSS.FSS.2-129 10.1023/A:1013484932749 10.1016/j.injury.2004.06.016 10.1007/s10694-010-0181-x 10.1366/000370202760355073 10.1115/1.4005093 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV May 1, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV May 1, 2020 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cma.2020.112907 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EndPage | 19 |
ExternalDocumentID | 10_1016_j_cma_2020_112907 S0045782520300906 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AAYOK AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW VH1 VOH WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c353t-f6f84886bcae9e6084b258725cd20a8ed0b8460718417c392271fe3c421314a93 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Sun Jul 13 05:13:43 EDT 2025 Fri Jul 25 03:39:36 EDT 2025 Tue Jul 01 04:06:09 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Sun May 18 06:24:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Digital-twin Fire-propagation Ember flow Machine-learning algorithms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-f6f84886bcae9e6084b258725cd20a8ed0b8460718417c392271fe3c421314a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2430064992 |
PQPubID | 2045269 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2452536811 proquest_journals_2430064992 crossref_primary_10_1016_j_cma_2020_112907 crossref_citationtrail_10_1016_j_cma_2020_112907 elsevier_sciencedirect_doi_10_1016_j_cma_2020_112907 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 2020-05-00 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Onate, Celigueta, Idelsohn, Salazar, Surez (b53) 2011; 48 Labra, Onate (b51) 2009; 25 Zohdi (b29) 2018 Lee, Hellman (b24) 1970; 15 Rojek, Labra, Su, Onate (b54) 2012; 49 Tarifa, del Notario, Moreno (b21) 1965; 10 Pagni (b43) 1993; 21 V.K. Wingerden, I. Hesby, R. Eckhoff, Ignition of dust layers by mechanical sparks, in: Proceedings of 7th Global Congress on Process Safety, Chicago, Ill, 2011. National Interagency Fire Center. Goldberg, Deb (b65) 2000; 186 Zohdi, Cabalo (b33) 2017; 118 Holland (b56) 1975 Papadrakakis, Lagaros, Tsompanakis (b63) 1999; 14 Rowntree, Stokes (b17) 1994 Gill, Wright (b67) 1995 Rallis, Mangaya (b28) 2002; 38 Kanemitsu (b40) 2005; 60 Goldberg (b57) 1989 Schlichtling (b31) 1979 Avci, Wriggers (b55) 2012; 79 B. (b1) 2018 Fernandez-Pello (b8) 2017; 91 Urban, Zak, Song, Fernandez-Pello (b19) 2017; 36 Onate, Idelsohn, Celigueta, Rossi (b52) 2008; 197 Papadrakakis, Lagaros, Thierauf, Cai (b61) 1998; 15 Zohdi (b71) 2019 Maranghides, Mell (b45) 2009 . Y. Gregoire, M.-O. Sturtzer, B. A. Khasainov, B. Veyssiere, Investigation of the behavior of solid particles dispersed by high explosive, in: Int. Annu. Conf. ICT 40th, 35/1-35/12, 2009. Zohdi (b46) 2017 Stokes (b16) 1990; 10 M. Gilbert, California Department of Forestry and Fire Protection Investigation Report: Incident number 07- CA-MVU-10432 Sardoy, Consalvi, Poterie, Loraud, Fernandez-Pello (b23) 2007; 150 Eshkol, Katz (b39) 2005; 36 I. Ramljak, M. Majstrovic, S. Sutloviec, Statistical Analysis of Particles of Conductor Clashing, Dubrovnic May 13–16, 2014. Zohdi (b6) 2018 Lagaros, Papadrakakis, Kokossalakis (b60) 2002; 80 Mills, Hang (b27) 1984; 20 National Fire Protection Association (b13) 2014 H.R. Baum, B.J. McCaffrey, Fire induced flow field-theory and experiments fire safety science, in: Wakamatsu et al. (Eds.), Proceedings of the Second International Symposium, Washington DC, 1989, pp. 129–148. Zohdi (b50) 2003; 361 Tse, Fernandez-Pello (b26) 2006 Hoover, Hoover (b34) 2009; 80 Cabalo, Schmidt, Wendt, Scheeline (b37) 2002; 56 Andrews (b69) 2018 Onwubiko (b59) 2000 Tarifa, Del Notario, Moreno, Villa (b22) 1967 Papadrakakis, Tsompanakis, Lagaros (b64) 1999; 31 T.I. Zohdi, UC Berkeley Fire Research Group Zohdi (b48) 2007; 196 McKinzie (b5) 2018 Kudryashova, Vorozhtsov, Muravlev, Akhmadeev, Pavlenko, Titov (b36) 2011; 36 M.A. Finney, FARSITE: Fire area simulator-model development and evaluation. Research