Survey on recent trends towards generalized differential and boomerang uniformities

Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block and stream ciphers and cryptographic hash functions. The discovery of differential cryptanalysis is generally attributed to Biham and Shamir in the late 1980s, who published several attacks against various bl...

Full description

Saved in:
Bibliographic Details
Published inCryptography and communications Vol. 14; no. 4; pp. 691 - 735
Main Authors Mesnager, Sihem, Mandal, Bimal, Msahli, Mounira
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2022
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block and stream ciphers and cryptographic hash functions. The discovery of differential cryptanalysis is generally attributed to Biham and Shamir in the late 1980s, who published several attacks against various block ciphers and hash functions, including a theoretical weakness in the Data Encryption Standard (DES). Boomerang cryptanalysis is a method for the cryptanalysis of block ciphers based on differential cryptanalysis. It was invented by Wagner in (FSE, LNCS 1636 , 156–170, 1999) and has allowed new avenues of attack for many ciphers previously deemed safe from differential cryptanalysis. Differential and boomerang uniformities are crucial tools to handle and analyze vectorial functions (designated by substitution boxes, or briefly S-boxes in the context of symmetric cryptography) to resist differential and boomerang attacks, respectively. Ellingsen et al. (IEEE Transactions on Information Theory 66 (9), 2020) introduced a new variant of differential uniformity, called c -differential uniformity (where c is a non-zero element of a finite field of characteristic p ), of p -ary ( n ,  m )-function for any prime p obtained by extending the well-known derivative of vectorial functions into the (multiplicative) c -derivative. Later, Stănică [Discrete Applied Mathematics, 2021] introduced the notion of c -boomerang uniformity. Both c -differential and c -boomerang uniformities have been extended to the idea of simple differential and boomerang uniformities, respectively, which are recovered when c equals 1.This survey paper combines the known results on this new concept of differential and boomerang uniformities and analyzes their possible cryptographic applications. This survey presents an overview of these significant concepts that might have greater implications for future theoretical research on this subject and applied perspectives in symmetric cryptography and related topics. Along with the paper, we analyze these discoveries and the results provided synthetically. The article intends to help readers explore further avenues in this promising and emerging direction of research. At the end of the article, we present more than nine lines of perspectives and research directions to benefit symmetric cryptography and other related domains such as combinatorial theory (namely, graph theory).
AbstractList Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block and stream ciphers and cryptographic hash functions. The discovery of differential cryptanalysis is generally attributed to Biham and Shamir in the late 1980s, who published several attacks against various block ciphers and hash functions, including a theoretical weakness in the Data Encryption Standard (DES). Boomerang cryptanalysis is a method for the cryptanalysis of block ciphers based on differential cryptanalysis. It was invented by Wagner in (FSE, LNCS 1636 , 156–170, 1999) and has allowed new avenues of attack for many ciphers previously deemed safe from differential cryptanalysis. Differential and boomerang uniformities are crucial tools to handle and analyze vectorial functions (designated by substitution boxes, or briefly S-boxes in the context of symmetric cryptography) to resist differential and boomerang attacks, respectively. Ellingsen et al. (IEEE Transactions on Information Theory 66 (9), 2020) introduced a new variant of differential uniformity, called c -differential uniformity (where c is a non-zero element of a finite field of characteristic p ), of p -ary ( n ,  m )-function for any prime p obtained by extending the well-known derivative of vectorial functions into the (multiplicative) c -derivative. Later, Stănică [Discrete Applied Mathematics, 2021] introduced the notion of c -boomerang uniformity. Both c -differential and c -boomerang uniformities have been extended to the idea of simple differential and boomerang uniformities, respectively, which are recovered when c equals 1.This survey paper combines the known results on this new concept of differential and boomerang uniformities and analyzes their possible cryptographic applications. This survey presents an overview of these significant concepts that might have greater implications for future theoretical research on this subject and applied perspectives in symmetric cryptography and related topics. Along with the paper, we analyze these discoveries and the results provided synthetically. The article intends to help readers explore further avenues in this promising and emerging direction of research. At the end of the article, we present more than nine lines of perspectives and research directions to benefit symmetric cryptography and other related domains such as combinatorial theory (namely, graph theory).
Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block and stream ciphers and cryptographic hash functions. The discovery of differential cryptanalysis is generally attributed to Biham and Shamir in the late 1980s, who published several attacks against various block ciphers and hash functions, including a theoretical weakness in the Data Encryption Standard (DES). Boomerang cryptanalysis is a method for the cryptanalysis of block ciphers based on differential cryptanalysis. It was invented by Wagner in (FSE, LNCS 1636, 156–170, 1999) and has allowed new avenues of attack for many ciphers previously deemed safe from differential cryptanalysis. Differential and boomerang uniformities are crucial tools to handle and analyze vectorial functions (designated by substitution boxes, or briefly S-boxes in the context of symmetric cryptography) to resist differential and boomerang attacks, respectively. Ellingsen et al. (IEEE Transactions on Information Theory 66(9), 2020) introduced a new variant of differential uniformity, called c-differential uniformity (where c is a non-zero element of a finite field of characteristic p), of p-ary (n, m)-function for any prime p obtained by extending the well-known derivative of vectorial functions into the (multiplicative) c-derivative. Later, Stănică [Discrete Applied Mathematics, 2021] introduced the notion of c-boomerang uniformity. Both c-differential and c-boomerang uniformities have been extended to the idea of simple differential and boomerang uniformities, respectively, which are recovered when c equals 1.This survey paper combines the known results on this new concept of differential and boomerang uniformities and analyzes their possible cryptographic applications. This survey presents an overview of these significant concepts that might have greater implications for future theoretical research on this subject and applied perspectives in symmetric cryptography and related topics. Along with the paper, we analyze these discoveries and the results provided synthetically. The article intends to help readers explore further avenues in this promising and emerging direction of research. At the end of the article, we present more than nine lines of perspectives and research directions to benefit symmetric cryptography and other related domains such as combinatorial theory (namely, graph theory).
