Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation
Solvothermal method was used to prepare titanium dioxide (TiO 2 ) nanoparticles (NP’s) of various morphologies at 180 °C growth temperature. Acetic acid and oley amine were used as surfactants. The powder of TiO 2 was annealed at 550 and 950 °C for 18 and 24 h. The influence of surfactants on the mo...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 28; no. 11; pp. 7784 - 7796 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solvothermal method was used to prepare titanium dioxide (TiO
2
) nanoparticles (NP’s) of various morphologies at 180 °C growth temperature. Acetic acid and oley amine were used as surfactants. The powder of TiO
2
was annealed at 550 and 950 °C for 18 and 24 h. The influence of surfactants on the morphology of titania NP’s was investigated using transmission electron microscopy (TEM). The structural, optical, and molecular properties of titania NP’s are investigated by means of X-ray diffraction, UV–visible, Photoluminescence, and Fourier Transform Infrared. The physical properties, surface area and pore volume, of the samples were investigated by Brunauer-Emmett-Teller and Barrett-Joyner-Halenda measurement. The results illustrated type IV adsorption isotherms for all samples, implying the characteristics of mesoporous materials (2–50 nm). Furthermore, the hysteresis loops shifted to higher relative pressure, indicating that the specific surface area increases and the pore size decreases after heat treatment. Micrograph images acquired from TEM portrayed different shapes such as irregular spherical, rounded rectangular, truncated rhombic, and rod-like for titania NP’s when various surfactants were used. Monte-Carlo simulation carried out for pristine and rutile titania NP’s as representative samples explained the growth mechanism of titania NP’s and corroborated the formation of spherical and rod-like structures due to attractive and repulsive interactions among particle respectively. |
---|---|
AbstractList | Solvothermal method was used to prepare titanium dioxide (TiO2) nanoparticles (NP's) of various morphologies at 180°C growth temperature. Acetic acid and oley amine were used as surfactants. The powder of TiO2 was annealed at 550 and 950°C for 18 and 24 h. The influence of surfactants on the morphology of titania NP's was investigated using transmission electron microscopy (TEM). The structural, optical, and molecular properties of titania NP's are investigated by means of X-ray diffraction, UV-visible, Photoluminescence, and Fourier Transform Infrared. The physical properties, surface area and pore volume, of the samples were investigated by Brunauer-Emmett-Teller and Barrett-Joyner-Halenda measurement. The results illustrated type IV adsorption isotherms for all samples, implying the characteristics of mesoporous materials (2-50 nm). Furthermore, the hysteresis loops shifted to higher relative pressure, indicating that the specific surface area increases and the pore size decreases after heat treatment. Micrograph images acquired from TEM portrayed different shapes such as irregular spherical, rounded rectangular, truncated rhombic, and rod-like for titania NP's when various surfactants were used. Monte-Carlo simulation carried out for pristine and rutile titania NP's as representative samples explained the growth mechanism of titania NP's and corroborated the formation of spherical and rod-like structures due to attractive and repulsive interactions among particle respectively. Solvothermal method was used to prepare titanium dioxide (TiO 2 ) nanoparticles (NP’s) of various morphologies at 180 °C growth temperature. Acetic acid and oley amine were used as surfactants. The powder of TiO 2 was annealed at 550 and 950 °C for 18 and 24 h. The influence of surfactants on the morphology of titania NP’s was investigated using transmission electron microscopy (TEM). The structural, optical, and molecular properties of titania NP’s are investigated by means of X-ray diffraction, UV–visible, Photoluminescence, and Fourier Transform Infrared. The physical properties, surface area and pore volume, of the samples were investigated by Brunauer-Emmett-Teller and Barrett-Joyner-Halenda measurement. The results illustrated type IV adsorption isotherms for all samples, implying the characteristics of mesoporous materials (2–50 nm). Furthermore, the hysteresis loops shifted to higher relative pressure, indicating that the specific surface area increases and the pore size decreases after heat treatment. Micrograph images acquired from TEM portrayed different shapes such as irregular spherical, rounded rectangular, truncated rhombic, and rod-like for titania NP’s when various surfactants were used. Monte-Carlo simulation carried out for pristine and rutile titania NP’s as representative samples explained the growth mechanism of titania NP’s and corroborated the formation of spherical and rod-like structures due to attractive and repulsive interactions among particle respectively. |