paper, RMRS-RP-4-Revised, United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2004. Whitaker (b32) 1972; 18 Ahrens (b11) 2013 Luenberger (b66) 1974 Chow (b30) 1980 Zohdi (b49) 2014; 1 Davis (b58) 1991 Goodrick, Linn, Brambilla (b70) 2018 T. Blackburn, Conductor clashing characteristics of overhead lines, in: Proceedings of Electrical Energy Conferences, 1985, p. 202. Hadden, Scott, Lautenberger, Fernandez-Pello (b18) 2011; 47 Zohdi (b47) 2018 Pleasance, Hart (b15) 1977 Russell, Benner, Wischkaemper (b41) 2012; 43 Prestemon, Hawbaker, Bowden, Carpenter, Brooks, Abt, Sutphen, Scranton (b10) 2013 Papadrakakis, Lagaros, Tsompanakis (b62) 1998; 156 Karter (b2) 2014 US Fire Administration. Grant, Hamins, Bryner, Jones, Koepke (b4) 2015 E. Koo, P. Pagni, R. Linn, Using FIRETEC to describe firebrand behavior in wildfires, in: Fire Mater. 2007 San Francisco, CA, 2007. B., Kesavan, Sickenberger, Diviacchi, Maldonado-Figueroa, McGrady, Stafford (b38) 2016 Chow (10.1016/j.cma.2020.112907_b30) 1980 Davis (10.1016/j.cma.2020.112907_b58) 1991 Karter (10.1016/j.cma.2020.112907_b2) 2014 Rowntree (10.1016/j.cma.2020.112907_b17) 1994 Tarifa (10.1016/j.cma.2020.112907_b22) 1967 Mills (10.1016/j.cma.2020.112907_b27) 1984; 20 Rallis (10.1016/j.cma.2020.112907_b28) 2002; 38 Lagaros (10.1016/j.cma.2020.112907_b60) 2002; 80 Zohdi (10.1016/j.cma.2020.112907_b50) 2003; 361 Ahrens (10.1016/j.cma.2020.112907_b11) 2013 Luenberger (10.1016/j.cma.2020.112907_b66) 1974 Onate (10.1016/j.cma.2020.112907_b53) 2011; 48 Onate (10.1016/j.cma.2020.112907_b52) 2008; 197 10.1016/j.cma.2020.112907_b20 Papadrakakis (10.1016/j.cma.2020.112907_b64) 1999; 31 Onwubiko (10.1016/j.cma.2020.112907_b59) 2000 Rojek (10.1016/j.cma.2020.112907_b54) 2012; 49 10.1016/j.cma.2020.112907_b25 10.1016/j.cma.2020.112907_b68 Zohdi (10.1016/j.cma.2020.112907_b29) 2018 Kanemitsu (10.1016/j.cma.2020.112907_b40) 2005; 60 Hadden (10.1016/j.cma.2020.112907_b18) 2011; 47 Labra (10.1016/j.cma.2020.112907_b51) 2009; 25 Zohdi (10.1016/j.cma.2020.112907_b48) 2007; 196 Zohdi (10.1016/j.cma.2020.112907_b33) 2017; 118 Tarifa (10.1016/j.cma.2020.112907_b21) 1965; 10 Papadrakakis (10.1016/j.cma.2020.112907_b63) 1999; 14 Kudryashova (10.1016/j.cma.2020.112907_b36) 2011; 36 Sardoy (10.1016/j.cma.2020.112907_b23) 2007; 150 Papadrakakis (10.1016/j.cma.2020.112907_b62) 1998; 156 Prestemon (10.1016/j.cma.2020.112907_b10) 2013 Tse (10.1016/j.cma.2020.112907_b26) 2006 McKinzie (10.1016/j.cma.2020.112907_b5) 2018 Eshkol (10.1016/j.cma.2020.112907_b39) 2005; 36 10.1016/j.cma.2020.112907_b14 10.1016/j.cma.2020.112907_b12 Whitaker (10.1016/j.cma.2020.112907_b32) 1972; 18 Lee (10.1016/j.cma.2020.112907_b24) 1970; 15 National Fire Protection Association (10.1016/j.cma.2020.112907_b13) 2014 Cabalo (10.1016/j.cma.2020.112907_b37) 2002; 56 Holland (10.1016/j.cma.2020.112907_b56) 1975 B. (10.1016/j.cma.2020.112907_b38) 2016 Pagni (10.1016/j.cma.2020.112907_b43) 1993; 21 Papadrakakis (10.1016/j.cma.2020.112907_b61) 1998; 15 Fernandez-Pello (10.1016/j.cma.2020.112907_b8) 2017; 91 Zohdi (10.1016/j.cma.2020.112907_b47) 2018 Avci (10.1016/j.cma.2020.112907_b55) 2012; 79 Zohdi (10.1016/j.cma.2020.112907_b6) 2018 Hoover (10.1016/j.cma.2020.112907_b34) 2009; 80 Goldberg (10.1016/j.cma.2020.112907_b57) 1989 Gill (10.1016/j.cma.2020.112907_b67) 1995 Schlichtling (10.1016/j.cma.2020.112907_b31) 1979 10.1016/j.cma.2020.112907_b42 10.1016/j.cma.2020.112907_b44 Pleasance (10.1016/j.cma.2020.112907_b15) 1977 Zohdi (10.1016/j.cma.2020.112907_b71) 2019 Zohdi (10.1016/j.cma.2020.112907_b46) 2017 Zohdi (10.1016/j.cma.2020.112907_b49) 2014; 1 Grant (10.1016/j.cma.2020.112907_b4) 2015 Goldberg (10.1016/j.cma.2020.112907_b65) 2000; 186 Urban (10.1016/j.cma.2020.112907_b19) 2017; 36 10.1016/j.cma.2020.112907_b7 Goodrick (10.1016/j.cma.2020.112907_b70) 2018 B. (10.1016/j.cma.2020.112907_b1) 2018 10.1016/j.cma.2020.112907_b9 Stokes (10.1016/j.cma.2020.112907_b16) 1990; 10 10.1016/j.cma.2020.112907_b3 10.1016/j.cma.2020.112907_b35 Russell (10.1016/j.cma.2020.112907_b41) 2012; 43 Maranghides (10.1016/j.cma.2020.112907_b45) 2009 Andrews (10.1016/j.cma.2020.112907_b69) 2018 |