Author Msahli, Mounira
Mesnager, Sihem
Mandal, Bimal
Author_xml – sequence: 1
  givenname: Sihem
  orcidid: 0000-0003-4008-2031
  surname: Mesnager
  fullname: Mesnager, Sihem
  email: smesnager@univ-paris8.fr
  organization: Department of Mathematics, University of Paris VIII, University Sorbonne Paris Cité, LAGA, UMR 7539, CNRS, 93430 Villetaneuse and Telecom Paris, Polytechnic Institute of Paris, Computer Sciences and Networks Department (INFRES), Telecom Paris, Institut Polytechnique de Paris
– sequence: 2
  givenname: Bimal
  surname: Mandal
  fullname: Mandal, Bimal
  organization: Computer Sciences and Networks Department (INFRES), Telecom Paris, Institut Polytechnique de Paris
– sequence: 3
  givenname: Mounira
  surname: Msahli
  fullname: Msahli, Mounira
  organization: Computer Sciences and Networks Department (INFRES), Telecom Paris, Institut Polytechnique de Paris
BackLink https://telecom-paris.hal.science/hal-03569465$$DView record in HAL
BookMark eNp9kEtLAzEUhYMoaKt_wNWAKxejN6-ZzrIUX1BwUV2HOHNTU6aJJqmiv97U8QEuXN3LPedcDt-I7DrvkJBjCmcUoD6PlEEjS2C0BJCSltUOOaANr0ompNz92UW9T0YxrgAqyQQ_IIvFJrzgW-FdEbBFl4oU0HWxSP5VhzyX6DDo3r5jV3TWGMxysrovtOuKB-_XWXXLYuOs8WFtk8V4SPaM7iMefc0xub-8uJtdl_Pbq5vZdF62XPJUGgZGaEBKNTUGRCNlRZsOGyNhYtq61kwLyILMhw5B1G09MUg5aOSyafiYnA5_H3WvnoJd6_CmvLbqejpX2xtwWTWiki80e08G71PwzxuMSa38JrhcT7GqFsA4yzzGZDK42uBjDGhUa5NO1rsUtO0VBbXFrQbcKuNWn7hVlaPsT_S70b8hPoRiNrslht9W_6Q-AHOJlAs
CitedBy_id crossref_primary_10_1016_j_disc_2024_113881
crossref_primary_10_1515_jmc_2023_0030
crossref_primary_10_1016_j_ffa_2023_102212
crossref_primary_10_12677_AAM_2024_138374
crossref_primary_10_1016_j_disc_2024_114185
crossref_primary_10_1016_j_ffa_2025_102574
crossref_primary_10_1007_s12095_025_00776_9
crossref_primary_10_3390_e26030188
crossref_primary_10_1007_s10623_022_01161_w
crossref_primary_10_1007_s00200_024_00670_6
crossref_primary_10_1007_s12095_024_00767_2
crossref_primary_10_1007_s00200_023_00632_4
crossref_primary_10_1109_TIT_2022_3232362
Cites_doi 10.1016/S0019-9958(67)91016-9
10.1109/TIT.2011.2145130
10.1090/conm/574/11419
10.1007/s10623-013-9890-8
10.1016/j.ffa.2021.101902
10.1007/s10623-020-00812-0
10.1109/TIT.1968.1054106
10.1007/s10623-020-00807-x
10.1007/BF02125898
10.1007/s00200-021-00520-9
10.1109/TIT.2019.2933832
10.1109/TIT.2019.2918531
10.1109/TIT.2021.3062681
10.1007/s10623-015-0145-8
10.1023/A:1008344232130
10.1109/TIT.2021.3081348
10.1007/s12095-020-00439-x
10.1016/j.ffa.2020.101690
10.46586/tosc.v2020.i1.331-362
10.1007/s10623-020-00775-2
10.1007/s002000050073
10.1007/BF01111042
10.1109/TIT.2006.880036
10.46586/tosc.v2018.i3.290-310
10.1007/978-3-662-04722-4
10.1016/j.ffa.2013.02.004
10.1007/s10623-018-0480-7
10.1016/j.ffa.2019.101630
10.46586/tosc.v2019.i1.142-169
10.1007/s10801-019-00899-2
10.1016/j.ffa.2010.10.002
10.1016/0097-3165(76)90024-8
10.1007/978-3-319-12991-4
10.1007/s12095-020-00434-2
10.1007/BF00630563
10.1016/j.ffa.2010.12.002
10.1093/comjnl/bxaa069
10.1109/TIT.2020.2971988
10.1007/s10623-020-00803-1
10.1007/s10623-020-00785-0
10.1016/j.ffa.2020.101797
10.1007/s12095-020-00466-8
10.1016/j.ffa.2009.07.001
10.1007/978-3-030-17653-2_11
10.1515/9783110621730-007
10.46586/tosc.v2019.i1.118-141
10.1016/j.jcta.2005.10.006
10.1109/TIT.2017.2761392
10.1109/TIFS.2020.3006399
10.1016/S0012-365X(02)00606-4
10.1109/TIT.2007.913505
10.1007/s11425-010-3149-x
10.1109/TIT.2017.2676807
10.1007/978-1-4615-2694-0_23
10.1109/18.748997
10.1023/A:1008292303803
10.1007/BFb0053450
10.1007/3-540-48285-7_33
10.1007/3-540-36178-2_16
10.1007/11506447_2
10.1017/CBO9780511780448.012
10.1007/BFb0052343
10.1007/3-540-48285-7_6
10.1016/j.ffa.2010.03.001
10.7146/brics.v2i9.19512
10.1007/978-981-33-6781-4_11
10.1007/3-540-48405-1_25
10.1007/s10623-022-01047-x
10.1007/978-3-662-49890-3_14
10.1007/978-3-319-32595-8_1
10.1007/978-3-662-53008-5_4
10.1007/s10623-018-0512-3
10.1007/s12095-022-00581-8
10.1017/CBO9780511780448.011
10.1090/conm/518/10194
10.1007/3-540-48071-4_34
10.1016/j.disc.2021.112543
10.1016/j.ffa.2021.101835
10.1007/978-3-540-89754-5_24
10.1007/3-540-60590-8_16
10.1016/B978-0-12-374890-4.00009-4
10.1007/978-3-642-21702-9_13
10.1007/978-3-030-35423-7_17
10.1007/3-540-68697-5_9
10.1007/s12095-022-00554-x
10.1007/3-540-48658-5_3
10.1007/s10623-020-00837-5
10.1007/978-3-662-48116-5_12
10.1007/978-3-319-78375-8_22
10.1090/conm/518/10196
10.1007/978-3-662-46800-5_12
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1007/s12095-021-00551-6
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1936-2455
EndPage 735
ExternalDocumentID oai_HAL_hal_03569465v1
10_1007_s12095_021_00551_6
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29F
2JY
2KG
2VQ
2~H
30V
4.4
406
408
40D
5GY
5VS
6NX
875
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HG6
HMJXF
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
J0Z
J9A
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9O
PT4
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3B
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ADKFA
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
1XC
ID FETCH-LOGICAL-c353t-f20f4a0e11a1ff04955619de9f508fc77a2a40f045f50de047c78fe130ae35993
IEDL.DBID U2A
ISSN 1936-2447
IngestDate Thu Aug 21 07:34:06 EDT 2025
Fri Jul 25 07:55:21 EDT 2025
Tue Jul 01 02:37:14 EDT 2025
Thu Apr 24 23:06:27 EDT 2025
Fri Feb 21 02:49:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Differential cryptanalysis
06E30
Permutation
Differential uniformity
Linear cryptanalysis
Boolean function
ary function
11T06
Boomerang uniformity
Vectorial Boolean function
94D10
S-box
94A60
Boomerang attack
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-f20f4a0e11a1ff04955619de9f508fc77a2a40f045f50de047c78fe130ae35993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4008-2031
0000-0003-0331-493X
PQID 2674023224
PQPubID 2043935
PageCount 45
ParticipantIDs hal_primary_oai_HAL_hal_03569465v1
proquest_journals_2674023224