Author | Chaure, Nandu Kartha, Moses Dastan, Davoud |
Author_xml | – sequence: 1 givenname: Davoud surname: Dastan fullname: Dastan, Davoud email: d.dastan61@yahoo.com organization: Department of Physics, Savitribai Phule Pune University – sequence: 2 givenname: Nandu surname: Chaure fullname: Chaure, Nandu organization: Department of Physics, Savitribai Phule Pune University – sequence: 3 givenname: Moses surname: Kartha fullname: Kartha, Moses organization: Department of Physics, Savitribai Phule Pune University |
BookMark | eNp9kM1KxDAURoOM4MzoA7gruK4mTdo07mTwDwQXKugq3KapZugkY5IOzNubUhci6OISuJyTfPkWaGad1QidEnxOMOYXgeC6ZDkmPK8YZ7k4QHNScpqzunidoTkWJc9ZWRRHaBHCGmNcMVrP0dvT4DtQEWwMGYRgQtRtFly_c_FD-w30Wau92aVlNIkykFmwbgs-GtXrcJmFvU1kEjOwyTSboYdonD1Ghx30QZ98n0v0cnP9vLrLHx5v71dXD7miJY251gyKAhTUpapxQTqgrKoa0VUFb1VNSCcwJl2TRtSECopJo7Ti0GgKTQt0ic6me7fefQ46RLl2g7fpSUlqITgRuBSJ4hOlvAvB606q9J0xZ_RgekmwHHuUU48y9SjHHuVokl_m1psN-P2_TjE5IbH2Xfsfmf6UvgCkzYnP |
CitedBy_id | crossref_primary_10_1007_s10854_020_03824_7 crossref_primary_10_1021_acsanm_3c03571 crossref_primary_10_1007_s11243_019_00348_w crossref_primary_10_1007_s10854_019_02710_1 crossref_primary_10_1007_s10854_020_04542_w crossref_primary_10_1016_j_jallcom_2019_07_081 crossref_primary_10_1016_j_vacuum_2022_111243 crossref_primary_10_1016_j_ijhydene_2020_04_111 crossref_primary_10_1007_s10876_020_01847_y crossref_primary_10_1016_j_ijhydene_2020_09_204 crossref_primary_10_1007_s10854_021_05740_w crossref_primary_10_1016_j_ceramint_2021_11_044 crossref_primary_10_1007_s11664_020_08405_2 crossref_primary_10_1007_s10854_020_03108_0 crossref_primary_10_1177_1747519820923100 crossref_primary_10_1016_j_mtchem_2022_100843 crossref_primary_10_1002_pi_5752 crossref_primary_10_1007_s10008_019_04338_x crossref_primary_10_1016_j_ijhydene_2019_12_181 crossref_primary_10_1002_jctb_7593 crossref_primary_10_1016_j_ijhydene_2021_03_038 crossref_primary_10_1016_j_ijhydene_2020_08_137 crossref_primary_10_1007_s00339_022_05501_4 crossref_primary_10_1002_aelm_202200537 crossref_primary_10_1007_s11581_019_03034_0 crossref_primary_10_1007_s10854_020_04128_6 crossref_primary_10_1016_j_jallcom_2024_174365 crossref_primary_10_1016_j_diamond_2024_111816 crossref_primary_10_1088_2053_1591_aac7f4 crossref_primary_10_1007_s00339_022_05645_3 crossref_primary_10_1016_j_vacuum_2020_109218 crossref_primary_10_1016_j_matchemphys_2022_126721 crossref_primary_10_1007_s10008_020_04523_3 crossref_primary_10_1021_acs_jced_9b00405 crossref_primary_10_1007_s10854_020_03315_9 crossref_primary_10_1007_s11082_021_03334_8 crossref_primary_10_1016_j_jenvman_2019_03_054 crossref_primary_10_1007_s10973_019_08208_6 crossref_primary_10_1016_j_ijhydene_2019_07_130 crossref_primary_10_1007_s11243_019_00312_8 crossref_primary_10_1007_s00339_021_04392_1 crossref_primary_10_1016_j_apsusc_2021_149924 crossref_primary_10_1016_j_compositesa_2019_105521 crossref_primary_10_1007_s10008_019_04205_9 crossref_primary_10_1007_s10854_021_06705_9 crossref_primary_10_1007_s13201_025_02369_6 crossref_primary_10_1007_s10854_021_06172_2 crossref_primary_10_1007_s11581_023_05364_6 crossref_primary_10_1016_j_molliq_2020_112662 crossref_primary_10_1007_s10854_022_09514_w crossref_primary_10_1007_s10854_021_05882_x crossref_primary_10_1016_j_jksus_2024_103210 crossref_primary_10_1007_s10854_020_03653_8 crossref_primary_10_1016_j_ijhydene_2022_11_226 crossref_primary_10_1016_j_matchemphys_2021_124765 crossref_primary_10_1177_1747519819899068 crossref_primary_10_1016_j_ijhydene_2020_11_101 crossref_primary_10_1007_s00339_018_2344_4 crossref_primary_10_1007_s00339_020_03484_8 crossref_primary_10_1007_s10008_019_04385_4 crossref_primary_10_1016_j_jallcom_2020_155896 crossref_primary_10_1016_j_ceramint_2023_09_271 crossref_primary_10_1007_s10854_020_04518_w crossref_primary_10_1016_j_jece_2020_104996 crossref_primary_10_4236_msa_2020_1111048 crossref_primary_10_1007_s10854_020_03163_7 crossref_primary_10_1088_2053_1591_ab4662 crossref_primary_10_1007_s00339_018_1955_0 crossref_primary_10_1007_s10854_020_04611_0 crossref_primary_10_1080_03067319_2019_1662414 crossref_primary_10_1016_j_colcom_2022_100623 crossref_primary_10_1007_s42114_024_00833_6 crossref_primary_10_3390_molecules28237846 crossref_primary_10_1007_s10973_019_08842_0 crossref_primary_10_1007_s00396_022_04985_z crossref_primary_10_1007_s10854_020_04189_7 crossref_primary_10_1007_s10854_020_03051_0 crossref_primary_10_1007_s10008_021_04932_y crossref_primary_10_3389_fpubh_2022_929095 crossref_primary_10_1007_s10008_023_05541_7 crossref_primary_10_1007_s11581_020_03450_7 crossref_primary_10_1016_j_jallcom_2020_154105 crossref_primary_10_1007_s13201_023_02074_2 crossref_primary_10_3390_nano9081163 crossref_primary_10_1016_j_jallcom_2020_154063 crossref_primary_10_1007_s11243_020_00402_y crossref_primary_10_1021_acsapm_1c00477 crossref_primary_10_1021_acsanm_0c01307 crossref_primary_10_1016_j_jallcom_2019_152933 crossref_primary_10_1016_j_ijhydene_2024_02_114 crossref_primary_10_1007_s10854_020_05139_z crossref_primary_10_1007_s00216_019_02058_9 crossref_primary_10_1007_s11243_019_00353_z crossref_primary_10_1002_admt_202000281 crossref_primary_10_1016_j_renene_2020_09_104 crossref_primary_10_1088_1361_6463_ab1987 crossref_primary_10_1515_hc_2020_0007 crossref_primary_10_1007_s10854_020_03177_1 crossref_primary_10_3390_molecules24030383 crossref_primary_10_1007_s10854_018_8977_4 crossref_primary_10_1007_s12633_019_00112_w crossref_primary_10_1007_s10973_021_10932_x crossref_primary_10_1016_j_ijhydene_2020_10_058 crossref_primary_10_1016_j_ijhydene_2021_06_194 |
