EM Algorithm-Based Likelihood Estimation for Some Cure Rate Models

In the recent work of Rodrigues et al. (2009) , a flexible cure rate survival model was developed by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discus...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical theory and practice Vol. 6; no. 4; pp. 698 - 724
Main Authors Balakrishnan, N., Pal, S.
Format Journal Article
LanguageEnglish
Published Cham Taylor & Francis Group 01.12.2012
Springer International Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the recent work of Rodrigues et al. (2009) , a flexible cure rate survival model was developed by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discussed in the literature. As the data obtained from cancer clinical trials are often subject to right censoring, the expectation maximization (EM) algorithm can be used as a powerful and efficient tool for the estimation of the model parameters based on right censored data. In this paper, the cure rate model developed by Rodrigues et al. (2009) is considered and assuming the time-to-event to follow the exponential distribution, exact likelihood inference is developed based on the EM algorithm. The inverse of the observed information matrix is used to compute the standard errors of the maximum likelihood estimates (MLEs). An extensive Monte Carlo simulation study is performed to illustrate the method of inference developed here. Finally, the proposed methodology is illustrated with real data on cutaneous melanoma.
AbstractList In the recent work of Rodrigues et al. (2009), a flexible cure rate survival model was developed by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discussed in the literature. As the data obtained from cancer clinical trials are often subject to right censoring, the expectation maximization (EM) algorithm can be used as a powerful and efficient tool for the estimation of the model parameters based on right censored data. In this paper, the cure rate model developed by Rodrigues et al. (2009) is considered and assuming the time-to-event to follow the exponential distribution, exact likelihood inference is developed based on the EM algorithm. The inverse of the observed information matrix is used to compute the standard errors of the maximum likelihood estimates (MLEs). An extensive Monte Carlo simulation study is performed to illustrate the method of inference developed here. Finally, the proposed methodology is illustrated with real data on cutaneous melanoma.
In the recent work of Rodrigues et al. (2009) , a flexible cure rate survival model was developed by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discussed in the literature. As the data obtained from cancer clinical trials are often subject to right censoring, the expectation maximization (EM) algorithm can be used as a powerful and efficient tool for the estimation of the model parameters based on right censored data. In this paper, the cure rate model developed by Rodrigues et al. (2009) is considered and assuming the time-to-event to follow the exponential distribution, exact likelihood inference is developed based on the EM algorithm. The inverse of the observed information matrix is used to compute the standard errors of the maximum likelihood estimates (MLEs). An extensive Monte Carlo simulation study is performed to illustrate the method of inference developed here. Finally, the proposed methodology is illustrated with real data on cutaneous melanoma.
Author Pal, S.
Balakrishnan, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Balakrishnan
  fullname: Balakrishnan, N.
  email: bala@univmail.cis.mcmaster.ca
  organization: Department of Mathematics and Statistics , McMaster University
– sequence: 2