crossref_citationtrail_10_1007_s12095_021_00551_6
crossref_primary_10_1007_s12095_021_00551_6
springer_journals_10_1007_s12095_021_00551_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Discrete Structures, Boolean Functions and Sequences
PublicationTitle Cryptography and communications
PublicationTitleAbbrev Cryptogr. Commun
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References Budaghyan, Calderini, Carlet, Coulter, Villa (CR20) 2021; 89
Dembowski, Ostrom (CR43) 1968; 103
CR38
CR37
CR35
Godsil, Roy (CR50) 2008; 54
CR33
Kim, Mesnager (CR60) 2020; 63
Mesnager, Tang, Xiong (CR84) 2020; 88
Li, Helleseth, Tang (CR77) 2013; 22
Coulter, Matthews (CR39) 2011; 17
Zha, Wang (CR111) 2011; 57
Calderini, Villa (CR21) 2020; 12
CR48
CR46
Hasan, Pal, Riera, Stănică (CR55) 2021; 89
Li, Qu, Li, Chen (CR73) 2020; 66
CR44
Carlet (CR27) 2018; 64
CR42
Charpin, James (CR34) 2020
Li, Qu, Sun, Li (CR78) 2019; 65
Carlet, Charpin, Zinoviev (CR30) 1998; 15
Song, Qin, Hu (CR102) 2019; 1
Boukerrou, Huynh, Lallemand, Mandal, Minier (CR17) 2020; 2020
Coulter, Matthews (CR40) 1997; 10
Rónyai, Szonyi (CR92) 1989; 9
CR57
CR56
Carlet, de Chérisey, Guilley, Kavut, Tang (CR31) 2021; 16
CR54
Mesnager, Qu (CR86) 2019; 65
Berlekamp, Rumsey, Solomon (CR7) 1967; 10
Kim, Choe, Mesnager (CR58) 2021; 70
Ellingsen, Felke, Riera, Stănică, Tkachenko (CR49) 2020; 66
Ding, Yuan (CR47) 2006; 113
Carlet (CR29) 2021
Stănică, Geary (CR101) 2021; 13
CR68
Budaghyan (CR19) 2014
CR67
CR66
CR65
Mesnager, Riera, Stanica, Yan, Zhou (CR85) 2021; 67
CR63
CR62
CR61
Biham, Shamir (CR11) 1991; 4
Li, Xiong, Zeng (CR80) 2021; 67
Zieve (CR113) 2015; 75
Zha, Wang (CR110) 2010; 53
Li, Zhou, Ming, Yang, Jin (CR74) 2020; 63
CR79
CR76
CR75
CR72
CR112
CR70
Leducq (CR71) 2012; 574
Lai (CR69) 1994; 276
Borisov, Chew, Johnson, Wagner (CR16) 2002; 2365
CR4
CR3
Charpin, Kyureghyan (CR36) 2009; 15
CR9
CR89
CR88
CR87
Berger, Canteaut, Charpin, Laigle-Chapuy (CR8) 2006; 52
CR83
CR82
CR81
Wang, Peyrin (CR107) 2019; 2019
Rothaus (CR93) 1976; 20
Calderini (CR22) 2021; 89
Nobauer (CR90) 1968; 231
Dobbertin, Mills, Mller, Pott, Willems (CR45) 2003; 267
Kim, Choe, Mesnager (CR59) 2021; 76
Stănică (CR99) 2021
Helleseth, Sandberg (CR52) 1997; 8
CR15
CR14
CR13
CR12
CR10
CR98
CR97
CR96
CR95
CR94
Wagner (CR106) 1999; 1636
CR91
Xu, Li, Zeng, Helleseth (CR109) 2018; 86
Carlet, Mesnager (CR32) 2016; 78
Akbary, Ghioca, Wang (CR1) 2011; 17
Tian, Boura, Perrin (CR105) 2020; 88
Boura, Canteaut (CR18) 2018; 2018
Bartoli, Timpanella (CR2) 2020; 52
Canteaut, Duval, Perrin (CR24) 2017; 63
Daemen, Rijmen (CR41) 2002
Beierle, Leander (CR6) 2020; 12
Bar-On, Dunkelman, Keller, Weizman (CR5) 2019; 11476
CR28
CR26
CR25
CR23
CR104
Knudsen, Wagner (CR64) 2002; 2365
CR103
CR100
CR108
Helleseth, Rong, Sandberg (CR53) 1999; 45
Gold (CR51) 1968; 14
S Mesnager (551_CR84) 2020; 88
H Li (551_CR74) 2020; 63
551_CR9
D Bartoli (551_CR2) 2020; 52
SU Hasan (551_CR55) 2021; 89
L Rónyai (551_CR92) 1989; 9
551_CR4
551_CR3
S Mesnager (551_CR85) 2021; 67
A Bar-On (551_CR5) 2019; 11476
551_CR61
551_CR62
551_CR63
551_CR65
551_CR66
551_CR67
551_CR68
L Budaghyan (551_CR19) 2014
M Zieve (551_CR113) 2015; 75
M Calderini (551_CR22) 2021; 89
P Charpin (551_CR36) 2009; 15
551_CR108
Z Zha (551_CR111) 2011; 57
551_CR104
551_CR70
551_CR72
551_CR100
551_CR103
551_CR75
551_CR76
W Nobauer (551_CR90) 1968; 231
KH Kim (551_CR59) 2021; 76
551_CR79
551_CR37
551_CR38
K Li (551_CR73) 2020; 66
N Borisov (551_CR16) 2002; 2365
C Carlet (551_CR32) 2016; 78
N Li (551_CR77) 2013; 22
C Carlet (551_CR29) 2021
P Stănică (551_CR101) 2021; 13
P Stănică (551_CR99) 2021
A Akbary (551_CR1) 2011; 17
551_CR42
C Carlet (551_CR30) 1998; 15
551_CR44
R Gold (551_CR51) 1968; 14
RS Coulter (551_CR40) 1997; 10
551_CR46
551_CR48
L Budaghyan (551_CR20) 2021; 89
ER Berlekamp (551_CR7) 1967; 10
K Li (551_CR78) 2019; 65
H Wang (551_CR107) 2019; 2019
L Knudsen (551_CR64) 2002; 2365
C Carlet (551_CR27) 2018; 64
C Carlet (551_CR31) 2021; 16
O Rothaus (551_CR93) 1976; 20
D Wagner (551_CR106) 1999; 1636
551_CR54
T Helleseth (551_CR53) 1999; 45
551_CR56
551_CR57
551_CR14
551_CR15
H Dobbertin (551_CR45) 2003; 267
KH Kim (551_CR60) 2020; 63
RS Coulter (551_CR39) 2011; 17
S Tian (551_CR105) 2020; 88
S Mesnager (551_CR86) 2019; 65
P Ellingsen (551_CR49) 2020; 66
C Godsil (551_CR50) 2008; 54
551_CR23
X Lai (551_CR69) 1994; 276
551_CR25
551_CR26
551_CR28
P Charpin (551_CR34) 2020
T Berger (551_CR8) 2006; 52
A Canteaut (551_CR24) 2017; 63
T Helleseth (551_CR52) 1997; 8
551_CR33
J Daemen (551_CR41) 2002
551_CR35
E Biham (551_CR11) 1991; 4
M Calderini (551_CR21) 2020; 12
KH Kim (551_CR58) 2021; 70
H Boukerrou (551_CR17) 2020; 2020
P Dembowski (551_CR43) 1968; 103
C Beierle (551_CR6) 2020; 12
C Ding (551_CR47) 2006; 113
551_CR81
551_CR82
551_CR83
551_CR112
E Leducq (551_CR71) 2012; 574
551_CR87
551_CR88
551_CR89
N Li (551_CR80) 2021; 67
Z Zha (551_CR110) 2010; 53
L Song (551_CR102) 2019; 1
X Xu (551_CR109) 2018; 86
C Boura (551_CR18) 2018; 2018
551_CR91
551_CR94
551_CR95
551_CR96
551_CR97
551_CR10
551_CR98
551_CR12
551_CR13
References_xml – volume: 10
  start-page: 553
  year: 1967
  end-page: 564
  ident: CR7
  article-title: On the solutions of algebraic equations over finite fields
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(67)91016-9
– volume: 57
  start-page: 4826
  issue: 7
  year: 2011
  end-page: 4832
  ident: CR111
  article-title: Almost perfect nonlinear power functions in odd characteristic
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2011.2145130
– volume: 574
  start-page: 115
  year: 2012
  end-page: 123
  ident: CR71
  article-title: New families of APN functions in characteristic 3 or 5
  publication-title: Contemporary Mathematics
  doi: 10.1090/conm/574/11419
– ident: CR97
– volume: 75
  start-page: 71
  year: 2015
  end-page: 80
  ident: CR113
  article-title: Planar functions and perfect nonlinear monomials over finite fields