Cites_doi | 10.1016/j.matchemphys.2013.01.054 10.1209/0295-5075/82/18001 10.1016/j.ijbiomac.2014.07.021 10.1021/nl401387s 10.1016/j.polymdegradstab.2012.01.006 10.1016/j.jphotobiol.2014.07.007 10.1016/j.jpowsour.2011.03.011 10.1016/j.jpowsour.2014.09.034 10.1016/j.apsusc.2012.09.039 10.1016/j.apsusc.2014.06.185 10.1016/j.carbpol.2013.03.034 10.1016/j.polymer.2011.07.056 10.1016/j.cplett.2013.02.066 10.1021/cm035090w 10.1016/j.aquatox.2015.02.006 10.1016/j.matchemphys.2015.01.014 10.1016/j.surfcoat.2005.11.117 10.1016/j.supflu.2014.02.003 10.1016/j.jcis.2008.08.045 10.1063/1.4866644 10.1021/cm031099m 10.1016/j.jpowsour.2014.11.132 10.1021/jz201156b 10.1021/nn900940p 10.1016/j.physe.2011.10.014 10.1016/j.powtec.2014.03.024 10.1021/jz201456p 10.1016/j.powtec.2011.11.008 10.1016/j.jphotochem.2004.09.003 10.1016/j.eurpolymj.2009.06.016 10.1002/masy.201400042 10.1016/j.matlet.2016.05.120 10.1016/j.jpowsour.2014.11.006 10.1016/j.apsusc.2010.12.102 10.1016/j.apsusc.2005.10.003 10.1016/j.electacta.2012.11.091 10.1016/j.colsurfa.2010.08.001 10.1021/cm020027c 10.1016/j.supflu.2011.04.007 10.1103/PhysRevE.94.042120 10.1021/cm903472p 10.1016/j.powtec.2010.03.012 10.1016/j.synthmet.2016.09.007 10.1016/j.apsusc.2014.12.199 10.1007/s10854-016-5997-9 10.1016/j.jpowsour.2011.02.017 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2017 Journal of Materials Science: Materials in Electronics is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer Science+Business Media New York 2017 – notice: Journal of Materials Science: Materials in Electronics is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-017-6474-9 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 7796 |
ExternalDocumentID | 10_1007_s10854_017_6474_9 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c353t-ee4a22aca85c8021fa3466b9f627dc811f9001fb01f98139301bcec7abe3abda3 |
IEDL.DBID | BENPR |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 11:00:54 EDT 2025 Tue Jul 01 02:46:53 EDT 2025 Thu Apr 24 22:59:27 EDT 2025 Fri Feb 21 02:39:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | High Resolution Transmission Electron Microscopy Select Area Electron Diffraction Surfactant Rutile TiO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-ee4a22aca85c8021fa3466b9f627dc811f9001fb01f98139301bcec7abe3abda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1899719059 |
PQPubID | 326250 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1899719059 crossref_citationtrail_10_1007_s10854_017_6474_9 crossref_primary_10_1007_s10854_017_6474_9 springer_journals_10_1007_s10854_017_6474_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Dastan, Banpurkar (CR6) 2016 Iswarya, Bhuvaneshwari, Sruthi, Siddharth, Gouri, Chandrasekaran, Bhalerao, Chakravarty, Raichur, Chandrasekaran, Mukherjee (CR47) 2015; 161 Hongmei, Tsuyoshi, Yungi, Jinfeng, Kazunari, Yushan (CR2) 2004; 16 Tarek, Armin, Lars, Ralf, Detlef (CR8) 2010; 22 Mohanty, Paloli, Crassous, Zaccarelli, Schurtenberger (CR49) 2014; 140 Archana, Brijesh, Joydeep, Dutta (CR43) 2013; 95 Guo-Wen, Guo-Hua, Wei-Liang, Xiong-Fa, Dan-Ni, Xu (CR24) 2012; 363 Delfau, Ollivier, Lopez, Blasius, Emilio Hernandez Gar C (CR51) 2016; 94 Dastan, Gosavi, Chaure (CR5) 2015; 347 Donald, Gary, George (CR42) 2001 Hasmath, Sankaran (CR39) 2014; 70 Malescio, Pellicane (CR53) 2005; 70 Carolien, Albert, Joop (CR1) 2003; 15 Anirban, Akira, Takeshi, Ming-Wei, Tadafumi (CR12) 2011; 58 Wei-Lun, Hung-Wei, Wen-Chang (CR28) 2009; 45 Jimmy, Jiaguo, Wingkei, Zitao, Lizhi (CR38) 2002; 14 Dastan, Londhe, Chaure (CR3) 2014; 25 Rahul, Harshad, Deepa, Kartic, Raman (CR15) 2010; 369 Godlisten, Imran, Sun, Marion, Nadir, Haider, Kang, Kim (CR27) 2014; 258 Godlisten, Marion, Imran, Sun, Hee (CR30) 2015; 331 Stephanie, Ala, Soo-Keun, Daniel, Peter (CR14) 2006; 252 Rohan, Jonathan, Rasmus, James, Robert (CR46) 2011; 52 Malescio (CR50) 2007; 19 Hanyang, Guoxin, Wenfeng, Kunxu (CR22) 2014; 88 Nicolas, Maria-Helena, Iris, Christof (CR16) 2015; 153 Tao, Weiqiang, Xiaohui, Hong, Xicheng, Wang, Jiang (CR41) 2011; 196 Godlisten, Gideon, Dang, You, Young, Hilonga, Kim, Kim (CR32) 2012; 217 Jiang, Zhu, Chen, Yao, Fu, Zhang, Xu (CR25) 2014; 319 Dastan, Chaure (CR7) 2014; 2 Anuj, Krishnamurthi (CR23) 2013; 139 Aihua, Zhixiang, Ming, Gaojie, Yong, Cui (CR45) 2010; 201 Yongheng, Tao, Guangwei, Zhongyi, Hong (CR40) 2015; 276 Laifa, Xiaogang, Hongsen, Changzhou, Guozhong (CR18) 2011; 2 Zubin, Qunwei, Benlin, Xiaoxu, Haiyan, Yu (CR21) 2015; 275 Saisy, Suma, Rani (CR44) 2012; 97 Nasim, Betar, Nisarg, Yang, Paula (CR19) 2013; 13 Kyeong, Seung, Masakazu (CR33) 2005; 170 Shahbazi, Bahari, Ghasemi (CR37) 2016; 221 Burlacov, Jirkovský, Müller, Heimann (CR10) 2006; 201 Jakub, Paweł, Magdalena, Halina (CR9) 2013; 566 Bahari, Qhavami (CR35) 2016; 27 Ming, Yanqiong, Junmin, Weimin, Yuncang, Wen, Hodgson (CR48) 2011; 257 Shalan, Rashad, Youhai, Monica, Abdel-Mottaleb (CR29) 2013; 89 Amira, Tarek, Torsten, Detlef (CR17) 2011; 2 Dipti, Naresh, Rohit, Sakthivel, Sony, Das, Kalidoss, Mukherjee, Tiwari (CR20) 2014; 140 Venu, Sanjeev, Prafulla (CR13) 2011; 44 Muhammad-Sadeeq, Cheng, Yinxiang, Minghao, Qili, Wu, Lu, Tong (CR31) 2014; 272 Gholipur, Bahari (CR36) 2016; 180 Cao-Thang, Thanh-Dinh, Freddy, Trong-On (CR4) 2009; 3 Fornleitner, Kahl (CR52) 2008; 82 Vanesa, Edgardo, Mirta, Luis (CR26) 2008; 327 Khalid, Ahmed, Zhanglian, Ahmad (CR34) 2012; 263 Dastan, Panahi, Chaure (CR11) 2016; 27 NSh Godlisten (6474_CR30) 2015; 331 Sh Laifa (6474_CR18) 2011; 2 X Tao (6474_CR41) 2011; 196 D Archana (6474_CR43) 2013; 95 D Cao-Thang (6474_CR4) 2009; 3 R Gholipur (6474_CR36) 2016; 180 KK Rahul (6474_CR15) 2010; 369 YA Amira (6474_CR17) 2011; 2 JR Stephanie (6474_CR14) 2006; 252 S Jakub (6474_CR9) 2013; 566 R Jiang (6474_CR25) 2014; 319 Y Yongheng (6474_CR40) 2015; 276 KE Saisy (6474_CR44) 2012; 97 I Burlacov (6474_CR10) 2006; 201 V Iswarya (6474_CR47) 2015; 161 W Ming (6474_CR48) 2011; 257 W Zubin (6474_CR21) 2015; 275 S Aihua (6474_CR45) 2010; 201 LH Carolien (6474_CR1) 2003; 15 FM Hasmath (6474_CR39) 2014; 70 M Venu (6474_CR13) 2011; 44 B Muhammad-Sadeeq (6474_CR31) 2014; 272 G Malescio (6474_CR50) 2007; 19 HMd Nasim (6474_CR19) 2013; 13 CY Jimmy (6474_CR38) 2002; 14 Zh Guo-Wen (6474_CR24) 2012; 363 MF Vanesa (6474_CR26) 2008; 327 G Malescio (6474_CR53) 2005; 70 M Shahbazi (6474_CR37) 2016; 221 Ch Anirban (6474_CR12) 2011; 58 G Hanyang (6474_CR22) 2014; 88 D Dastan (6474_CR7) 2014; 2 L Hongmei (6474_CR2) 2004; 16 PS Mohanty (6474_CR49) 2014; 140 Ch Wei-Lun (6474_CR28) 2009; 45 D Dastan (6474_CR11) 2016; 27 AE Shalan (6474_CR29) 2013; 89 AV Anuj (6474_CR23) 2013; 139 A Bahari (6474_CR35) 2016; 27 NSh Godlisten (6474_CR32) 2012; 217 AK Tarek (6474_CR8) 2010; 22 LH Rohan (6474_CR46) 2011; 52 PS Dipti (6474_CR20) 2014; 140 D Dastan (6474_CR3) 2014; 25 D Dastan (6474_CR5) 2015; 347 YJ Kyeong (6474_CR33) 2005; 170 LP Donald (6474_CR42) 2001 J Fornleitner (6474_CR52) 2008; 82 NR Khalid (6474_CR34) 2012; 263 D Dastan (6474_CR6) 2016 Z Nicolas (6474_CR16) 2015; 153 NSh Godlisten (6474_CR27) 2014; 258 JB Delfau (6474_CR51) 2016; 94 |
References_xml | – volume: 139 start-page: 537 year: 2013 end-page: 542 ident: CR23 article-title: Effect of anatase-brookite mixed phase titanium dioxide nanoparticles on the high temperature decomposition kinetics of ammonium perchlorate publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.01.054 – volume: 82 start-page: 180011 year: 2008 end-page: 180016 ident: CR52 article-title: Lane formation Vs. cluster formation in two-dimensional square-shoulder systems—a genetic algorithm approach publication-title: EPL doi: 10.1209/0295-5075/82/18001 – volume: 70 start-page: 420 year: 2014 end-page: 426 ident: CR39 article-title: Photo-decolorization and detoxification of toxic dyes using titanium dioxide impregnated chitosan beads publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.07.021 – volume: 13 start-page: 4610 year: 2013 end-page: 4619 ident: CR19 article-title: Synthesis of highly stable sub-8nm TiO nanoparticles and their multilayer electrodes of TiO /MWNT for electrochemical applications publication-title: Nano Lett. doi: 10.1021/nl401387s – volume: 97 start-page: 615 year: 2012 end-page: 620 ident: CR44 article-title: Effect of titanium dioxide on the thermal ageing of polypropylene publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2012.01.006 – start-page: 20 year: 2001 end-page: 100 ident: CR42 publication-title: Introduction to spectroscopy – volume: 140 start-page: 69 year: 2014 end-page: 78 ident: CR20 article-title: Synthesis and characterization of titania nanorods from ilmenite for photocatalytic annihilation of publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2014.07.007 – volume: 25 start-page: 73 issue: 34 year: 2014 end-page: 79 ident: CR3 article-title: Characterization of TiO nanoparticles prepared using different surfactants by sol–gel method publication-title: J. Mater. Sci. – volume: 196 start-page: 4934 year: 2011 end-page: 4942 ident: CR41 article-title: Sulfonated titania submicrospheres-doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2011.03.011 – volume: 272 start-page: 946 year: 2014 end-page: 953 ident: CR31 article-title: Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2014.09.034 – volume: 263 start-page: 254 year: 2012 end-page: 259 ident: CR34 article-title: Synthesis and photocatalytic properties of visible light responsive La/TiO -graphene composites publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.09.039 – volume: 319 start-page: 189 year: 2014 end-page: 196 ident: CR25 article-title: Effect of