  givenname: S.
  surname: Pal
  fullname: Pal, S.
  organization: Department of Mathematics and Statistics , McMaster University
BookMark eNqFkMtOwzAQRS1UJNrCH7DwD6SM48RJ2KC2Kg-pFRKPteXEduuSxMh2hfr3pARYsKCrGY10ZuaeERq0tlUIXRKYEMjhiqRpkTPIJzGQeJKRIgd6goaHcZQzwga_PeRnaOT9FoARoHSIZosVntZr60zYNNFMeCXx0ryp2myslXjhg2lEMLbF2jr8bBuF5zun8JMICq-sVLU_R6da1F5dfNcxer1dvMzvo-Xj3cN8uowqmtIQSa2SKkk1AChC4zLPtJSxYCIt00SWgpCCxbJIaCWzAqBkAogiLFOq0iLTlI5R0u-tnPXeKc3fXfec23MC_OCB_3jgBw-899Bh13-wyoSvSMEJUx-D0x723a12rRzf2p1ru5jHuJueM23nrREf1tWSB7GvrdNOtJXxnP674RNcPYes
CitedBy_id crossref_primary_10_3390_stats7020030
crossref_primary_10_1007_s00184_017_0638_8
crossref_primary_10_1080_03610926_2017_1321769
crossref_primary_10_5351_CSAM_2017_24_1_043
crossref_primary_10_1002_sim_9904
crossref_primary_10_1080_03610918_2024_2314664
crossref_primary_10_1080_03610918_2022_2067876
crossref_primary_10_1007_s42519_022_00274_8
crossref_primary_10_1080_23737484_2023_2169210
crossref_primary_10_1214_23_AOAS1741
crossref_primary_10_1002_sim_9189
crossref_primary_10_1080_03610926_2014_964807
crossref_primary_10_1080_02664763_2020_1786676
crossref_primary_10_1007_s00180_024_01480_7
crossref_primary_10_1007_s10985_019_09482_0
crossref_primary_10_1016_j_csda_2016_10_001
crossref_primary_10_1080_03610918_2019_1642483
crossref_primary_10_1080_03610918_2022_2032157
crossref_primary_10_1002_bimj_201900005
crossref_primary_10_1016_j_spl_2016_04_005
crossref_primary_10_1007_s00180_023_01389_7
crossref_primary_10_1080_00949655_2016_1247843
crossref_primary_10_1177_09622802231210917
crossref_primary_10_1177_0962280217708686
crossref_primary_10_1080_03610926_2017_1373817
crossref_primary_10_1002_sim_9739
crossref_primary_10_1177_0962280213491641
crossref_primary_10_1007_s11009_015_9477_0
crossref_primary_10_1186_s40488_016_0052_1
crossref_primary_10_1016_j_csda_2013_04_018
crossref_primary_10_1002_sim_9850
crossref_primary_10_1080_03610918_2024_2393702
crossref_primary_10_3390_jrfm11010006
crossref_primary_10_1080_02664763_2024_2418476
crossref_primary_10_1007_s00180_017_0781_8
crossref_primary_10_1080_00949655_2015_1071375
crossref_primary_10_1177_0962280217708683
crossref_primary_10_1002_sim_7293
Cites_doi 10.1111/j.1467-9876.2005.00474.x
10.1007/978-1-4757-3447-8
10.1002/cjs.5550330407
10.1002/9780470191613
10.1016/0025-5564(93)90066-J
10.1007/s11749-006-0023-9
10.1111/j.0006-341X.2000.00227.x
10.1002/sim.2375
10.1080/01621459.1952.10501187
10.1142/2420
10.2307/2529885
10.1214/06-BA113
10.1016/j.jspi.2007.05.028
10.1016/j.jspi.2009.04.014
10.1080/01621459.1987.10478472
10.1002/sim.4780130908
10.1111/j.2517-6161.1995.tb02037.x
10.1111/j.2517-6161.1982.tb01203.x
ContentType Journal Article
Copyright Copyright Grace Scientific Publishing, LLC 2012
Grace Scientific Publishing 2012
Copyright_xml – notice: Copyright Grace Scientific Publishing, LLC 2012
– notice: Grace Scientific Publishing 2012
DBID AAYXX
CITATION
DOI 10.1080/15598608.2012.719803
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1559-8616
EndPage 724
ExternalDocumentID 10_1080_15598608_2012_719803
719803
GroupedDBID -EM
.7F
0R~
4.4
406
8UJ
AACDK
AAHNG
AAJBT
AAUYE
ABECU
ABFIM
ABFTV
ABJNI
ABKCH
ABMQK
ABPEM
ABTAI
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACGFS
ACHSB
ACMLO
ACOKC
ACTIO
ACZOJ
ADCVX
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AIJEM
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AQRUH
AVBZW
AXYYD
BGNMA
CCCUG
CSCUP
DKSSO
DPUIP
EBLON
EBS
EJD
E~A
E~B
F5P
FINBP
FNLPD
FSGXE
GGCAI
GTTXZ
H13
HZ~
H~P
IKXTQ
IWAJR
J9A
JZLTJ
J~4
KOV
LLZTM
M4Y
M4Z
NPVJJ
NQJWS
NU0
O9-
P2P
PT4
ROL
RSV
S-T
SJN
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TDBHL
TFL
TFT
TFW
TSG
UOJIU
UT5
UTJUX
UU3
VEKWB
VFIZW
ZMTXR
AASML
AATNV
ABAKF
ACDTI