  publication-title: Designs, Codes and Cryptography
  doi: 10.1007/s10623-013-9890-8
– volume: 76
  start-page: 101902
  year: 2021
  ident: CR59
  article-title: Complete solution over of the equation
  publication-title: Finite Fields and Their Applications
  doi: 10.1016/j.ffa.2021.101902
– volume: 89
  start-page: 221
  year: 2021
  end-page: 239
  ident: CR55
  article-title: On the -differential uniformity of certain maps over finite fields
  publication-title: Designs, Codes and Cryptography
  doi: 10.1007/s10623-020-00812-0
– ident: CR68
– volume: 231
  start-page: 215
  year: 1968
  end-page: 219
  ident: CR90
  article-title: Uber eine Klasse von Permutations polynomen und die dadurch dargestellten Gruppen
  publication-title: J. Reine Angew. Math.
– ident: CR54
– ident: CR25
– volume: 14
  start-page: 154
  issue: 1
  year: 1968
  end-page: 156
  ident: CR51
  article-title: Maximal recursive sequences with 3-valued recursive cross-correlation functions
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1968.1054106
– ident: CR42
– volume: 89
  start-page: 33
  year: 2021
  end-page: 52
  ident: CR22
  article-title: Differentially low uniform permutations from known -uniform functions
  publication-title: Des. Codes Cryptogr.
  doi: 10.1007/s10623-020-00807-x
– volume: 9
  start-page: 315
  issue: 3
  year: 1989
  end-page: 320
  ident: CR92
  article-title: Planar functions over finite fields
  publication-title: Combinatorica
  doi: 10.1007/BF02125898
– year: 2021
  ident: CR29
  publication-title: Boolean Functions for Cryptography and Coding Theory
– year: 2021
  ident: CR99
  publication-title: Using double Weil sums in finding the -Boomerang Connectivity Table for monomial functions on finite fields
  doi: 10.1007/s00200-021-00520-9
– volume: 65
  start-page: 7884
  issue: 12
  year: 2019
  end-page: 7895
  ident: CR86
  article-title: On two-to-one mappings over finite fields
  publication-title: IEEE Transaction on Information Theory
  doi: 10.1109/TIT.2019.2933832
– ident: CR88
– ident: CR57
– ident: CR112
– volume: 65
  start-page: 7542
  issue: 11
  year: 2019
  end-page: 7553
  ident: CR78
  article-title: New results about the boomerang uniformity of permutation polynomials
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2019.2918531
– volume: 67
  start-page: 4845
  issue: 7
  year: 2021
  end-page: 4855
  ident: CR80
  article-title: On permutation quadrinomials and -uniform BCT
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2021.3062681
– volume: 78
  start-page: 5
  issue: 1
  year: 2016
  end-page: 50
  ident: CR32
  article-title: Four decades of research on bent functions
  publication-title: Journal Designs, Codes and Cryptography
  doi: 10.1007/s10623-015-0145-8
– volume: 15
  start-page: 125
  year: 1998
  end-page: 156
  ident: CR30
  article-title: Codes, bent functions and permutations suitable for DES-like cryptosysytem
  publication-title: Designs, Codes and Cryptography
  doi: 10.1023/A:1008344232130
– volume: 2365
  start-page: 112
  year: 2002
  end-page: 127
  ident: CR64
  article-title: Integral cryptanalysis (extended abstract) FSE 2002
  publication-title: LNCS
– volume: 67
  start-page: 6916
  issue: 10
  year: 2021
  end-page: 6925
  ident: CR85
  article-title: Investigations on -(almost) perfect nonlinear functions
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2021.3081348
– ident: CR100
– volume: 12
  start-page: 1161
  year: 2020
  end-page: 1178
  ident: CR21
  article-title: On the boomerang uniformity of some permutation polynomials
  publication-title: Cryptography and Communications
  doi: 10.1007/s12095-020-00439-x
– ident: CR66
– ident: CR91
– ident: CR72
– volume: 66
  start-page: 101690
  year: 2020
  ident: CR73
  article-title: On a conjecture about a class of permutation quadrinomials
  publication-title: Finite Fields and Their Applications
  doi: 10.1016/j.ffa.2020.101690
– volume: 2020
  start-page: 331
  issue: 1
  year: 2020
  end-page: 362
  ident: CR17
  article-title: On the feistel counterpart of the boomerang connectivity table introduction and analysis of the FBCT
  publication-title: IACR Transactions on Symmetric Cryptology
  doi: 10.46586/tosc.v2020.i1.331-362
– ident: CR89
– ident: CR10
– ident: CR33
– volume: 88
  start-page: 2233
  issue: 10
  year: 2020
  end-page: 2246
  ident: CR84
  article-title: On the boomerang uniformity of quadratic permutations
  publication-title: Designs, Codes and Cryptography
  doi: 10.1007/s10623-020-00775-2
– volume: 8
  start-page: 363
  year: 1997
  end-page: 370
  ident: CR52
  article-title: Some power mappings with low differential uniformity
  publication-title: Applicable, Algebra in Engineering, Communications and computing
  doi: 10.1007/s002000050073
– ident: CR63
– volume: 103
  start-page: 239
  year: 1968
  end-page: 258
  ident: CR43
  article-title: Planes of order n with collineation groups of order
  publication-title: Mathematische Zeitschrift
  doi: 10.1007/BF01111042
– ident: CR108
– ident: CR94
– ident: CR44
– volume: 52
  start-page: 4160
  issue: 9
  year: 2006
  end-page: 4170
  ident: CR8
  article-title: On almost perfect nonlinear functions over
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2006.880036
– ident: CR103
– volume: 2018
  start-page: 290
  issue: 3
  year: 2018
  end-page: 310
  ident: CR18
  article-title: On the boomerang uniformity of cryptographic S-boxes
  publication-title: IACR Transactions on Symmetric Cryptology
  doi: 10.46586/tosc.v2018.i3.290-310
– year: 2002
  ident: CR41
  publication-title: The Design of Rijndael: AES - The Advanced Encryption Standard
  doi: 10.1007/978-3-662-04722-4
– ident: CR3
– ident: CR38
– volume: 22
  start-page: 16
  year: 2013
  end-page: 23
  ident: CR77
  article-title: Further results on a class of permutation polynomials over finite fields
  publication-title: Finite Fields Applic.