calcination temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly(vinyl alcohol) hydrogel beads as a template publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.06.185 – volume: 95 start-page: 530 year: 2013 end-page: 539 ident: CR43 article-title: In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.03.034 – volume: 52 start-page: 4471 year: 2011 end-page: 4479 ident: CR46 article-title: In-situ preparation of poly(2-hydroxyethyl methacrylate)-titania hybrids using G-radiation publication-title: Polymer doi: 10.1016/j.polymer.2011.07.056 – year: 2016 ident: CR6 article-title: Solution processable sol–gel derived titania gate dielectric for organic field effect transistors publication-title: J. Mater. Sci. – volume: 566 start-page: 54 year: 2013 end-page: 59 ident: CR9 article-title: Raman spectroscopy of visible-light photocatalyst–nitrogen-doped titanium dioxide generated by irradiation with electron beam publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2013.02.066 – volume: 16 start-page: 846 year: 2004 end-page: 849 ident: CR2 article-title: Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine publication-title: Chem. Mater. doi: 10.1021/cm035090w – volume: 161 start-page: 154 year: 2015 end-page: 169 ident: CR47 article-title: Combined toxicity of two crystalline phases (anatase and rutile) of titania nanoparticles towards freshwater microalgae: sp publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2015.02.006 – volume: 153 start-page: 274 year: 2015 end-page: 284 ident: CR16 article-title: Direct generation of titanium dioxide nanoparticles dispersion under supercritical conditions for photocatalytic active thermoplastic surfaces for microbiological inactivation publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.01.014 – volume: 201 start-page: 255 year: 2006 end-page: 264 ident: CR10 article-title: Induction plasma-sprayed photocatalytically active titania coatings and their characterisation by micro-Raman spectroscopy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.11.117 – volume: 88 start-page: 126 year: 2014 end-page: 133 ident: CR22 article-title: Colloidal monolayer titania quantum dots prepared by hydrothermal synthesis in supercritical water publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2014.02.003 – volume: 327 start-page: 403 year: 2008 end-page: 411 ident: CR26 article-title: Direct modification with tungstophosphoric acid of mesoporous titania synthesized by urea-templated sol–gel reactions publication-title: J. Coll. Interface Sci. doi: 10.1016/j.jcis.2008.08.045 – volume: 140 start-page: 0949011 year: 2014 end-page: 09490110 ident: CR49 article-title: Effective interactions between soft-repulsive colloids: experiments, theory, and simulations publication-title: J. Chem. Phys. doi: 10.1063/1.4866644 – volume: 27 start-page: 5934 year: 2016 end-page: 5942 ident: CR35 article-title: Electrical and nanostructural characteristics of R-, Fe-, S-CNT electrodes of microbial field effect transistors publication-title: J. Mater. Sci. – volume: 15 start-page: 4617 year: 2003 end-page: 4624 ident: CR1 article-title: Aerosol synthesis of anatase titanium dioxide nanoparticles for hybrid solar cells publication-title: Chem. Mater. doi: 10.1021/cm031099m – volume: 276 start-page: 271 year: 2015 end-page: 278 ident: CR40 article-title: Fabrication of sulfonated poly(ether ether ketone)-based hybridproton-conducting membranes containing carboxyl or aminoacid-functionalized titania by in situ sol-gel process publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2014.11.132 – volume: 2 start-page: 2461 year: 2011 end-page: 2465 ident: CR17 article-title: Photocatalytic activities of different well-defined single crystal TiO surfaces: anatase versus rutile publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201156b – volume: 19 start-page: 0731011 year: 2007 end-page: 07310123 ident: CR50 article-title: Complex phase behavior from simple potentials publication-title: J. Phys. – volume: 3 start-page: 3737 issue: 11 year: 2009 end-page: 3743 ident: CR4 article-title: Shape-controlled synthesis of highly crystalline titania nanocrystals publication-title: ACS Nano doi: 10.1021/nn900940p – volume: 44 start-page: 614 year: 2011 end-page: 617 ident: CR13 article-title: Low frequency Raman scattering of anatase titanium dioxide nanocrystals publication-title: Physica E doi: 10.1016/j.physe.2011.10.014 – volume: 258 start-page: 99 year: 2014 end-page: 109 ident: CR27 article-title: Sol–gel synthesis of photoactive zirconia–titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.03.024 – volume: 27 start-page: 12291 year: 2016 end-page: 12296 ident: CR11 article-title: Characterization of titania thin films grown by dip-coating technique publication-title: J. Mater. Sci. – volume: 2 start-page: 3096 year: 2011 end-page: 3101 ident: CR18 article-title: Design and tailoring of a three-dimensional TiO –graphene–carbon nanotube nanocomposite for fast lithium storage publication-title: J. Phys. Chem. Lett doi: 