References_xml | – volume: 15 start-page: 265 year: 1970 end-page: 274 ident: b24 article-title: Firebrand trajectory study using an empirical velocity dependent burning law publication-title: Combust. Flame – volume: 36 start-page: 271 year: 2005 end-page: 274 ident: b39 article-title: Injuries from biologic material of suicide bombers publication-title: Injury – year: 2000 ident: b59 article-title: Introduction to Engineering Design Optimization – reference: M.A. Finney, FARSITE: Fire area simulator-model development and evaluation. Research paper, RMRS-RP-4-Revised, United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2004. – start-page: 333 year: 2006 end-page: 356 ident: b26 article-title: On the flight paths of metal particles and embers generated by powerlines in high winds - a potential source of wildland fires publication-title: Fire Saf. J. – volume: 79 year: 2012 ident: b55 article-title: A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows publication-title: J. Appl. Mech. – year: 1974 ident: b66 article-title: Introduction to Linear & Nonlinear Programming – year: 2018 ident: b69 article-title: The Rothermel Surface Fire Spread Model and Associated Developments: A Comprehensive Explanation – volume: 47 start-page: 341 year: 2011 end-page: 355 ident: b18 article-title: Ignition of combustible fuel beds by hot particles: an experimental and theoretical study publication-title: Fire Technol. – volume: 80 year: 2009 ident: b34 article-title: Tensor temperature and shock-wave stability in a strong two-dimensional shock wave publication-title: Phys. Rev. E (3) – year: 2013 ident: b11 article-title: Brush, Grass and Forest Fires – volume: 10 start-page: 188 year: 1990 end-page: 194 ident: b16 article-title: Fire ignition by copper particles of controlled size publication-title: Aust. J. Electr. Electron. Eng. – reference: H.R. Baum, B.J. McCaffrey, Fire induced flow field-theory and experiments fire safety science, in: Wakamatsu et al. (Eds.), Proceedings of the Second International Symposium, Washington DC, 1989, pp. 129–148. – volume: 196 start-page: 3927 year: 2007 end-page: 3950 ident: b48 article-title: Computation of strongly coupled multifield interaction in particle-fluid systems publication-title: Comput. Methods Appl. Mech. Engrg. – reference: I. Ramljak, M. Majstrovic, S. Sutloviec, Statistical Analysis of Particles of Conductor Clashing, Dubrovnic May 13–16, 2014. – reference: T. Blackburn, Conductor clashing characteristics of overhead lines, in: Proceedings of Electrical Energy Conferences, 1985, p. 202. – year: 2016 ident: b38 article-title: Assessing the Biological Threat Posed By Suicide Bombers – year: 2018 ident: b29 article-title: Modeling the spatio-thermal fire hazard distribution of incandescent material ejecta in manufacturing publication-title: Comput. Mech. – volume: 60 start-page: 304 year: 2005 end-page: 306 ident: b40 article-title: Does incineration turn infectious waste aseptic? publication-title: J. Hosp. Infect. – volume: 156 start-page: 309 year: 1998 end-page: 335 ident: b62 article-title: Structural optimization using evolution strategies and neutral networks publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2018 ident: b6 article-title: Multiple UAVs for mapping: a review of basic modeling, simulation and applications publication-title: Annu. Rev. Environ. Resour. – volume: 18 start-page: 361 year: 1972 end-page: 371 ident: b32 article-title: Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and flow in packed beds and tube bundles publication-title: AIChE J. – volume: 25 start-page: 837 year: 2009 end-page: 849 ident: b51 article-title: High-density sphere packing for discrete element method simulations publication-title: Commun. Numer. Methods. Eng. – start-page: 117 year: 1994 end-page: 123 ident: b17 article-title: Fire ignition of