  doi: 10.1016/j.ffa.2013.02.004
– ident: CR13
– volume: 86
  start-page: 2869
  year: 2018
  end-page: 2892
  ident: CR109
  article-title: Constructions of complete permutation polynomial
  publication-title: Designs, Codes and Cryptography
  doi: 10.1007/s10623-018-0480-7
– ident: CR83
– volume: 63
  start-page: 101630
  year: 2020
  ident: CR60
  article-title: Solving in with
  publication-title: Finite Fields and Their Applications
  doi: 10.1016/j.ffa.2019.101630
– ident: CR70
– volume: 2019
  start-page: 142
  issue: 1
  year: 2019
  end-page: 169
  ident: CR107
  article-title: Boomerang switch in multiple rounds
  publication-title: IACR Transactions on Symmetric Cryptology
  doi: 10.46586/tosc.v2019.i1.142-169
– volume: 52
  start-page: 187
  year: 2020
  end-page: 213
  ident: CR2
  article-title: On a generalization of planar functions
  publication-title: Journal of Algebraic Combinatorics
  doi: 10.1007/s10801-019-00899-2
– volume: 1636
  start-page: 156
  year: 1999
  end-page: 170
  ident: CR106
  article-title: The boomerang attack
  publication-title: FSE, LNCS
– ident: CR4
– ident: CR87
– ident: CR12
– ident: CR35
– ident: CR61
– volume: 17
  start-page: 51
  issue: 1
  year: 2011
  end-page: 67
  ident: CR1
  article-title: On constructing permutations of finite fields
  publication-title: Finite Fields Applic.
  doi: 10.1016/j.ffa.2010.10.002
– volume: 20
  start-page: 300
  year: 1976
  end-page: 305
  ident: CR93
  article-title: On ‘bent’ functions,
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/0097-3165(76)90024-8
– year: 2014
  ident: CR19
  publication-title: Construction and Analysis of Cryptographic Functions
  doi: 10.1007/978-3-319-12991-4
– volume: 12
  start-page: 1133
  year: 2020
  end-page: 1141
  ident: CR6
  article-title: -uniform permutations with null nonlinearity
  publication-title: Cryptogr. Commun.
  doi: 10.1007/s12095-020-00434-2
– ident: CR46
– ident: CR96
– volume: 4
  start-page: 3
  year: 1991
  end-page: 72
  ident: CR11
  article-title: Differential cryptanalysis of DES-like cryptosystems
  publication-title: Journal of Cryptology
  doi: 10.1007/BF00630563
– ident: CR67
– ident: CR75
– ident: CR15
– volume: 17
  start-page: 220
  year: 2011
  end-page: 224
  ident: CR39
  article-title: On the number of distinct values of a class of functions over a finite field
  publication-title: Finite Fields Applic.
  doi: 10.1016/j.ffa.2010.12.002
– ident: CR9
– volume: 2365
  start-page: 17
  year: 2002
  end-page: 33
  ident: CR16
  article-title: Multiplicative differentials
  publication-title: FSE, LNCS
– volume: 63
  start-page: 1915
  issue: 12
  year: 2020
  end-page: 1938
  ident: CR74
  article-title: The notion of transparency order revisited
  publication-title: The Computer Journal
  doi: 10.1093/comjnl/bxaa069
– volume: 66
  start-page: 5781
  issue: 9
  year: 2020
  end-page: 5789
  ident: CR49
  article-title: -differentials, multiplicative uniformity, and (almost) perfect -nonlinearity
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2020.2971988
– volume: 89
  start-page: 19
  issue: 1
  year: 2021
  end-page: 32
  ident: CR20
  article-title: Generalized isotopic shift construction for APN functions
  publication-title: Des. Codes Cryptogr.
  doi: 10.1007/s10623-020-00803-1
– ident: CR81
– volume: 88
  start-page: 1959
  year: 2020
  end-page: 1989
  ident: CR105
  article-title: Boomerang uniformity of popular S-box constructions
  publication-title: Designs, Codes and Cryptography
  doi: 10.1007/s10623-020-00785-0
– ident: CR26
– volume: 70
  start-page: 101797
  year: 2021
  ident: CR58
  article-title: Solving over finite fields
  publication-title: Finite Fields and Their Applications
  doi: 10.1016/j.ffa.2020.101797
– volume: 13
  start-page: 295
  year: 2021
  end-page: 306
  ident: CR101
  article-title: The -differential behavior of the inverse function under the EA-equivalence
  publication-title: Cryptography and Communications
  doi: 10.1007/s12095-020-00466-8
– ident: CR95
– ident: CR14
– volume: 15
  start-page: 615
  issue: 5
  year: 2009
  end-page: 632
  ident: CR36
  article-title: When does permute
  publication-title: Finite Fields and its Applications
  doi: 10.1016/j.ffa.2009.07.001
– ident: CR37
– volume: 11476
  start-page: 313
  year: 2019
  end-page: 342
  ident: CR5
  article-title: DLCT: a new tool for differential-linear cryptanalysis
  publication-title: Eurocrypt 2019, LNCS
  doi: 10.1007/978-3-030-17653-2_11
– start-page: 87
  year: 2020
  end-page: 102
  ident: CR34
  article-title: Crooked functions
  publication-title: Finite Fields and their Applications
  doi: 10.1515/9783110621730-007
– volume: 1
  start-page: 118
  year: 2019
  end-page: 141
  ident: CR102
  article-title: Boomerang connectivity table revisited application to SKINNY and AES
  publication-title: IACR Transactions on Symmetric Cryptology
  doi: 10.46586/tosc.v2019.i1.118-141
– ident: CR82
– ident: CR79
– volume: 113
  start-page: 1526
  year: 2006
  end-page: 1535
  ident: CR47
  article-title: A new family of skew Paley-Hadamard difference sets
  publication-title: Journal of Combinatorial Theory, Series A
  doi: 10.1016/j.jcta.2005.10.006
– ident: CR56
– volume: 64
  start-page: 6443
  issue: 9
  year: 2018
  end-page: 6453
  ident: CR27
  article-title: Characterizations of the differential uniformity of vectorial functions by the walsh transform
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2017.2761392
– ident: CR98
– ident: CR104
– ident: CR23
– volume: 16
  start-page: 203
  year: 2021
  end-page: 218
  ident: CR31
  article-title: Intrinsic resiliency of s-boxes against side-channel attacks best and worst scenarios
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2020.3006399
– ident: CR48
– ident: CR65
– volume: 267
  start-page: 95
  issue: 1–3
  year: 2003
  end-page: 112
  ident: CR45
  article-title: APN functions in odd characteristic
  publication-title: Discrete Mathematics
  doi: 10.1016/S0012-365X(02)00606-4
– volume: 54
  start-page: 864
  issue: 2
  year: 2008
  end-page: 866
  ident: CR50
  article-title: Two characterizations of crooked functions
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2007.913505
– volume: 53
  start-page: 1931
  issue: 8
  year: 2010
  end-page: 1940
  ident: CR110
  article-title: Power functions with low uniformity on odd characteristic finite fields
  publication-title: Science China Mathematics
  doi: 10.1007/s11425-010-3149-x
– volume: 63
  start-page: 7575
  issue: 11