10.1021/jz201456p – volume: 217 start-page: 489 year: 2012 end-page: 496 ident: CR32 article-title: Two step synthesis of a mesoporous titania–silica composite from titanium oxychloride and sodium Silicate publication-title: Powder Technol. doi: 10.1016/j.powtec.2011.11.008 – volume: 170 start-page: 247 year: 2005 end-page: 252 ident: CR33 article-title: Photoluminescence and photoactivity of titania particles prepared by the sol–gel technique: effect of calcination temperature publication-title: J. Photochem. Photobiol. A doi: 10.1016/j.jphotochem.2004.09.003 – volume: 45 start-page: 2749 year: 2009 end-page: 2759 ident: CR28 article-title: Synthesis and properties of photosensitive polyimide– nanocrystalline titania optical thin films publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2009.06.016 – volume: 347 start-page: 81 year: 2015 end-page: 86 ident: CR5 article-title: Studies on electrical properties of hybrid polymeric gate dielectrics for field effect transistors publication-title: Macromol. Symp. doi: 10.1002/masy.201400042 – volume: 180 start-page: 123 year: 2016 end-page: 126 ident: CR36 article-title: DNG Metamaterials: preparation and characterization of silver nanoparticles in the dielectric medium publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.05.120 – volume: 275 start-page: 175 year: 2015 end-page: 180 ident: CR21 article-title: Titanium dioxide/calcium fluoride nanocrystallite for efficient dye sensitized solar cell. A strategy of enhancing light harvest publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2014.11.006 – volume: 257 start-page: 4836 year: 2011 end-page: 4843 ident: CR48 article-title: Synthesis and characterization of nanostructured Ag on porous titania publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.12.102 – volume: 252 start-page: 7948 year: 2006 end-page: 7952 ident: CR14 article-title: The application of Raman and anti-stokes Raman spectroscopy for in situ monitoring of structural changes in laser irradiated titanium dioxide materials publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2005.10.003 – volume: 89 start-page: 469 year: 2013 end-page: 478 ident: CR29 article-title: Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.11.091 – volume: 369 start-page: 75 year: 2010 end-page: 81 ident: CR15 article-title: Room temperature synthesis of titanium dioxide nanoparticles of different phases in water in oil microemulsion publication-title: Coll. Surf. A doi: 10.1016/j.colsurfa.2010.08.001 – volume: 14 start-page: 3808 year: 2002 end-page: 3816 ident: CR38 article-title: Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO powders publication-title: Chem. Mater. doi: 10.1021/cm020027c – volume: 363 start-page: 423 issue: 364 year: 2012 end-page: 429 ident: CR24 article-title: Enhanced photocatalytic performance of titania nanotubes modified with sulfuric acid publication-title: J. Mol. Catal. A – volume: 58 start-page: 136 year: 2011 end-page: 141 ident: CR12 article-title: Nano-twinned structure and photocatalytic properties under visible light for undoped nano-titania synthesised by hydrothermal reaction in water–ethanol mixture publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2011.04.007 – volume: 2 start-page: 21 issue: 1 year: 2014 end-page: 24 ident: CR7 article-title: Influence of surfactants on TiO nanoparticles grown by Sol-Gel Technique publication-title: J. Mater. Mech. Manufact. – volume: 94 start-page: 0421201 year: 2016 end-page: 04212013 ident: CR51 article-title: Pattern formation with repulsive soft-core interactions: discrete particle dynamics and Dean-Kawasaki equation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.042120 – volume: 22 start-page: 2050 year: 2010 end-page: 2060 ident: CR8 article-title: Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts publication-title: Chem. Mater. doi: 10.1021/cm903472p – volume: 201 start-page: 130 year: 2010 end-page: 137 ident: CR45 article-title: Room temperature synthesis of spherical mesoporous titania publication-title: Powder Technol. doi: 10.1016/j.powtec.2010.03.012 – volume: 221 start-page: 332 year: 2016 end-page: 339 ident: CR37 article-title: Studying saturation mobility, threshold voltage, and stability of PMMA-SiO2-TMSPM nano-hybrid as OFET gate dielectric publication-title: Synth. Met. doi: 10.1016/j.synthmet.2016.09.007 – volume: 70 start-page: 0212021 year: 2005 end-page: 0212026 ident: CR53 article-title: Stripe patterns in two-dimensional systems with core-corona molecular architecture publication-title: Phys. Rev. E – volume: 331 start-page: 98 year: 2015 end-page: 107 ident: CR30 article-title: Sol–gel synthesis of photoactive kaolinite-titania: effect of the preparation method and their photocatalytic properties publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.12.199 – volume: 140 start-page: 0949011 year: 2014 ident: 6474_CR49 publication-title: J. Chem. Phys. doi: 10.1063/1.4866644 – volume: 95 start-page: 530 year: 2013 ident: 6474_CR43 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.03.034 – volume: 566 start-page: 54 year: 2013 ident: 6474_CR9 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2013.02.066 – volume: 263 start-page: 254 year: 2012 ident: 6474_CR34 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.09.039 – volume: 25 start-page: 73 issue: 34 year: 2014 ident: 6474_CR3 publication-title: J. Mater. Sci. – volume: 201 start-page: 130 year: 2010 ident: 6474_CR45 publication-title: Powder Technol. doi: 10.1016/j.powtec.2010.03.012 – volume: 52 start-page: 4471 year: 2011 ident: 6474_CR46 publication-title: Polymer doi: 10.1016/j.polymer.2011.07.056 – volume: 2 start-page: 2461 year: 2011 ident: 6474_CR17 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201156b – volume: 252 start-page: 7948 year: 2006 ident: 6474_CR14 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2005.10.003 – volume: 153 start-page: 274 year: 2015 ident: 6474_CR16 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.01.014 – volume: 2 start-page: 3096 year: 2011 ident: 6474_CR18 publication-title: J. Phys. Chem. Lett doi: 10.1021/jz201456p – volume: 201 start-page: 255 year: 2006 ident: 6474_CR10 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.11.117 – volume: 45 start-page: 2749 year: 2009 ident: 6474_CR28 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2009.06.016 – volume: 44 start-page: 614 year: 2011 ident: 6474_CR13 publication-title: Physica E doi: 10.1016/j.physe.2011.10.014 – volume: 275 start-page: 175 year: 2015 ident: 6474_CR21 publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2014.11.006 – volume: 170 start-page: 247 year: 2005 ident: 6474_CR33 publication-title: J. Photochem. Photobiol. A doi: 10.1016/j.jphotochem.2004.09.003 – volume: 97 start-page: 615 year: 2012 ident: 6474_CR44 publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2012.01.006 – volume: 161 start-page: 154 year: 2015 ident: 6474_CR47 publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2015.02.006 – volume: 272 start-page: 946 year: 2014 ident: 6474_CR31 publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2014.09.034 – volume: 15 start-page: 4617 year: 2003 ident: 6474_CR1 publication-title: Chem. Mater. doi: 10.1021/cm031099m – volume: 13 start-page: 4610 year: 2013 ident: 6474_CR19 publication-title: Nano Lett. doi: 10.1021/nl401387s – volume: 19 start-page: 0731011 year: 2007 ident: 6474_CR50 publication-title: J. Phys. – volume: 363 start-page: 423 issue: 364 year: 2012 ident: 6474_CR24 publication-title: J. Mol. Catal. A – volume: 27 start-page: 5934 year: 2016 ident: 6474_CR35 publication-title: J. Mater. Sci. – volume: 257 start-page: 4836 year: 2011 ident: 6474_CR48 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.12.102 – volume: 88 start-page: 126 year: 2014 ident: 6474_CR22 publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2014.02.003 – volume: 221 start-page: 332 year: 2016 ident: 6474_CR37 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2016.09.007 – volume: 94 start-page: 0421201 year: 2016 ident: 6474_CR51 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.042120 – volume: 369 start-page: 75 year: 2010 ident: 6474_CR15 publication-title: Coll. Surf. A doi: 10.1016/j.colsurfa.2010.08.001 – volume: 331 start-page: 98 year: 2015 ident: 6474_CR30 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.12.199 – volume: 2 start-page: 21 issue: 1 year: 2014 ident: 6474_CR7 publication-title: J. Mater. Mech. Manufact. – volume: 276 start-page: 271 year: 2015 ident: 6474_CR40 publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2014.11.132 – volume: 58 start-page: 136 year: 2011 ident: 6474_CR12 publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2011.04.007 – year: 2016 ident: 6474_CR6 publication-title: J. Mater. Sci. doi: 10.1007/s10854-016-5997-9 – start-page: 20 volume-title: Introduction to spectroscopy year: 2001 ident: 6474_CR42 – volume: 70 start-page: 420 year: 2014 ident: 6474_CR39 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.07.021 – volume: 139 start-page: 537 year: 2013 ident: 6474_CR23 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.01.054 – volume: 3 start-page: 3737 issue: 11 year: 2009 ident: 6474_CR4 publication-title: ACS Nano doi: 10.1021/nn900940p – volume: 347 start-page: 81 year: 2015 ident: 6474_CR5 publication-title: Macromol. Symp. doi: 10.1002/masy.201400042 – volume: 70 start-page: 0212021 year: 2005 ident: 6474_CR53 publication-title: Phys. Rev. E – volume: 319 start-page: 189 year: 2014 ident: 6474_CR25 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.06.185 – volume: 196 start-page: 4934 year: 2011 ident: 6474_CR41 publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2011.02.017 – volume: 22 start-page: 2050 year: 2010 ident: 6474_CR8 publication-title: Chem. Mater. doi: 10.1021/cm903472p – volume: 180 start-page: 123 year: 2016 ident: 6474_CR36 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.05.120 – volume: 89 start-page: 469 year: 2013 ident: 6474_CR29 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.11.091 – volume: 16 start-page: 