aluminum particles of controlled size publication-title: J. Electr. Electron. Eng. – volume: 14 start-page: 211 year: 1999 end-page: 223 ident: b63 article-title: Optimization of large-scale 3D trusses using evolution strategies and neural networks publication-title: Int. J. Space Struct. – year: 2015 ident: b4 article-title: Research roadmap for smart fire fighting. nist special publication 1191 – volume: 36 start-page: 524 year: 2011 end-page: 530 ident: b36 article-title: Physicomathematical modeling of explosive dispersion of liquid and powders publication-title: Propellants Explos. Pyrotech. – year: 1975 ident: b56 article-title: Adaptation in Natural & Artificial Systems – year: 2018 ident: b1 article-title: Fire loss in the United States during 2017. National Fire Protection Association, Fire Analysis and Research Division – volume: 20 start-page: 5 year: 1984 end-page: 14 ident: b27 article-title: Trajectories of sparks from arcing aluminum power cables publication-title: Fire Technol. – volume: 186 start-page: 121 year: 2000 end-page: 124 ident: b65 article-title: Special issue on genetic algorithms publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2018 ident: b47 article-title: Electrodynamic machine-learning-enhanced fault-tolerance of robotic free-form printing of complex mixtures publication-title: Comput. Mech. – volume: 48 start-page: 307 year: 2011 end-page: 318 ident: b53 article-title: Possibilities of the particle finite element method for fluid-soil–structure interaction problems publication-title: Comput. Mech. – year: 1991 ident: b58 article-title: Handbook of Genetic Algorithms – year: 2018 ident: b70 article-title: Comparing HIGRAD/FIRETEC to QUIC-fire, a coupled fire-atmosphere model for operational applications – volume: 10 start-page: 1021 year: 1965 end-page: 1037 ident: b21 article-title: On the flight paths and lifetimes of burning particles of wood publication-title: Proc. Combust. Inst. – reference: National Interagency Fire Center. – year: 2014 ident: b2 article-title: Fire loss in the United States during 2013. National Fire Protection Association, Fire Analysis and Research Division – reference: E. Koo, P. Pagni, R. Linn, Using FIRETEC to describe firebrand behavior in wildfires, in: Fire Mater. 2007 San Francisco, CA, 2007. – year: 2013 ident: b10 article-title: Wildfire Ignitions: A Review of the Science and Recommendations for Empirical Modeling – volume: 36 start-page: 3211 year: 2017 end-page: 3218 ident: b19 article-title: Smolder spot ignition of natural fuels by a hot metal particle publication-title: Proc. Combust. Inst. – volume: 21 start-page: 331 year: 1993 end-page: 339 ident: b43 article-title: Causes of the 20 October 1991 Oakland-hills conflagration publication-title: Fire Saf. J. – reference: M. Gilbert, California Department of Forestry and Fire Protection Investigation Report: Incident number 07- CA-MVU-10432, – reference: V.K. Wingerden, I. Hesby, R. Eckhoff, Ignition of dust layers by mechanical sparks, in: Proceedings of 7th Global Congress on Process Safety, Chicago, Ill, 2011. – volume: 91 start-page: 2 year: 2017 end-page: 10 ident: b8 article-title: Wildland fire spot ignition by sparks and firebrands publication-title: Fire Saf. J. – year: 1967 ident: b22 article-title: Transport and Combustion of FirebrandS – volume: 56 start-page: 1346 year: 2002 end-page: 1353 ident: b37 article-title: Spectrometric system for characterizing drop and powder trajectories and chemistry in reactive flows publication-title: Appl. Spect. – volume: 1 start-page: 27 year: 2014 end-page: 45 ident: b49 article-title: Embedded electromagnetically sensitive particle motion in functionalized fluids publication-title: Comput. Part. Mech. – year: 2019 ident: b71 article-title: The game of drones: rapid agent-based machine-learning models for multi-UAV path planning publication-title: Comput. Mech. – year: 1979 ident: b31 article-title: Boundary-Layer Theory – reference: Y. Gregoire, M.