  year: 2017
  end-page: 7591
  ident: CR24
  article-title: A generalisation of Dillon’s APN permutation with the best known differential and nonlinear properties for all fields of size
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2017.2676807
– volume: 276
  start-page: 227
  year: 1994
  end-page: 233
  ident: CR69
  article-title: Higher order derivatives and differential cryptanalysis
  publication-title: Communications and Cryptography
  doi: 10.1007/978-1-4615-2694-0_23
– ident: CR76
– volume: 45
  start-page: 475
  year: 1999
  end-page: 485
  ident: CR53
  article-title: New families of almost perfect nonlinear power mappings
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.748997
– ident: CR28
– ident: CR62
– volume: 10
  start-page: 167
  year: 1997
  end-page: 184
  ident: CR40
  article-title: Planar functions and planes of Lenz-Barlotti class II
  publication-title: Designs, Codes and Cryptography
  doi: 10.1023/A:1008292303803
– volume: 17
  start-page: 220
  year: 2011
  ident: 551_CR39
  publication-title: Finite Fields Applic.
  doi: 10.1016/j.ffa.2010.12.002
– volume: 45
  start-page: 475
  year: 1999
  ident: 551_CR53
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.748997
– ident: 551_CR33
  doi: 10.1007/BFb0053450
– ident: 551_CR87
  doi: 10.1007/3-540-48285-7_33
– volume: 17
  start-page: 51
  issue: 1
  year: 2011
  ident: 551_CR1
  publication-title: Finite Fields Applic.
  doi: 10.1016/j.ffa.2010.10.002
– ident: 551_CR13
  doi: 10.1007/3-540-36178-2_16
– volume: 2018
  start-page: 290
  issue: 3
  year: 2018
  ident: 551_CR18
  publication-title: IACR Transactions on Symmetric Cryptology
  doi: 10.46586/tosc.v2018.i3.290-310
– ident: 551_CR9
  doi: 10.1007/11506447_2
– ident: 551_CR26
  doi: 10.1017/CBO9780511780448.012
– volume: 88
  start-page: 2233
  issue: 10
  year: 2020
  ident: 551_CR84
  publication-title: Designs, Codes and Cryptography
  doi: 10.1007/s10623-020-00775-2
– volume: 2019
  start-page: 142
  issue: 1
  year: 2019
  ident: 551_CR107
  publication-title: IACR Transactions on Symmetric Cryptology
  doi: 10.46586/tosc.v2019.i1.142-169
– volume: 22
  start-page: 16
  year: 2013
  ident: 551_CR77
  publication-title: Finite Fields Applic.
  doi: 10.1016/j.ffa.2013.02.004
– volume: 2365
  start-page: 17
  year: 2002
  ident: 551_CR16
  publication-title: FSE, LNCS
– volume: 8
  start-page: 363
  year: 1997
  ident: 551_CR52
  publication-title: Applicable, Algebra in Engineering, Communications and computing
  doi: 10.1007/s002000050073
– ident: 551_CR56
– ident: 551_CR94
– ident: 551_CR100
– ident: 551_CR79
– volume: 11476
  start-page: 313
  year: 2019
  ident: 551_CR5
  publication-title: Eurocrypt 2019, LNCS
  doi: 10.1007/978-3-030-17653-2_11
– volume: 10
  start-page: 167
  year: 1997
  ident: 551_CR40
  publication-title: Designs, Codes and Cryptography
  doi: 10.1023/A:1008292303803
– volume: 1636
  start-page: 156
  year: 1999
  ident: 551_CR106
  publication-title: FSE, LNCS
– ident: 551_CR42
  doi: 10.1007/BFb0052343
– volume: 113
  start-page: 1526
  year: 2006
  ident: 551_CR47
  publication-title: Journal of Combinatorial Theory, Series A
  doi: 10.1016/j.jcta.2005.10.006
– volume: 88
  start-page: 1959
  year: 2020
  ident: 551_CR105
  publication-title: Designs, Codes and Cryptography
  doi: 10.1007/s10623-020-00785-0
– volume: 63
  start-page: 101630
  year: 2020
  ident: 551_CR60
  publication-title: Finite Fields and Their Applications
  doi: 10.1016/j.ffa.2019.101630
– volume: 1
  start-page: 118
  year: 2019
  ident: 551_CR102
  publication-title: IACR Transactions on Symmetric Cryptology
  doi: 10.46586/tosc.v2019.i1.118-141
– volume: 276
  start-page: 227
  year: 1994
  ident: 551_CR69
  publication-title: Communications and Cryptography
  doi: 10.1007/978-1-4615-2694-0_23
– ident: 551_CR88
  doi: 10.1007/3-540-48285-7_6
– ident: 551_CR14
  doi: 10.1016/j.ffa.2010.03.001
– volume: 52
  start-page: 187
  year: 2020
  ident: 551_CR2
  publication-title: Journal of Algebraic Combinatorics
  doi: 10.1007/s10801-019-00899-2
– volume: 70
  start-page: 101797
  year: 2021
  ident: 551_CR58
  publication-title: Finite Fields and Their Applications
  doi: 10.1016/j.ffa.2020.101797
– volume: 75
  start-page: 71
  year: 2015
  ident: 551_CR113
  publication-title: Designs, Codes and Cryptography
  doi: 10.1007/s10623-013-9890-8
– ident: 551_CR67
  doi: 10.7146/brics.v2i9.19512
– volume: 16
  start-page: 203
  year: 2021
  ident: 551_CR31
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2020.3006399
– volume: 20
  start-page: 300
  year: 1976
  ident: 551_CR93
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/0097-3165(76)90024-8
– volume: 67
  start-page: 6916
  issue: 10
  year: 2021
  ident: 551_CR85
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2021.3081348
– ident: 551_CR98
  doi: 10.1007/978-981-33-6781-4_11
– volume: 54
  start-page: 864
  issue: 2
  year: 2008
  ident: 551_CR50
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2007.913505
– volume: 9
  start-page: 315
  issue: 3
  year: 1989
  ident: 551_CR92
  publication-title: Combinatorica
  doi: 10.1007/BF02125898
– ident: 551_CR63
  doi: 10.1007/3-540-48405-1_25
– volume: 63
  start-page: 7575
  issue: 11
  year: 2017
  ident: 551_CR24
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2017.2676807
– volume: 66
  start-page: 5781
  issue: 9
  year: 2020
  ident: 551_CR49
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2020.2971988
– volume: 76
  start-page: 101902
  year: 2021
  ident: 551_CR59
  publication-title: Finite Fields and Their Applications
  doi: 10.1016/j.ffa.2021.101902
– ident: 551_CR96
– ident: 551_CR61
  doi: 10.1007/s10623-022-01047-x
– ident: 551_CR70
  doi: 10.1007/978-3-662-49890-3_14
– ident: 551_CR82
– ident: 551_CR112
– volume: 12
  start-page: 1161
  year: 2020
  ident: 551_CR21
  publication-title: Cryptography and Communications
  doi: 10.1007/s12095-020-00439-x
– start-page: 87
  volume-title: Finite Fields and their Applications
  year: 2020
  ident: 551_CR34
  doi: 10.1515/9783110621730-007
– ident: 551_CR81
  doi: 10.1007/978-3-319-32595-8_1
– ident: 551_CR76
– volume: 64
  start-page: 6443
  issue: 9
  year: 2018
  ident: 551_CR27
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2017.2761392
– volume: 10
  start-page: 553
  year: 1967
  ident: 551_CR7
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(67)91016-9
– volume: 89
  start-page: 19
  issue: 1
  year: 2021
  ident: 551_CR20
  publication-title: Des. Codes Cryptogr.