ACPIV
AIGIU
AMYLF
FIGPU
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c353t-dfe4c45f000e132b87fdd2a6a5b54dba11962d943cd7900b6a01e167eecfa7f33
ISSN 1559-8608
IngestDate Tue Jul 01 00:35:13 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Fri Feb 21 02:31:16 EST 2025
Wed Dec 25 09:05:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Profile likelihood
62P10
Conway-Maxwell Poisson (COM-Poisson) distribution
Exponential distribution
62N02
Maximum likelihood estimators
Cure rate models
Lifetime data
EM algorithm
Asymptotic variances
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-dfe4c45f000e132b87fdd2a6a5b54dba11962d943cd7900b6a01e167eecfa7f33
PageCount 27
ParticipantIDs crossref_primary_10_1080_15598608_2012_719803
springer_journals_10_1080_15598608_2012_719803
crossref_citationtrail_10_1080_15598608_2012_719803
informaworld_taylorfrancis_310_1080_15598608_2012_719803
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20121200
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 20121200
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Journal of statistical theory and practice
PublicationTitleAbbrev J Stat Theory Pract
PublicationYear 2012
Publisher Taylor & Francis Group
Springer International Publishing
Publisher_xml – name: Taylor & Francis Group
– name: Springer International Publishing
References Claeskens, Nguti, Janssen (CR3) 2008; 17
Berkson, Gage (CR2) 1952; 47
Lange (CR12) 1995; 57
Kokonendji, Mizère, Balakrishnan (CR11) 2008; 138
Yakovlev (CR21) 1994; 13
Hoggart, Griffin, George (CR8) 2001
Maller, Zhou (CR14) 1996
Rodrigues, de Castro, Cancho, Balakrishnan (CR17) 2009; 139
McLachlan, Krishnan (CR15) 2008
Self, Liang (CR18) 1987; 82
Ibrahim, Chen, Sinha (CR9) 2001
Yin, Ibrahim (CR24) 2005; 33
Balakrishnan, Peng (CR1) 2006; 25
Farewell (CR7) 1982; 38
Yakovlev, Tsodikov (CR22) 1996
Sy, Taylor (CR20) 2000; 56
Dempster, Laird, Rubin (CR6) 1977; 39
Shmueli, Minka, Kadane, Borle, Boatwright (CR19) 2005; 54
Conway, Maxwell (CR4) 1961; 12
Kadane, Shmueli, Minka, Borle, Boatwright (CR10) 2006; 1
Louis (CR13) 1982; 44
Meeker, Escobar (CR16) 1998
Yakovlev, Tsodikov, Bass (CR23) 1993; 116
Cox, Oakes (CR5) 1984
Conway R. W. (CIT0004) 1961; 12
Kadane J. B. (CIT0010) 2006; 1
Sy J. P. (CIT0020) 2000; 56
Dempster A. P. (CIT0006) 1977; 39
Farewell V. T. (CIT0007) 1982; 38
Shmueli G. (CIT0019) 2005; 54
Cox D. (CIT0005) 1984
Louis T. A. (CIT0013) 1982; 44
Balakrishnan N. (CIT0001) 2006; 25
Kokonendji C. C. (CIT0011) 2008; 138
Berkson J. (CIT0002) 1952; 47
Ibrahim J. G. (CIT0009) 2001
Meeker W. Q. (CIT0016) 1998
Maller R. A. (CIT0014) 1996
Rodrigues J. (CIT0017) 2009; 139
Yin G. (CIT0024) 2005; 33
Self S. G. (CIT0018) 1987; 82
Yakovlev A. Y. (CIT0021) 1994; 13
Yakovlev A. Y. (CIT0023) 1993; 116
Claeskens G. (CIT0003) 2008; 17
Lange K. (CIT0012) 1995; 57
McLachlan G. J. (CIT0015) 2008
Yakovlev A. Y. (CIT0022) 1996
CIT0008
References_xml – volume: 12
  start-page: 132
  year: 1961
  end-page: 136
  ident: CR4
  article-title: A queuing model with state dependent services rates
  publication-title: J. Ind. Eng.
– volume: 44
  start-page: 226
  year: 1982
  end-page: 233
  ident: CR13
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 54
  start-page: 127
  year: 2005
  end-page: 142
  ident: CR19
  article-title: A useful distribution for fitting discrete data: revival of the Conway-Maxwell-Poisson distribution
  publication-title: J. R. Stat. Soc. Ser. C
  doi: 10.1111/j.1467-9876.2005.00474.x
– year: 2001
  ident: CR9
  publication-title: Bayesian survival analysis
  doi: 10.1007/978-1-4757-3447-8
– volume: 33
  start-page: 559
  year: 2005
  end-page: 570
  ident: CR24
  article-title: Cure rate models: a unified approach
  publication-title: Can. J. Stat.
  doi: 10.1002/cjs.5550330407
– volume: 57
  start-page: 425
  year: 1995
  end-page: 437
  ident: CR12
  article-title: A gradient algorithm locally equivalent to the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– year: 2008
  ident: CR15
  publication-title: The EM algorithm and extensions
  doi: 10.1002/9780470191613
– volume: 116
  start-page: 197
  year: 1993
  end-page: 219
  ident: CR23
  article-title: A stochastic-model of hormesis
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(93)90066-J
– year: 1996
  ident: CR14
  publication-title: Survival analysis with long-term survivors
– volume: 17
  start-page: 69
  year: 2008
  end-page: 82
  ident: CR3
  article-title: One-sided tests in shared frailty models
  publication-title: Test
  doi: 10.1007/s11749-006-0023-9
– volume: 56
  start-page: 227
  year: 2000
  end-page: 236
  ident: CR20
  article-title: Estimation in a Cox proportional hazards cure model
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00227.x
– volume: 25
  start-page: 2797
  year: 2006
  end-page: 2816
  ident: CR1
  article-title: Generalized gamma frailty model
  publication-title: Stat. Med.
  doi: 10.1002/sim.2375
– volume: 47
  start-page: 501
  year: 1952
  end-page: 515
  ident: CR2
  article-title: Survival cure for cancer patients following treatment
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1952.10501187
– year: 1996
  ident: CR22
  publication-title: Stochastic models of tumor latency and their biostatistical applications
  doi: 10.1142/2420
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: CR6
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– year: 1984
  ident: CR5
  publication-title: Analysis of survival data
– volume: 38
  start-page: 1041
  year: 1982
  end-page: 1046
  ident: CR7
  article-title: The use of mixture models for the analysis of survival data with long-term survivors
  publication-title: Biometrics
  doi: 10.2307/2529885
– volume: 1
  start-page: 363
  year: 2006
  end-page: 374
  ident: CR10
  article-title: Conjugate analysis of the Conway-Maxwell-Poisson distribution
  publication-title: Bayesian Anal.
  doi: 10.1214/06-BA113
– volume: 138
  start-page: 1287
  year: 2008
  end-page: 1296
  ident: CR11
  article-title: Connections of the Poisson weight function to overdispersion and underdispersion
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2007.05.028
– volume: 139
  start-page: 3605
  year: 2009
  end-page: 3611
  ident: CR17
  article-title: COM-Poisson cure rate survival models and an application to a cutaneous melanoma data
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2009.04.014
– volume: 82
  start-page: 605
  year: 1987
  end-page: 610
  ident: CR18
  article-title: Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1987.10478472
– start-page: 61
  year: 2001
  end-page: 70
  ident: CR8
  article-title: A Bayesian partition model for customer attrition
  publication-title: Bayesian methods with applications to science, policy, and official statistics
– year: 1998
  ident: CR16
  publication-title: Statistical methods for reliability data
– volume: 13
  start-page: 983
  year: 1994
  end-page: 985
  ident: CR21
  article-title: Parametric versus nonparametric methods for estimating cure rates based on censored survival-data
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780130908
– volume: 57
  start-page: 425
  year: 1995
  ident: CIT0012
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1995.tb02037.x
– volume: 54
  start-page: 127
  year: 2005
  ident: CIT0019
  publication-title: J. R. Stat. Soc. Ser. C
  doi: 10.1111/j.0006-341X.2000.00227.x
– volume: 33
  start-page: 559
  year: 2005
  ident: CIT0024
  publication-title: Can. J. Stat
  doi: 10.1002/cjs.5550330407
– volume: 12
  start-page: 132
  year: 1961
  ident: CIT0004
  publication-title: J. Ind. Eng
– ident: CIT0008
– volume-title: Analysis of survival data
  year: 1984
  ident: CIT0005
– volume: 82
  start-page: 605
  year: 1987
  ident: CIT0018
  publication-title: J. Am. Stat. Assoc
  doi: 10.1111/j.1467-9876.2005.00474.x
– volume: 39
  start-page: 1
  year: 1977
  ident: CIT0006
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.2307/2529885
– volume: 116
  start-page: 197
  year: 1993
  ident: CIT0023