846 year: 2004 ident: 6474_CR2 publication-title: Chem. Mater. doi: 10.1021/cm035090w – volume: 258 start-page: 99 year: 2014 ident: 6474_CR27 publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.03.024 – volume: 217 start-page: 489 year: 2012 ident: 6474_CR32 publication-title: Powder Technol. doi: 10.1016/j.powtec.2011.11.008 – volume: 14 start-page: 3808 year: 2002 ident: 6474_CR38 publication-title: Chem. Mater. doi: 10.1021/cm020027c – volume: 82 start-page: 180011 year: 2008 ident: 6474_CR52 publication-title: EPL doi: 10.1209/0295-5075/82/18001 – volume: 327 start-page: 403 year: 2008 ident: 6474_CR26 publication-title: J. Coll. Interface Sci. doi: 10.1016/j.jcis.2008.08.045 – volume: 140 start-page: 69 year: 2014 ident: 6474_CR20 publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2014.07.007 – volume: 27 start-page: 12291 year: 2016 ident: 6474_CR11 publication-title: J. Mater. Sci. |
SSID | ssj0006438 |
Score | 2.536094 |
Snippet | Solvothermal method was used to prepare titanium dioxide (TiO
2
) nanoparticles (NP’s) of various morphologies at 180 °C growth temperature. Acetic acid and... Solvothermal method was used to prepare titanium dioxide (TiO2) nanoparticles (NP's) of various morphologies at 180°C growth temperature. Acetic acid and oley... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7784 |
SubjectTerms | Acetic acid Characterization and Evaluation of Materials Chemistry and Materials Science Fourier transforms Heat treatment Hysteresis loops Image acquisition Materials Science Monte Carlo simulation Morphology Nanoparticles Optical and Electronic Materials Optical properties Photoluminescence Photomicrographs Physical properties Pore size Porosity Surface area Surfactants Titanium Titanium dioxide Transmission electron microscopy |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQUAYmUKTUsR2brUJUFQMLVCpTdH5EqkQN6kvi3_ecJm1BgMSQJbnzcGf7vou_OxNyLUwmLfDAqOEQM0AMJ1Oj4sKJRAKmLdaVbIsn0euzxwEfVHXck5rtXh9Jljv1RrGb5IExkcWCZSxW22SHY-oeeFx92lltvxhi5bLBXmjoTWl9lPnTEF-D0RphfjsULWNN94DsVyAx6iy9eki2nD8iexutA4_J6_NsHIoSAo0lQgAcvGUjnEjzsqRqhOoWRef4MpSR-SFEHjxmyBUR7i6afHqURMUIPGoOR9VFXiek3314ue_F1TUJsUl5Oo2dY0ApGJDcSAzZBaRMCK0KQTNrZLtdKIxFhcZHSQR8uKS1cSYD7VLQFtJT0vDv3p2RKKEu44Ynob6UOWuUFkwDogpFqXLKNklS2ys3VQ_xcJXFW77ufhxMnKOJ82DiXDXJzUrlY9lA4y_hVu2EvFpLk7yNKWGGuIXj59vaMRuffxvs_F_SF2SXholR_mBpkcZ0PHOXiDem-qqcXwuZdc11 priority: 102 providerName: Springer Nature |
Title | Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation |
URI | https://link.springer.com/article/10.1007/s10854-017-6474-9 https://www.proquest.com/docview/1899719059 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5se9GD-MRqLXvwpCy22c1u4kWq9IFCEbXQnpZskoWC3da-wH_vZJu1VbCHvWQzOcxMZr4k8wC4CmTIlKAmooYK1xeI4ZgnuZvooMYEHluUzqItukGn5z_1ad9euM1sWGVuEzNDrcbS3JHf1vFgEKL3ovx-8umarlHmddW20ChACU0wY0UoPTS7L68_thj9LVtV2zPVvQnJ3zVXyXOMmgiM0A380Hf5b8-0hpt_Xkgzx9M6gH2LGJ3GSsSHsKPTI9jbqCN4DIO3xdRkKJiYFgfRsBGdclCrlll-1QjJFU5d4qDJKUuHwklFisdlGxV358y-UpyJhI5IkXI4sl29TqDXar4_dlzbM8GVHvXmrta-IERIwahk6L8T4flBEPMkIKGSrF5PODqmJMaPM0R_uL9jqWUoYu2JWAnvFIrpONVn4NSIDqmkNZNs6msleRz4sUCIwQnhmqsy1HJ-RdIWFDd9LT6idSlkw-IIWRwZFke8DNc_JJNVNY1tkyu5ECK7sWbRWg3KcJMLZuP3f4udb1_sAnaJ0YTseqUCxfl0oS8RbczjKhRYq12FUqM9eG5WrYLhaI80vgH7ltW_ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFECBOMVypoAGFLHr2ImNhBACluVsAAmq4NiOhATh2APxU3wjMzlYQIKOIo3jcTF-nsOeA2A1NJG0WlBEjdA-12jDycAoP3VhXWp0W6zLoy3Ow9YVP74W1wPwXuXCUFhlJRNzQW0fDd2RbzbQMYhQewm18_TsU9coel2tWmgUsDhxb6_osrW3j_Zxf9cYax5c7rX8squAbwIRdHznuGZMGy2FkajhUh3wMExUGrLIGtlopApFd5rgpyTaR3gCEuNMpBMX6MTqANcdhGEeoCanzPTm4afkR-0ui9p-VEucseoVtUjVk4LiPSI_5BH31Xc92Dduf7zH5mquOQHjpX3q7RaAmoQBl03B2JeqhdNwc9F9oXwIiqDx0PYmoFgPMdzLs7kekNzi1B4OUgZbdqe9TGfonJcxeFte-y3DmUjo6Qwp7x7KHmIzcPUvvJyFoewxc3Pg1ZmLhBF1Sm3lzhqVhDzRaNAoxpRTtgb1il-xKcuXUxeN-7hfeJlYHCOLY2JxrGqw_knyVNTu-GvyYrUJcXmM23EfdDXYqDbmy-_fFpv_e7EVGGldnp3Gp0fnJwswyggV-cXOIgx1XrpuCe2cTrKcg8uD2_9G8wcHsw7x |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB7WFUQP4hPXZw96UYq7adMmgoi6Lr5YxAfoqaZJCoJ2V3dV_Gv-Omf6cFXQm4de2kwOky-ZmeabGYDVQIfCKE6MGq5cX6EPJzwt3cQGdaEwbDE2Y1u0g8Mr__iaX1fgvcyFIVpleSZmB7XpaPpHvtnAwCBE68XlZlLQIs6arZ3uo0sdpOimtWynkUPkxL69YvjW2z5q4lqvMdY6uNw_dIsOA672uNd3rfUVY0orwbVAa5cozw-CWCYBC40WjUYi8RhPYnykQF8Jd0OsrQ5VbD0VG-XhvEMwHFJUVIXhvYP22fmnHUBbL_JKf1RZnLHyTjVP3BOc2B-hG_ih78rvVnHg6v64nc2MXmsCxgtv1dnN4TUJFZtOwdiXGobTcHPx_ETZEcSncdATJ9gYBxH9kuV2PaC4waEv-JLy2dI75aQqxVC9YORtOb23FEeioKNSlLx7KDqKzcDVv2hzFqppJ7Vz4NSZDbnmdUp09a3RMg78WKF7IxmTVpoa1Et9RbooZk49Ne6jQRlmUnGEKo5IxZGswfqnSDev5PHX4MVyEaJiU_eiAQRrsFEuzJfPv002__dkKzCCSI5Oj9onCzDKCBTZX55FqPafnu0SOj39eLlAlwO3_w3oDxTSFIM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surfactants+assisted+solvothermal+derived+titania+nanoparticles%3A+synthesis+and+simulation&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Dastan%2C+Davoud&rft.au=Chaure%2C+Nandu&rft.au=Kartha%2C+Moses&rft.date=2017-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=28&rft.issue=11&rft.spage=7784&rft_id=info:doi/10.1007%2Fs10854-017-6474-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |