Drag reduction with different liquids on slippery liquid-infused porous surface
Solid/liquid interface drag reduction is a hot topic and it is of great significance to reduce energy consumption in industrial field. Herein, we prepare a slippery liquid-infused porous surface (SLIPS) with excellent self-healing and super-slippery properties. Through adjusting the density of Zn-Al...
Saved in:
Published in | Surface engineering Vol. 37; no. 10; pp. 1215 - 1222 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London, England
Taylor & Francis
03.10.2021
SAGE Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solid/liquid interface drag reduction is a hot topic and it is of great significance to reduce energy consumption in industrial field. Herein, we prepare a slippery liquid-infused porous surface (SLIPS) with excellent self-healing and super-slippery properties. Through adjusting the density of Zn-Al LDH films on aluminium foil, the ability of rough surface to capture lubricant oil is studied. The SLIPS can repel various liquids such as water, white mineral oil and ethanol. By testing the friction of solid/liquid interface, the drag reduction ratio of SLIPS is 20-30% to water, 10-20% to white mineral oil and 8-12% to ethanol at low velocity. We believe the SLIPS has great potential application in solid/liquid interface drag reduction. |
---|---|
AbstractList | Solid/liquid interface drag reduction is a hot topic and it is of great significance to reduce energy consumption in industrial field. Herein, we prepare a slippery liquid-infused porous surface (SLIPS) with excellent self-healing and super-slippery properties. Through adjusting the density of Zn-Al LDH films on aluminium foil, the ability of rough surface to capture lubricant oil is studied. The SLIPS can repel various liquids such as water, white mineral oil and ethanol. By testing the friction of solid/liquid interface, the drag reduction ratio of SLIPS is 20–30% to water, 10–20% to white mineral oil and 8–12% to ethanol at low velocity. We believe the SLIPS has great potential application in solid/liquid interface drag reduction. |
Author | Liu, Xiaowei Song, Keguan Zhang, Haifeng Tuo, Yanjing |
Author_xml | – sequence: 1 givenname: Yanjing surname: Tuo fullname: Tuo, Yanjing organization: Harbin Institute of Technology – sequence: 2 givenname: Haifeng surname: Zhang fullname: Zhang, Haifeng organization: State Key Laboratory of Urban Water Resource & Environment (Harbin Institute of Technology) – sequence: 3 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei email: LXW_hit@126.com organization: State Key Laboratory of Urban Water Resource & Environment (Harbin Institute of Technology) – sequence: 4 givenname: Keguan surname: Song fullname: Song, Keguan email: keguan_song@163.com organization: First Clinical Medical College of Harbin Medical University |
BookMark | eNqFkM9qwzAMh83oYG23RxjkBdI5jp047LLR_YVCL9vZuLbcuaRxJyeUvv0S2l12WE8C6fcJ6ZuQURMaIOQ2o7OMSnpHWVFSyfmMUda3JKelKC_IOCt5nrKK8xEZD5l0CF2RSYwbSllWSjEmyyfU6wTBdqb1oUn2vv1KrHcOEJo2qf13521M-kms_W4HeDj1Ut-4LoJNdgFDF5PYodMGrsml03WEm1Odks-X54_5W7pYvr7PHxepyUXepsBzUfHKiUI6IVwBIEFaZnIojAYnDORZtuKFLq20lIk-R9lKCtYfXq2Yzqfk_rjXYIgRwSnjWz280KL2tcqoGtyoXzdqcKNObnpa_KF36LcaD2c5duSiXoPahA6b_smz0MMR6o0F3Op9wNqqVh_qgA51Y3xU-f8rfgDPS4yH |
CitedBy_id | crossref_primary_10_1016_j_porgcoat_2024_108213 crossref_primary_10_1002_adem_202201732 crossref_primary_10_1039_D4NR04507F crossref_primary_10_1016_j_porgcoat_2024_108460 crossref_primary_10_1134_S156009042460075X crossref_primary_10_1063_5_0098343 crossref_primary_10_1063_5_0111025 crossref_primary_10_1016_j_triboint_2024_109870 crossref_primary_10_1016_j_surfcoat_2023_130283 crossref_primary_10_1021_acsnano_3c07407 crossref_primary_10_1007_s40544_023_0744_z crossref_primary_10_1021_acs_langmuir_3c01216 crossref_primary_10_1002_adma_202311489 crossref_primary_10_1016_j_porgcoat_2022_106806 crossref_primary_10_1016_j_surfcoat_2022_129160 crossref_primary_10_1177_02670844241270185 crossref_primary_10_1002_admi_202202212 crossref_primary_10_26599_FRICT_2025_9440876 |
Cites_doi | 10.1016/j.surfcoat.2019.06.077 10.1017/jfm.2017.503 10.1007/s42235-019-0096-2 10.1063/1.5011805 10.1002/adma.201500893 10.1002/admi.201300068 10.1073/pnas.1201973109 10.1080/02670844.2018.1560911 10.1063/1.4791602 10.1017/jfm.2017.360 10.1002/adma.201400883 10.1039/C2SM27032C 10.1039/C7SM02026K 10.1021/acsami.5b01772 10.1021/acs.langmuir.5b03240 10.1063/1.2205307 10.1002/smll.201402618 10.1021/acsami.7b18021 10.1039/C5RA11263J 10.1016/j.apsusc.2011.01.114 10.1021/am401532z 10.1039/C5TA09936F 10.1016/j.apsusc.2014.12.067 10.1021/la5021143 10.1021/acs.langmuir.5b04754 10.1002/adma.201802141 10.1016/j.colsurfb.2015.09.019 10.1021/acsanm.8b00199 10.1039/c3ta10225d 10.1016/j.oceaneng.2016.11.028 10.1063/1.4939272 10.1063/1.1755723 10.1002/adma.201703053 10.1016/j.colsurfa.2019.124384 |
ContentType | Journal Article |
Copyright | 2020 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute 2020 2020 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute |
Copyright_xml | – notice: 2020 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute 2020 – notice: 2020 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute |
DBID | AAYXX CITATION |
DOI | 10.1080/02670844.2020.1840757 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1743-2944 |
EndPage | 1222 |
ExternalDocumentID | 10_1080_02670844_2020_1840757 10.1080_02670844.2020.1840757 1840757 |
Genre | Research Article |
GrantInformation_xml | – fundername: National Science Foundation of China grantid: 61474034 |
GroupedDBID | 002 0BK 0R~ 123 1~B 29Q 4.4 8WZ A6W AAJMT AATAA ABCCY ABDBF ABFIM ABJNI ABKLS ABPNF ABXYU ACFOO ACGFS ACOXC ACTIO ACUHS ACUIR ADCVX ADGTB ADVBO ADYCX AENEX AEYOC AGDLA AGKLV AIJEM AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARTOV AWYRJ BLEHA BPACV CCCUG CS3 DGEBU DKSSO DU5 E01 EAP EBS EMK EPL ESX FHBDP H13 HCLVR HZ~ I-F IPNFZ J8X KYCEM LJTGL M4V M4Z MV1 P2P P75 P7B RIG ROSJB SCNPE SFC TDBHL TEN TFL TFT TFW TTHFI TUS AAGLT AAQXI ABRHV ABUJY ABUNW ACTTO ACVGN ADEBD ADUKL ADUMR ADXEU AEAXR AEHZU AEXNY AEZBV AFION AGVKY AGWUF AHDMH AKHJE ALKDR ALRRR ALXIB AMATQ BGSSV BWMZZ CYRSC DAOYK EJD FETWF IFELN M46 NUSFT O9- OPCYK Q1R SAUOL TAJZE ZE2 AAYXX AJGYC CITATION |
ID | FETCH-LOGICAL-c353t-e435949f568f55f6ee8e8d2c3e6caef5ce311b46a7d8d02556802b8520029b2a3 |
ISSN | 0267-0844 |
IngestDate | Thu Apr 24 22:55:20 EDT 2025 Tue Jul 01 05:24:52 EDT 2025 Tue Jun 17 22:37:15 EDT 2025 Wed Dec 25 09:06:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | porous surface Slippery drag reduction |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-e435949f568f55f6ee8e8d2c3e6caef5ce311b46a7d8d02556802b8520029b2a3 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1080_02670844_2020_1840757 crossref_primary_10_1080_02670844_2020_1840757 sage_journals_10_1080_02670844_2020_1840757 informaworld_taylorfrancis_310_1080_02670844_2020_1840757 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-03 |
PublicationDateYYYYMMDD | 2021-10-03 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | Surface engineering |
PublicationYear | 2021 |
Publisher | Taylor & Francis SAGE Publications |
Publisher_xml | – name: Taylor & Francis – name: SAGE Publications |
References | Zhang, Xia, Chen 2019; 35 Fukagata, Kasagi, Koumoutsakos 2006; 18 Min, Kim 2004; 16 Costantini, Mollicone, Battista 2018; 30 Yang, Qiu, Song 2015; 328 Dong, Cheng, Zhang 2013; 1 Mustache, Brudieu, Teisseire 2018; 14 Zhao, Sun, Deng 2018; 30 Yu, Zhang, Wang 2017; 29 Liu, Tian, Chen 2019; 588 Guan, Wells, Xu 2015; 31 Song, Liu, Zhang 2015; 5 Fu, Arenas, Leonardi 2017; 824 Smith, Dhiman, Anand 2013; 9 Togasawa, Ohnuki, Shiratori 2018; 1 Zhang, Xia, Zhang 2018; 10 Manna, Lynn 2015; 27 Liu, Chen, Zhao 2019; 374 Du, Wen, Zhang 2017; 130 Wang, Zhang, Liu 2016; 4 Wang, Zhang, Lu 2015; 136 Huang, Guo 2019; 16 Epstein, Wong, Belisle 2012; 109 Guo, Wang, Wang 2011; 257 Subramanyam, Azimi, Varanasi 2014; 1 Rosenberg, Van Buren, Fu 2016; 28 Solomon, Khalil, Varanasi 2014; 30 Hemeda, Tafreshi 2016; 32 Kavalenka, Lischker, Zeiger 2015; 7 Tian, Su, Jiang 2014; 26 Cheng, Song, Dong 2015; 11 Li, Kleintschek, Rieder 2013; 5 Aljallis, Sarshar, Datla 2013; 25 Zhao, Xue, Yang 2019 Van, Smits 2017; 827 CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 Zhang D (CIT0028) 2019; 35 CIT0014 CIT0013 CIT0035 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0009 CIT0008 |
References_xml | – volume: 328 start-page: 491 year: 2015 end-page: 500 article-title: Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: preparation and corrosion protection application publication-title: Appl Surf Sci – volume: 16 start-page: 769 year: 2019 end-page: 793 article-title: Fabrications and applications of slippery liquid-infused porous surfaces inspired from nature: a review publication-title: J Bionic Eng – volume: 10 start-page: 5892 issue: 6 year: 2018 end-page: 5901 article-title: Surface functionalization for a non-textured liquid infused surface with enhanced lifetime publication-title: ACS Appl Mater Inter – volume: 5 start-page: 6704 year: 2013 end-page: 6711 article-title: Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications publication-title: ACS Appl Mater Inter – volume: 109 start-page: 13182 year: 2012 end-page: 13187 article-title: Liquid-infused structured surfaces with exceptional anti-biofouling performance publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 015103 issue: 1 year: 2016 article-title: Turbulent drag reduction over air-and liquid-impregnated surfaces publication-title: Phys Fluids – volume: 32 start-page: 2955 year: 2016 end-page: 2962 article-title: Liquid–Infused Surfaces with Trapped Air (LISTA) for drag force reduction publication-title: Langmuir – volume: 5 start-page: 70080 year: 2015 end-page: 70085 article-title: Multiple sheet-layered super slippery surfaces based on anodic aluminium oxide and its anticorrosion property publication-title: RSC Adv – volume: 588 start-page: 124384 year: 2019 article-title: Design and preparation of bioinspired slippery liquid-infused porous surfaces with anti-icing performance via delayed phase inversion process publication-title: Colloid Surf A – volume: 29 start-page: 1703053 year: 2017 article-title: Superwettability of gas bubbles and its application: from bioinspiration to advanced materials publication-title: Adv Mater – volume: 30 start-page: 10970 year: 2014 end-page: 10976 article-title: Drag reduction using lubricant-impregnated surfaces in viscous laminar flow publication-title: Langmuir – start-page: 1 year: 2019 end-page: 8 article-title: Drag reduction effect of ultraviolet laser-fabricated superhydrophobic surface publication-title: Surf Eng – volume: 824 start-page: 688 year: 2017 end-page: 700 article-title: Liquid-infused surfaces as a passive method of turbulent drag reduction publication-title: J Fluid Mech – volume: 30 start-page: 1802141 year: 2018 article-title: Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces publication-title: Adv Mater – volume: 11 start-page: 1665 year: 2015 end-page: 1671 article-title: Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings publication-title: Small – volume: 25 start-page: 351 issue: 2 year: 2013 end-page: 412 article-title: Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow publication-title: Phys Fluids – volume: 1 start-page: 1300068 year: 2014 article-title: Designing lubricant impregnated textured surfaces to resist scale formation publication-title: Adv Mater Interfaces – volume: 1 start-page: 5886 year: 2013 end-page: 5891 article-title: Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed publication-title: Mater Chem A – volume: 14 start-page: 1100 issue: 7 year: 2018 end-page: 1107 article-title: Drop impact dynamics on slippery liquid-infused porous surfaces: influence of oil thickness publication-title: Soft Matter – volume: 31 start-page: 11781 year: 2015 end-page: 11789 article-title: Evaporation of sessile droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS) publication-title: Langmuir – volume: 9 start-page: 1772 year: 2013 end-page: 1780 article-title: Droplet mobility on lubricant-impregnated surfaces publication-title: Soft Matter – volume: 35 start-page: 8276 issue: 25 year: 2019 end-page: 8284 article-title: PDMS-Infused poly(high internal phase emulsion) templates for the construction of slippery liquid-infused porous surfaces with self-cleaning and self-repairing properties publication-title: Langmuir – volume: 374 start-page: 889 year: 2019 end-page: 896 article-title: Slippery liquid-infused porous electric heating coating for anti-icing and de-icing applications publication-title: Surf Coat Technol – volume: 27 start-page: 3007 year: 2015 end-page: 3012 article-title: Fabrication of liquid-infused surfaces using reactive polymer multilayers: principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces publication-title: Adv Mater – volume: 257 start-page: 5831 year: 2011 end-page: 5836 article-title: Facile fabrication of superhydrophobic surface with micro/nanoscale binary structures on aluminium substrate publication-title: Appl Surf Sci – volume: 130 start-page: 328 issue: 15 year: 2017 end-page: 335 article-title: Maintenance of air layer and drag reduction on superhydrophobic surface publication-title: Ocean Eng – volume: 30 start-page: 025102 issue: 2 year: 2018 article-title: Drag reduction induced by superhydrophobic surfaces in turbulent pipe flow publication-title: Phys Fluids – volume: 16 start-page: 55 issue: 7 year: 2004 end-page: 58 article-title: Effects of hydrophobic surface on skin-friction drag publication-title: Phys Fluids – volume: 1 start-page: 1758 issue: 4 year: 2018 end-page: 1765 article-title: A biocompatible slippery surface based on a boehmite nanostructure with omniphobicity for hot liquids and boiling stability publication-title: ACS Appl Nano Mater – volume: 827 start-page: 448 year: 2017 end-page: 456 article-title: Substantial drag reduction in turbulent flow using liquid-infused surfaces publication-title: J Fluid Mech – volume: 4 start-page: 2524 year: 2016 end-page: 2529 article-title: Slippery liquid-infused substrates: a versatile preparation, unique anti-wetting and drag-reduction effect on water publication-title: J Mater Chem A – volume: 7 start-page: 10651 year: 2015 end-page: 10655 article-title: Bioinspired air-retaining nanofur for drag reduction publication-title: ACS Appl Mater Inter – volume: 26 start-page: 6872 year: 2014 end-page: 6897 article-title: Interfacial material system exhibiting superwettability publication-title: Adv Mater – volume: 18 start-page: 051703 issue: 5 year: 2006 article-title: A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces publication-title: Phys Fluids – volume: 136 start-page: 240 year: 2015 end-page: 247 article-title: Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application publication-title: Colloid Surface B – ident: CIT0029 doi: 10.1016/j.surfcoat.2019.06.077 – ident: CIT0023 doi: 10.1017/jfm.2017.503 – ident: CIT0020 doi: 10.1007/s42235-019-0096-2 – ident: CIT0005 doi: 10.1063/1.5011805 – ident: CIT0032 doi: 10.1002/adma.201500893 – ident: CIT0015 doi: 10.1002/admi.201300068 – ident: CIT0033 doi: 10.1073/pnas.1201973109 – ident: CIT0004 doi: 10.1080/02670844.2018.1560911 – ident: CIT0003 doi: 10.1063/1.4791602 – ident: CIT0024 doi: 10.1017/jfm.2017.360 – ident: CIT0007 doi: 10.1002/adma.201400883 – ident: CIT0013 doi: 10.1039/C2SM27032C – ident: CIT0018 doi: 10.1039/C7SM02026K – ident: CIT0006 doi: 10.1021/acsami.5b01772 – ident: CIT0012 doi: 10.1021/acs.langmuir.5b03240 – ident: CIT0002 doi: 10.1063/1.2205307 – ident: CIT0010 doi: 10.1002/smll.201402618 – ident: CIT0014 doi: 10.1021/acsami.7b18021 – ident: CIT0016 doi: 10.1039/C5RA11263J – ident: CIT0034 doi: 10.1016/j.apsusc.2011.01.114 – ident: CIT0031 doi: 10.1021/am401532z – ident: CIT0021 doi: 10.1039/C5TA09936F – ident: CIT0017 doi: 10.1016/j.apsusc.2014.12.067 – ident: CIT0026 doi: 10.1021/la5021143 – ident: CIT0035 doi: 10.1021/acs.langmuir.5b04754 – volume: 35 start-page: 8276 issue: 25 year: 2019 ident: CIT0028 publication-title: Langmuir – ident: CIT0025 doi: 10.1002/adma.201802141 – ident: CIT0027 doi: 10.1016/j.colsurfb.2015.09.019 – ident: CIT0019 doi: 10.1021/acsanm.8b00199 – ident: CIT0009 doi: 10.1039/c3ta10225d – ident: CIT0008 doi: 10.1016/j.oceaneng.2016.11.028 – ident: CIT0022 doi: 10.1063/1.4939272 – ident: CIT0001 doi: 10.1063/1.1755723 – ident: CIT0011 doi: 10.1002/adma.201703053 – ident: CIT0030 doi: 10.1016/j.colsurfa.2019.124384 |
SSID | ssj0021785 |
Score | 2.373839 |
Snippet | Solid/liquid interface drag reduction is a hot topic and it is of great significance to reduce energy consumption in industrial field. Herein, we prepare a... |
SourceID | crossref sage informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1215 |
SubjectTerms | drag reduction porous surface Slippery |
Title | Drag reduction with different liquids on slippery liquid-infused porous surface |
URI | https://www.tandfonline.com/doi/abs/10.1080/02670844.2020.1840757 https://journals.sagepub.com/doi/full/10.1080/02670844.2020.1840757 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwELW2ySU9VG2aqOmXfMhtxQpsYOGYNI1WbZMemkibE7LNOKKKNlsWVLX3_u-OsWEhXTVNLwjNYqz1PIaZYfyGkMOAK8ZD7nt5LDFA4UJ4aRyCZ_rcstyXkDR0DGfn8ewy_DCP5qPRr17VUl3Jifq5cV_J_2gVZahXs0v2AZrtbooCPEf94hE1jMd_0vFJKa7HpSFfbbTY5FTbjifV-Kb4Vhd58zkAncnlEsofTubh5PUKXU10vk0J7KoutVCDoqAvVjSGNV_huhSjSa9eicXXnrTLPM9EoWEt_1TURjovxO13KLqEjqsE_gjXtcOnSz0wW_vG73zz2pxdZGh__cRSO07A2lbDhspSJ3PG1zK-tCDze6bU0F70XssBs_uX_zD5rkYSJzTzYcTPUIhh69QSX99h03Yjso3XPyLbDKMNNJfbR8cnx6dd5B5Mm96u3b9qt4IZkvZNNxo4OQMK3EHBYOPDXDwlT1zwQY8skp6RESx2yeMeJeVz8tlginaYogZTtMMUdZii-EuLKTrEFLWYog5Te-Ty9P3Fu5nnmm54ike88gD95zRMdRQnOop0DJBAkjPFIVYCdKSAB4EMYzHNk9wS2PlMJoa9i6WSCb5Ptha3C3hBKGDsDgLAGPlQYiSiMNzwUy19lIFmByRsVylTjpHeNEa5yYKWuNYtbmYWN3OLe0Am3bClpWS5b0DaV0FWNbkwbRvXZPyesWOjr8w99au_z_TyQVe_Ijvrp-o12arKGt6gi1vJtw6AvwGBJpjG |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drag+reduction+with+different+liquids+on+slippery+liquid-infused+porous+surface&rft.jtitle=Surface+engineering&rft.au=Tuo%2C+Yanjing&rft.au=Zhang%2C+Haifeng&rft.au=Liu%2C+Xiaowei&rft.au=Song%2C+Keguan&rft.date=2021-10-03&rft.pub=SAGE+Publications&rft.issn=0267-0844&rft.eissn=1743-2944&rft.volume=37&rft.issue=10&rft.spage=1215&rft.epage=1222&rft_id=info:doi/10.1080%2F02670844.2020.1840757&rft.externalDocID=10.1080_02670844.2020.1840757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-0844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-0844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-0844&client=summon |