  doi: 10.1007/s10623-020-00803-1
– volume-title: The Design of Rijndael: AES - The Advanced Encryption Standard
  year: 2002
  ident: 551_CR41
  doi: 10.1007/978-3-662-04722-4
– volume: 52
  start-page: 4160
  issue: 9
  year: 2006
  ident: 551_CR8
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2006.880036
– ident: 551_CR89
– ident: 551_CR91
  doi: 10.1007/978-3-662-53008-5_4
– volume: 78
  start-page: 5
  issue: 1
  year: 2016
  ident: 551_CR32
  publication-title: Journal Designs, Codes and Cryptography
  doi: 10.1007/s10623-015-0145-8
– volume: 15
  start-page: 125
  year: 1998
  ident: 551_CR30
  publication-title: Designs, Codes and Cryptography
  doi: 10.1023/A:1008344232130
– volume: 53
  start-page: 1931
  issue: 8
  year: 2010
  ident: 551_CR110
  publication-title: Science China Mathematics
  doi: 10.1007/s11425-010-3149-x
– volume-title: Using double Weil sums in finding the $$c$$-Boomerang Connectivity Table for monomial functions on finite fields
  year: 2021
  ident: 551_CR99
  doi: 10.1007/s00200-021-00520-9
– ident: 551_CR75
– volume: 574
  start-page: 115
  year: 2012
  ident: 551_CR71
  publication-title: Contemporary Mathematics
  doi: 10.1090/conm/574/11419
– volume: 67
  start-page: 4845
  issue: 7
  year: 2021
  ident: 551_CR80
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2021.3062681
– ident: 551_CR28
  doi: 10.1007/s10623-018-0512-3
– ident: 551_CR48
  doi: 10.1007/s12095-022-00581-8
– volume: 86
  start-page: 2869
  year: 2018
  ident: 551_CR109
  publication-title: Designs, Codes and Cryptography
  doi: 10.1007/s10623-018-0480-7
– volume: 65
  start-page: 7542
  issue: 11
  year: 2019
  ident: 551_CR78
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2019.2918531
– ident: 551_CR25
  doi: 10.1017/CBO9780511780448.011
– ident: 551_CR15
  doi: 10.1090/conm/518/10194
– ident: 551_CR12
  doi: 10.1007/3-540-48071-4_34
– ident: 551_CR57
– ident: 551_CR97
  doi: 10.1016/j.disc.2021.112543
– ident: 551_CR3
  doi: 10.1016/j.ffa.2021.101835
– ident: 551_CR95
– ident: 551_CR46
  doi: 10.1007/978-3-540-89754-5_24
– ident: 551_CR65
  doi: 10.1007/3-540-60590-8_16
– volume: 2020
  start-page: 331
  issue: 1
  year: 2020
  ident: 551_CR17
  publication-title: IACR Transactions on Symmetric Cryptology
  doi: 10.46586/tosc.v2020.i1.331-362
– volume: 4
  start-page: 3
  year: 1991
  ident: 551_CR11
  publication-title: Journal of Cryptology
  doi: 10.1007/BF00630563
– volume: 12
  start-page: 1133
  year: 2020
  ident: 551_CR6
  publication-title: Cryptogr. Commun.
  doi: 10.1007/s12095-020-00434-2
– ident: 551_CR83
– ident: 551_CR37
  doi: 10.1016/B978-0-12-374890-4.00009-4
– volume: 89
  start-page: 221
  year: 2021
  ident: 551_CR55
  publication-title: Designs, Codes and Cryptography
  doi: 10.1007/s10623-020-00812-0
– ident: 551_CR10
  doi: 10.1007/978-3-642-21702-9_13
– ident: 551_CR104
  doi: 10.1007/978-3-030-35423-7_17
– ident: 551_CR62
  doi: 10.1007/3-540-68697-5_9
– ident: 551_CR44
– volume: 65
  start-page: 7884
  issue: 12
  year: 2019
  ident: 551_CR86
  publication-title: IEEE Transaction on Information Theory
  doi: 10.1109/TIT.2019.2933832
– volume: 57
  start-page: 4826
  issue: 7
  year: 2011
  ident: 551_CR111
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2011.2145130
– ident: 551_CR35
– ident: 551_CR108
– ident: 551_CR4
  doi: 10.1007/s12095-022-00554-x
– ident: 551_CR68
  doi: 10.1007/3-540-48658-5_3
– ident: 551_CR72
  doi: 10.1007/s10623-020-00837-5
– ident: 551_CR54
  doi: 10.1007/978-3-662-48116-5_12
– volume: 13
  start-page: 295
  year: 2021
  ident: 551_CR101
  publication-title: Cryptography and Communications
  doi: 10.1007/s12095-020-00466-8
– volume-title: Boolean Functions for Cryptography and Coding Theory
  year: 2021
  ident: 551_CR29
– volume: 103
  start-page: 239
  year: 1968
  ident: 551_CR43
  publication-title: Mathematische Zeitschrift
  doi: 10.1007/BF01111042
– ident: 551_CR38
  doi: 10.1007/978-3-319-78375-8_22
– volume: 2365
  start-page: 112
  year: 2002
  ident: 551_CR64
  publication-title: LNCS
– ident: 551_CR66
– volume: 231
  start-page: 215
  year: 1968
  ident: 551_CR90
  publication-title: J. Reine Angew. Math.
– volume: 63
  start-page: 1915
  issue: 12
  year: 2020
  ident: 551_CR74
  publication-title: The Computer Journal
  doi: 10.1093/comjnl/bxaa069
– volume-title: Construction and Analysis of Cryptographic Functions
  year: 2014
  ident: 551_CR19
  doi: 10.1007/978-3-319-12991-4
– volume: 267
  start-page: 95
  issue: 1–3
  year: 2003
  ident: 551_CR45
  publication-title: Discrete Mathematics
  doi: 10.1016/S0012-365X(02)00606-4
– volume: 14
  start-page: 154
  issue: 1
  year: 1968
  ident: 551_CR51
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1968.1054106
– ident: 551_CR23
  doi: 10.1090/conm/518/10196
– volume: 66
  start-page: 101690
  year: 2020
  ident: 551_CR73
  publication-title: Finite Fields and Their Applications
  doi: 10.1016/j.ffa.2020.101690
– ident: 551_CR103
  doi: 10.1007/978-3-662-46800-5_12
– volume: 89
  start-page: 33
  year: 2021
  ident: 551_CR22
  publication-title: Des. Codes Cryptogr.
  doi: 10.1007/s10623-020-00807-x
– volume: 15
  start-page: 615
  issue: 5
  year: 2009
  ident: 551_CR36
  publication-title: Finite Fields and its Applications
  doi: 10.1016/j.ffa.2009.07.001
SSID ssj0065243
Score 2.3895996
Snippet Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block and stream ciphers and cryptographic hash functions. The discovery...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 691
SubjectTerms Algorithms
Applications of mathematics
Boxes
Circuits
Coding and Information Theory
Combinatorial analysis
Communications Engineering
Computer Science
Cryptography
Data encryption
Data Structures and Information Theory
Derivatives
Differential thermal analysis
Encryption
Fields (mathematics)
Graph theory
Information and Communication
Information theory
Mathematics of Computing
Networks
Title Survey on recent trends towards generalized differential and boomerang uniformities
URI https://link.springer.com/article/10.1007/s12095-021-00551-6
https://www.proquest.com/docview/2674023224
https://telecom-paris.hal.science/hal-03569465
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50vvjib7E6RxDftNAmTWIfh0yHii86mE8lbRIVtIrrBvrXe8lap6KCr0mawl1z913z3R3AvqaKOtiOYYkwYWJ5HOYyj0NrmYxinRqpPdviUvQHydmQD-uksFHDdm-uJL2lniW70chnE2P4G6GfD8U8LHCM3R2Ra0C7jf0VnE5p9SkTITovWafK_LzHF3c0f-fIkJ-Q5rfLUe9zTlZgqQaLpDvV7irMmXINlptGDKQ-l-twdTV-mZhX8lQSNGDoRkjlqa6k8qTYEbmdFpe-fzOaNC1R8Gg_EFVqgjjb_Zkqb8m4dHlaj77I6gYMTnrXx_2w7pYQFoyzKrQ0somKTByr2FoE_q7xZapNahGD2UJKRVUS4QTHAW2iRBbyyBr0YcowjjBlE1rlU2m2gChGGcdtcsowcs4thnSFLYxieaoTplUAcSO0rKhLibuOFg_ZrAiyE3SGgs68oDMRwMHHM8_TQhp_rt5DXXwsdDWw-92LzI1FjIs0EXwSB9BuVJXVJ2-UUSExJEYzlQRw2KhvNv37K7f_t3wHFqnLhPDM3Ta0qpex2UV8UuUdWOie3pz3Ov6zfAeUWNtv
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7B9gCX0hZQF2hrIThBpMSObXLgsOKhBbZcYCVuxoltqEQDYrOg5ffwQxl7E5ZWpRIHrrHz0Iz9zUz8zQzAmqGaercdwxJho9TxJMplnkTOMRknJrPSBLbFsej208MzfjYFj00uTGC7N0eSAaknyW40DtnEGP7GaOcjUVMpj-zoHgO1wfbBLmp1ndL9vdOdblT3EogKxlkVORq7VMc2SXTiHLrFvi1kZmzm0ENxhZSa6jTGAY4XjI1TWcgtZxHhtWU88yWXEOg_oPOx5fdOn3YavBecjmn8GRMRGktZp-b8-5v_MH_Tl558-cKz_eswNti4_U_wsXZOSWe8mj7DlC2_wFzT-IHUODAPJyfD2zs7ItclQcBEs0WqQK0lVSDhDsjFuJj1rwdrSNOCBaHkiujSEPTr_Z-w8oIMS58X9jsUdV2A_rtIdBFa5XVpvwLRjDKOj8kpw0g9dxhCFq6wmuWZSZnRbUgaoamiLl3uO2hcqUnRZS9ohYJWQdBKtGHj-Z6bceGO_85eRV08T_Q1t7udnvLXYsZFlgp-l7RhpVGVqnf6QFEhMQRHWEzbsNmobzL8-iuX3jb9B8x0T3_2VO_g-GgZZqnPwgis4RVoVbdD-w19oyr_HpYmgfP33gtPH5MWTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKlW9AKWtWB6tVdFTG5H42Rw4rKCrpSCERFfi5jqxDUgQEJsF0V_FT2TsJCyt2ko9cI2dh2bsecTzfQOwbqmhIWzHtES6hHuRJYUqssR7ptLM5k7ZWG2xL4cj_u1IHM3AXYeFidXu3ZFkg2kILE1VvXFp_cYU-EbTiCzGVDhFn5_Itqxy193eYNI23tzZRg1_pHTw9fvWMGn7CiQlE6xOPE09N6nLMpN5jyFyaBGZW5d7jFZ8qZShhqc4IPCCdSlXpfriHVp745jIA_0SGv3nPKCPcQeNaL-z_VLQpqQ_ZzJBx6lamM6fv_kXV_jsJBRiPopyfzuYjf5usABzbaBK-s3KegUzrlqE-a4JBGltwms4PJxcXbtbclERNJ4oQlLHMltSx4LcMTluiK1PfzpLunYsaFbOiKkswRg__BWrjsmkChix80jw-gZGTyLRtzBbXVRuCYhhlAl8TEEZZu2Fx3Sy9KUzrMgtZ9b0IOuEpsuWxjx00zjTUwLmIGiNgtZR0Fr24NPDPZcNicc_Z39AXTxMDPzbw_6eDtdSJmTOpbjOerDaqUq3u36sqVSYjqOJ5D343KlvOvz3Vy7_3_T38OJge6D3dvZ3V-AlDYCMWEC8CrP11cStYZhUF-_iyiTw46m3wj2H0hqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+recent+trends+towards+generalized+differential+and+boomerang+uniformities&rft.jtitle=Cryptography+and+communications&rft.au=Mesnager+Sihem&rft.au=Mandal+Bimal&rft.au=Msahli+Mounira&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1936-2447&rft.eissn=1936-2455&rft.volume=14&rft.issue=4&rft.spage=691&rft.epage=735&rft_id=info:doi/10.1007%2Fs12095-021-00551-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-2447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-2447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-2447&client=summon