-O. Sturtzer, B. A. Khasainov, B. Veyssiere, Investigation of the behavior of solid particles dispersed by high explosive, in: Int. Annu. Conf. ICT 40th, 35/1-35/12, 2009. – year: 1989 ident: b57 article-title: Genetic Algorithms in Search, Optimization & Machine Learning – volume: 38 start-page: 81 year: 2002 end-page: 92 ident: b28 article-title: Ignition of veld grass by hot aluminum particles ejected from clashing overhead transmission lines publication-title: Fire Technol. – year: 1977 ident: b15 article-title: An Examination of Particles from Conductors Clashing As Possible Source of Bushfire Ignition – reference: US Fire Administration. – year: 2009 ident: b45 article-title: A Case Study of a Community Affected By the Witch and Guejito Fires – year: 2017 ident: b46 article-title: Dynamic thermomechanical modeling and simulation of the design of rapid free-form 3D printing processes with evolutionary machine learning publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 361 start-page: 1021 year: 2003 end-page: 1043 ident: b50 article-title: Genetic design of solids possessing a random-particulate microstructure publication-title: Philos. Trans. R. Soc. Math. Phys. Eng. Sci. – reference: T.I. Zohdi, UC Berkeley Fire Research Group, – volume: 80 start-page: 571 year: 2002 end-page: 589 ident: b60 article-title: Structural optimization using evolutionary algorithms publication-title: Comput. Struct. – volume: 197 start-page: 1777 year: 2008 end-page: 1800 ident: b52 article-title: Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 43 year: 2012 ident: b41 article-title: Distribution feeder caused wildfires: mechanisms and prevention publication-title: Prot. Relay Eng. – volume: 49 start-page: 1497 year: 2012 end-page: 1517 ident: b54 article-title: Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters publication-title: Int. J. Solids Struct. – year: 1980 ident: b30 article-title: An Introduction to Computational Fluid Dynamics – volume: 150 start-page: 151 year: 2007 end-page: 169 ident: b23 article-title: Modeling transport and combustion of firebrands from burning trees publication-title: Combust. Flame – volume: 118 start-page: 28 year: 2017 end-page: 39 ident: b33 article-title: On the thermomechanics and footprint of fragmenting blasts publication-title: Internat. J. Engrg. Sci. – reference: . – volume: 15 start-page: 12 year: 1998 end-page: 34 ident: b61 article-title: Advanced solution methods in structural optimisation using evolution strategies publication-title: Eng. Comput. J. – year: 2014 ident: b13 article-title: NFPA 51B: Standard for fire prevention during welding, cutting and other hot work – year: 1995 ident: b67 article-title: Practical Optimization – volume: 31 start-page: 515 year: 1999 end-page: 540 ident: b64 article-title: Structural shape optimisation using evolution strategies publication-title: Eng. Optim. – year: 2018 ident: b5 article-title: The future of artificial intelligence in firefighting. fire engineering – volume: 18 start-page: 361 year: 1972 ident: 10.1016/j.cma.2020.112907_b32 article-title: Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and flow in packed beds and tube bundles publication-title: AIChE J. doi: 10.1002/aic.690180219 – volume: 36 start-page: 524 year: 2011 ident: 10.1016/j.cma.2020.112907_b36 article-title: Physicomathematical modeling of explosive dispersion of liquid and powders publication-title: Propellants Explos. Pyrotech. doi: 10.1002/prep.200900101 – ident: 10.1016/j.cma.2020.112907_b42 – ident: 10.1016/j.cma.2020.112907_b12 doi: 10.1109/ENERGYCON.2014.6850494 – ident: 10.1016/j.cma.2020.112907_b9 – year: 1979 ident: 10.1016/j.cma.2020.112907_b31 – year: 1974 ident: 10.1016/j.cma.2020.112907_b66 – volume: 118 start-page: 28 year: 2017 ident: 10.1016/j.cma.2020.112907_b33 article-title: On the thermomechanics and footprint of fragmenting blasts publication-title: Internat. J. Engrg. Sci. doi: 10.1016/j.ijengsci.2017.05.007 – volume: 48 start-page: 307 year: 2011 