  publication-title: Math. Biosci
  doi: 10.1002/cjs.5550330407
– volume: 56
  start-page: 227
  year: 2000
  ident: CIT0020
  publication-title: Biometrics
  doi: 10.1002/sim.4780130908
– volume: 13
  start-page: 983
  year: 1994
  ident: CIT0021
  publication-title: Stat. Med
  doi: 10.1002/sim.4780130908
– volume: 25
  start-page: 2797
  year: 2006
  ident: CIT0001
  publication-title: Stat. Med
  doi: 10.1002/sim.2375
– volume: 17
  start-page: 69
  year: 2008
  ident: CIT0003
  publication-title: Test
  doi: 10.1007/s11749-006-0023-9
– volume: 1
  start-page: 363
  year: 2006
  ident: CIT0010
  publication-title: Bayesian Anal
  doi: 10.1016/j.jspi.2007.05.028
– volume: 47
  start-page: 501
  year: 1952
  ident: CIT0002
  publication-title: J. Am. Stat. Assoc
  doi: 10.1080/01621459.1952.10501187
– volume-title: Bayesian survival analysis
  year: 2001
  ident: CIT0009
  doi: 10.1007/978-1-4757-3447-8
– volume: 44
  start-page: 226
  year: 1982
  ident: CIT0013
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– volume-title: Stochastic models of tumor latency and their biostatistical applications
  year: 1996
  ident: CIT0022
  doi: 10.1142/2420
– volume-title: Statistical methods for reliability data
  year: 1998
  ident: CIT0016
  doi: 10.1016/j.jspi.2009.04.014
– volume: 139
  start-page: 3605
  year: 2009
  ident: CIT0017
  publication-title: J. Stat. Plan. Inference
  doi: 10.1080/01621459.1987.10478472
– volume-title: Survival analysis with long-term survivors
  year: 1996
  ident: CIT0014
  doi: 10.1002/9780470191613
– volume-title: The EM algorithm and extensions
  year: 2008
  ident: CIT0015
  doi: 10.1002/9780470191613
– volume: 138
  start-page: 1287
  year: 2008
  ident: CIT0011
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2007.05.028
– volume: 38
  start-page: 1041
  year: 1982
  ident: CIT0007
  publication-title: Biometrics
  doi: 10.2307/2529885
SSID ssj0061033
Score 2.090708
Snippet In the recent work of Rodrigues et al. (2009) , a flexible cure rate survival model was developed by assuming the number of competing causes of the event of...
In the recent work of Rodrigues et al. (2009), a flexible cure rate survival model was developed by assuming the number of competing causes of the event of...
SourceID crossref
springer
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 698
SubjectTerms Asymptotic variances
Conway-Maxwell Poisson (COM-Poisson) distribution
Cure rate models
EM algorithm
Exponential distribution
Lifetime data
Mathematics and Statistics
Maximum likelihood estimators
Probability Theory and Stochastic Processes
Profile likelihood
Statistical Theory and Methods
Statistics
Title EM Algorithm-Based Likelihood Estimation for Some Cure Rate Models
URI https://www.tandfonline.com/doi/abs/10.1080/15598608.2012.719803
https://link.springer.com/article/10.1080/15598608.2012.719803
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdKd4ED4inGSz5wmxLi2LGTYzt1mkDtgXXSblHs2ICWtohmF_56Pj_SZOsYsEsUuU0c-fv5e_l7IPRBiZQZYat8cmUipomOihwM1wpEvc6szsptvvN8wU_P2aeL7GI0-jyIWrpqZax-3ZpXch-qwhjQ1WbJ_gdldy-FAbgH-sIVKAzXf6LxbH40ab5uwL7_toqmII9qsLEvdfPd1yqG3bvqYwnPNit9dGzPC76AfumaoDXbP-imNs3IVXC2oeguez8UFPApVb37s6kubYv60OR4EfcnUs61fBYPvQokvRGhsdxr8DHwhQVOaf2HPPHMUw_HfPJkx175AEVswCp5kQ-krvCZ1HsM3UdAEldGPnGheGksCMCJ9gJsF1bof3iADlKwGdIxOpicTKeLTjCDokhdvkX35V0mZZ58vG2Ca5rKtTq2e6fmThlZPkGPA6XwxEPiKRrp9TP0aL4rwbt9jqazOb4BDtyDA_fgwDAjtuDAFhzYggN7cLxA5yez5fFpFBpmRIpmtI1qo5limQExpwlNZS5MXacVrzKZsVpWBNhtWheMqloUSSJ5lRBNuNBamUoYSl-i8Xqz1q8QZkbXYEobY0DflKAHSloYyRUROk2KKj9EtFucUoVq8rapSVOSUHS2W9LSLmnpl_QQRbunfvhqKn_5fz5c97J1sDQekSW9-9G4o1EZtuz2zrle33-uN-hhv4feonH780q_A121le8DBn8DU8mJcA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EM+Algorithm-Based+Likelihood+Estimation+for+Some+Cure+Rate+Models&rft.jtitle=Journal+of+statistical+theory+and+practice&rft.au=Balakrishnan%2C+N.&rft.au=Pal%2C+S.&rft.date=2012-12-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=1559-8608&rft.eissn=1559-8616&rft.volume=6&rft.issue=4&rft.spage=698&rft.epage=724&rft_id=info:doi/10.1080%2F15598608.2012.719803&rft.externalDocID=719803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-8608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-8608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-8608&client=summon