ident: 10.1016/j.cma.2020.112907_b53 article-title: Possibilities of the particle finite element method for fluid-soil–structure interaction problems publication-title: Comput. Mech. doi: 10.1007/s00466-011-0617-2 – year: 2018 ident: 10.1016/j.cma.2020.112907_b1 – volume: 15 start-page: 265 year: 1970 ident: 10.1016/j.cma.2020.112907_b24 article-title: Firebrand trajectory study using an empirical velocity dependent burning law publication-title: Combust. Flame doi: 10.1016/0010-2180(70)90006-4 – year: 2018 ident: 10.1016/j.cma.2020.112907_b5 – year: 1989 ident: 10.1016/j.cma.2020.112907_b57 – year: 2000 ident: 10.1016/j.cma.2020.112907_b59 – volume: 10 start-page: 1021 year: 1965 ident: 10.1016/j.cma.2020.112907_b21 article-title: On the flight paths and lifetimes of burning particles of wood publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(65)80244-2 – volume: 60 start-page: 304 issue: 4 year: 2005 ident: 10.1016/j.cma.2020.112907_b40 article-title: Does incineration turn infectious waste aseptic? publication-title: J. Hosp. Infect. doi: 10.1016/j.jhin.2005.01.016 – volume: 21 start-page: 331 year: 1993 ident: 10.1016/j.cma.2020.112907_b43 article-title: Causes of the 20 October 1991 Oakland-hills conflagration publication-title: Fire Saf. J. doi: 10.1016/0379-7112(93)90020-Q – year: 2013 ident: 10.1016/j.cma.2020.112907_b11 – volume: 361 start-page: 1021 issue: 1806 year: 2003 ident: 10.1016/j.cma.2020.112907_b50 article-title: Genetic design of solids possessing a random-particulate microstructure publication-title: Philos. Trans. R. Soc. Math. Phys. Eng. Sci. doi: 10.1098/rsta.2003.1179 – volume: 25 start-page: 837 issue: 7 year: 2009 ident: 10.1016/j.cma.2020.112907_b51 article-title: High-density sphere packing for discrete element method simulations publication-title: Commun. Numer. Methods. Eng. doi: 10.1002/cnm.1193 – volume: 91 start-page: 2 year: 2017 ident: 10.1016/j.cma.2020.112907_b8 article-title: Wildland fire spot ignition by sparks and firebrands publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2017.04.040 – ident: 10.1016/j.cma.2020.112907_b14 – year: 2018 ident: 10.1016/j.cma.2020.112907_b47 article-title: Electrodynamic machine-learning-enhanced fault-tolerance of robotic free-form printing of complex mixtures publication-title: Comput. Mech. – volume: 31 start-page: 515 year: 1999 ident: 10.1016/j.cma.2020.112907_b64 article-title: Structural shape optimisation using evolution strategies publication-title: Eng. Optim. doi: 10.1080/03052159908941385 – year: 2013 ident: 10.1016/j.cma.2020.112907_b10 – ident: 10.1016/j.cma.2020.112907_b35 – volume: 15 start-page: 12 issue: 1 year: 1998 ident: 10.1016/j.cma.2020.112907_b61 article-title: Advanced solution methods in structural optimisation using evolution strategies publication-title: Eng. Comput. J. doi: 10.1108/02644409810200668 – volume: 156 start-page: 309 issue: 1 year: 1998 ident: 10.1016/j.cma.2020.112907_b62 article-title: Structural optimization using evolution strategies and neutral networks publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(97)00215-6 – year: 2009 ident: 10.1016/j.cma.2020.112907_b45 – year: 1975 ident: 10.1016/j.cma.2020.112907_b56 – volume: 197 start-page: 1777 issue: 19–20 year: 2008 ident: 10.1016/j.cma.2020.112907_b52 article-title: Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2007.06.005 – year: 1991 ident: 10.1016/j.cma.2020.112907_b58 – year: 2018 ident: 10.1016/j.cma.2020.112907_b70 – year: 2018 ident: 10.1016/j.cma.2020.112907_b29 article-title: Modeling the spatio-thermal fire hazard distribution of incandescent material ejecta in manufacturing publication-title: Comput. Mech. – volume: 20 start-page: 5 year: 1984 ident: 10.1016/j.cma.2020.112907_b27 article-title: Trajectories of sparks from arcing aluminum power cables publication-title: Fire Technol. doi: 10.1007/BF02384146 – volume: 49 start-page: 1497 year: 2012 ident: 10.1016/j.cma.2020.112907_b54 article-title: Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2012.02.032 – volume: 1 start-page: 27 year: 2014 ident: 10.1016/j.cma.2020.112907_b49 article-title: Embedded electromagnetically sensitive particle motion in functionalized fluids publication-title: Comput. Part. Mech. doi: 10.1007/s40571-014-0013-8 – volume: 36 start-page: 3211 issue: 2 year: 2017 ident: 10.1016/j.cma.2020.112907_b19 article-title: Smolder spot ignition of natural fuels by a hot metal particle publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2016.09.014 – year: 2018 ident: 10.1016/j.cma.2020.112907_b69 – volume: 196 start-page: 3927 year: 2007 ident: 10.1016/j.cma.2020.112907_b48 article-title: Computation of strongly coupled multifield interaction in particle-fluid systems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2006.10.040 – year: 2016 ident: 10.1016/j.cma.2020.112907_b38 – volume: 43 year: 2012 ident: 10.1016/j.cma.2020.112907_b41 article-title: Distribution feeder caused wildfires: mechanisms and prevention publication-title: Prot. Relay Eng. – ident: 10.1016/j.cma.2020.112907_b7 – start-page: 117 year: 1994 ident: 10.1016/j.cma.2020.112907_b17 article-title: Fire ignition of aluminum particles of controlled size publication-title: J. Electr. Electron. Eng. – volume: 14 start-page: 211 issue: 3 year: 1999 ident: 10.1016/j.cma.2020.112907_b63 article-title: Optimization of large-scale 3D trusses using evolution strategies and neural networks publication-title: Int. J. Space Struct. doi: 10.1260/0266351991494830 – ident: 10.1016/j.cma.2020.112907_b3 – volume: 80 year: 2009 ident: 10.1016/j.cma.2020.112907_b34 article-title: Tensor temperature and shock-wave stability in a strong two-dimensional shock wave publication-title: Phys. Rev. E (3) doi: 10.1103/PhysRevE.80.011128 – volume: 80 start-page: 571 year: 2002 ident: 10.1016/j.cma.2020.112907_b60 article-title: Structural optimization using evolutionary algorithms publication-title: Comput. Struct. doi: 10.1016/S0045-7949(02)00027-5 – year: 1980 ident: 10.1016/j.cma.2020.112907_b30 – year: 1995 ident: 10.1016/j.cma.2020.112907_b67 – ident: 10.1016/j.cma.2020.112907_b25 – volume: 150 start-page: 151 year: 2007 ident: 10.1016/j.cma.2020.112907_b23 article-title: Modeling transport and combustion of firebrands from burning trees publication-title: Combust. Flame doi: 10.1016/j.combustflame.2007.04.008 – year: 2014 ident: 10.1016/j.cma.2020.112907_b2 – year: 1977 ident: 10.1016/j.cma.2020.112907_b15 – ident: 10.1016/j.cma.2020.112907_b44 – year: 2018 ident: 10.1016/j.cma.2020.112907_b6 article-title: Multiple UAVs for mapping: a review of basic modeling, simulation and applications publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev-environ-102017-025912 – volume: 10 start-page: 188 year: 1990 ident: 10.1016/j.cma.2020.112907_b16 article-title: Fire ignition by copper particles of controlled size publication-title: Aust. J. Electr. Electron. Eng. – volume: 186 start-page: 121 issue: 2–4 year: 2000 ident: 10.1016/j.cma.2020.112907_b65 article-title: Special issue on genetic algorithms publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(99)00380-1 – ident: 10.1016/j.cma.2020.112907_b20 doi: 10.3801/IAFSS.FSS.2-129 – year: 2019 ident: 10.1016/j.cma.2020.112907_b71 article-title: The game of drones: rapid agent-based machine-learning models for multi-UAV path planning publication-title: Comput. Mech. – start-page: 333 year: 2006 ident: 10.1016/j.cma.2020.112907_b26 article-title: On the flight paths of metal particles and embers generated by powerlines in high winds - a potential source of wildland fires publication-title: Fire Saf. J. – volume: 38 start-page: 81 year: 2002 ident: 10.1016/j.cma.2020.112907_b28 article-title: Ignition of veld grass by hot aluminum particles ejected from clashing overhead transmission lines publication-title: Fire Technol. doi: 10.1023/A:1013484932749 – ident: 10.1016/j.cma.2020.112907_b68 – volume: 36 start-page: 271 year: 2005 ident: 10.1016/j.cma.2020.112907_b39 article-title: Injuries from biologic material of suicide bombers publication-title: Injury doi: 10.1016/j.injury.2004.06.016 – year: 2014 ident: 10.1016/j.cma.2020.112907_b13 – volume: 47 start-page: 341 year: 2011 ident: 10.1016/j.cma.2020.112907_b18 article-title: Ignition of combustible fuel beds by hot particles: an experimental and theoretical study publication-title: Fire Technol. doi: 10.1007/s10694-010-0181-x – year: 1967 ident: 10.1016/j.cma.2020.112907_b22 – volume: 56 start-page: 1346 year: 2002 ident: 10.1016/j.cma.2020.112907_b37 article-title: Spectrometric system for characterizing drop and powder trajectories and chemistry in reactive flows publication-title: Appl. Spect. doi: 10.1366/000370202760355073 – year: 2015 ident: 10.1016/j.cma.2020.112907_b4 – year: 2017 ident: 10.1016/j.cma.2020.112907_b46 article-title: Dynamic thermomechanical modeling and simulation of the design of rapid free-form 3D printing processes with evolutionary machine learning publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 79 year: 2012 ident: 10.1016/j.cma.2020.112907_b55 article-title: A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows publication-title: J. Appl. Mech. doi: 10.1115/1.4005093 |
SSID | ssj0000812 |
Score | 2.5238035 |
Snippet | The objective of this work is to illustrate how to algorithmically integrate Machine-Learning Algorithms (MLA’s) with multistage/multicomponent fire spread... The objective of this work is to illustrate how to algorithmically integrate Machine-Learning Algorithms (MLA's) with multistage/multicomponent fire spread... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112907 |
SubjectTerms | Adaptive systems Algorithms Computer simulation Digital twins Digital-twin Ember flow Fire-propagation Flammability Machine learning Machine-learning algorithms Meshless methods Outdoor air quality Propagation Quality assessment Real time Soot Upgrading Vertical air currents Wind speed |
Title | A machine-learning framework for rapid adaptive digital-twin based fire-propagation simulation in complex environments |
URI | https://dx.doi.org/10.1016/j.cma.2020.112907 https://www.proquest.com/docview/2430064992 https://www.proquest.com/docview/2452536811 |
Volume | 363 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz34WBXf5OBJiLZ5NMlxEZdV0ZOCt9BNUqnourjr4-Rvd5KmvlAPnkrbhIbM5JsP-s0MQru5VAyAz8JJAwjk3peklFIS4TLmqopnNvYhOzsv-pf85EpcTaHDNhcmyCoT9jeYHtE6PTlIu3kwquuQ48tDLXZBwU8zHctucy6Dl--_fsg8IOQ1FcO5IGF0-2czarxsLD1EYyKNDh1lf45N31A6hp7eIppPnBF3m2UtoSk_7KCFxB9xOp3jDpr7VFxwGT118V1USnqSWkNc46qVYmHgqvihHNUOl64cBczDrr4OHUTI5Lke4hDdHK5gcwgsC1AnWhCP67vU7wvDoKhH9y_4c7bcCrrsHV0c9knqskAsE2xCqqJScIqLgS299kWm-IAKJamwjmal8i4bAEcBJqJ4Li3QKSrzyjPLac5yXmq2iqaH90O_hjDPPHfSU-AIllsvFVyUrHSudShBoNdR1u6vsakEeeiEcWtardmNAZOYYBLTmGQd7b1PGTX1N_4azFujmS9OZCA-_DVtqzWwSSd4bChnga5pTX95Lahghcrzjf99dBPNhrtGO7mFpicPj34b-M1ksBMdeAfNdI9P--dvTu34mA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5dD20FLaqlCgPvRUySJ-xfZxhYqW155A4mZlbQelKsuK3T5-PmPHobQqHHqKFNuK5fF880mZ-QbgE9NGIPB59DSEQBljQxutNVWhEqFtZeVzH7KzaT25kMeX6nINDoZamJRWWbC_x_SM1uXNfjnN_UXXpRpfmbTYFcd7Wtkku72e1KnUCNbHRyeT6W9ANqwXDZeKpgXDz82c5uWz-hDPtTQ2NZX9d3j6C6hz9DncgJeFNpJxv7PXsBbnm_CqUEhSHHS5CS8e6Au-gR9jcp2TJSMt3SGuSDtkYxGkq-S2WXSBNKFZJNgjobtKTUTo6mc3JynABdLi-VDcFgJPNiJZdtel5RfBSTklPf4iDwvm3sLF4ZfzgwktjRaoF0qsaFu3Bh25nvkm2lhXRs64MporH3jVmBiqGdIUJCNGMu2RUXHN2ii85Eww2VjxDkbzm3l8D0RWUQYdOdIEL33UBh9Gt5ZZm1QI7BZUw_k6X1TIUzOMb25IN_vq0CQumcT1JtmCz_dLFr0Ex1OT5WA098c9chginlq2MxjYFSdeOi5FYmzW8keGFVeiNoxt_99HP8KzyfnZqTs9mp58gOdppE-l3IHR6vZ73EW6s5rtlet8B9Sm-0k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine-learning+framework+for+rapid+adaptive+digital-twin+based+fire-propagation+simulation+in+complex+environments&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Zohdi%2C+T.I.&rft.date=2020-05-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.volume=363&rft_id=info:doi/10.1016%2Fj.cma.2020.112907&rft.externalDocID=S0045782520300906 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |