EM Algorithm-Based Likelihood Estimation for Some Cure Rate Models
In the recent work of Rodrigues et al. (2009) , a flexible cure rate survival model was developed by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discus...
Saved in:
Published in | Journal of statistical theory and practice Vol. 6; no. 4; pp. 698 - 724 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Taylor & Francis Group
01.12.2012
Springer International Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the recent work of
Rodrigues et al. (2009)
, a flexible cure rate survival model was developed by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discussed in the literature. As the data obtained from cancer clinical trials are often subject to right censoring, the expectation maximization (EM) algorithm can be used as a powerful and efficient tool for the estimation of the model parameters based on right censored data. In this paper, the cure rate model developed by
Rodrigues et al. (2009)
is considered and assuming the time-to-event to follow the exponential distribution, exact likelihood inference is developed based on the EM algorithm. The inverse of the observed information matrix is used to compute the standard errors of the maximum likelihood estimates (MLEs). An extensive Monte Carlo simulation study is performed to illustrate the method of inference developed here. Finally, the proposed methodology is illustrated with real data on cutaneous melanoma. |
---|---|
AbstractList | In the recent work of Rodrigues et al. (2009), a flexible cure rate survival model was developed by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discussed in the literature. As the data obtained from cancer clinical trials are often subject to right censoring, the expectation maximization (EM) algorithm can be used as a powerful and efficient tool for the estimation of the model parameters based on right censored data. In this paper, the cure rate model developed by Rodrigues et al. (2009) is considered and assuming the time-to-event to follow the exponential distribution, exact likelihood inference is developed based on the EM algorithm. The inverse of the observed information matrix is used to compute the standard errors of the maximum likelihood estimates (MLEs). An extensive Monte Carlo simulation study is performed to illustrate the method of inference developed here. Finally, the proposed methodology is illustrated with real data on cutaneous melanoma. In the recent work of Rodrigues et al. (2009) , a flexible cure rate survival model was developed by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discussed in the literature. As the data obtained from cancer clinical trials are often subject to right censoring, the expectation maximization (EM) algorithm can be used as a powerful and efficient tool for the estimation of the model parameters based on right censored data. In this paper, the cure rate model developed by Rodrigues et al. (2009) is considered and assuming the time-to-event to follow the exponential distribution, exact likelihood inference is developed based on the EM algorithm. The inverse of the observed information matrix is used to compute the standard errors of the maximum likelihood estimates (MLEs). An extensive Monte Carlo simulation study is performed to illustrate the method of inference developed here. Finally, the proposed methodology is illustrated with real data on cutaneous melanoma. |
Author | Pal, S. Balakrishnan, N. |
Author_xml | – sequence: 1 givenname: N. surname: Balakrishnan fullname: Balakrishnan, N. email: bala@univmail.cis.mcmaster.ca organization: Department of Mathematics and Statistics , McMaster University – sequence: 2 givenname: S. surname: Pal fullname: Pal, S. organization: Department of Mathematics and Statistics , McMaster University |
BookMark | eNqFkMtOwzAQRS1UJNrCH7DwD6SM48RJ2KC2Kg-pFRKPteXEduuSxMh2hfr3pARYsKCrGY10ZuaeERq0tlUIXRKYEMjhiqRpkTPIJzGQeJKRIgd6goaHcZQzwga_PeRnaOT9FoARoHSIZosVntZr60zYNNFMeCXx0ryp2myslXjhg2lEMLbF2jr8bBuF5zun8JMICq-sVLU_R6da1F5dfNcxer1dvMzvo-Xj3cN8uowqmtIQSa2SKkk1AChC4zLPtJSxYCIt00SWgpCCxbJIaCWzAqBkAogiLFOq0iLTlI5R0u-tnPXeKc3fXfec23MC_OCB_3jgBw-899Bh13-wyoSvSMEJUx-D0x723a12rRzf2p1ru5jHuJueM23nrREf1tWSB7GvrdNOtJXxnP674RNcPYes |
CitedBy_id | crossref_primary_10_3390_stats7020030 crossref_primary_10_1007_s00184_017_0638_8 crossref_primary_10_1080_03610926_2017_1321769 crossref_primary_10_5351_CSAM_2017_24_1_043 crossref_primary_10_1002_sim_9904 crossref_primary_10_1080_03610918_2024_2314664 crossref_primary_10_1080_03610918_2022_2067876 crossref_primary_10_1007_s42519_022_00274_8 crossref_primary_10_1080_23737484_2023_2169210 crossref_primary_10_1214_23_AOAS1741 crossref_primary_10_1002_sim_9189 crossref_primary_10_1080_03610926_2014_964807 crossref_primary_10_1080_02664763_2020_1786676 crossref_primary_10_1007_s00180_024_01480_7 crossref_primary_10_1007_s10985_019_09482_0 crossref_primary_10_1016_j_csda_2016_10_001 crossref_primary_10_1080_03610918_2019_1642483 crossref_primary_10_1080_03610918_2022_2032157 crossref_primary_10_1002_bimj_201900005 crossref_primary_10_1016_j_spl_2016_04_005 crossref_primary_10_1007_s00180_023_01389_7 crossref_primary_10_1080_00949655_2016_1247843 crossref_primary_10_1177_09622802231210917 crossref_primary_10_1177_0962280217708686 crossref_primary_10_1080_03610926_2017_1373817 crossref_primary_10_1002_sim_9739 crossref_primary_10_1177_0962280213491641 crossref_primary_10_1007_s11009_015_9477_0 crossref_primary_10_1186_s40488_016_0052_1 crossref_primary_10_1016_j_csda_2013_04_018 crossref_primary_10_1002_sim_9850 crossref_primary_10_1080_03610918_2024_2393702 crossref_primary_10_3390_jrfm11010006 crossref_primary_10_1080_02664763_2024_2418476 crossref_primary_10_1007_s00180_017_0781_8 crossref_primary_10_1080_00949655_2015_1071375 crossref_primary_10_1177_0962280217708683 crossref_primary_10_1002_sim_7293 |
Cites_doi | 10.1111/j.1467-9876.2005.00474.x 10.1007/978-1-4757-3447-8 10.1002/cjs.5550330407 10.1002/9780470191613 10.1016/0025-5564(93)90066-J 10.1007/s11749-006-0023-9 10.1111/j.0006-341X.2000.00227.x 10.1002/sim.2375 10.1080/01621459.1952.10501187 10.1142/2420 10.2307/2529885 10.1214/06-BA113 10.1016/j.jspi.2007.05.028 10.1016/j.jspi.2009.04.014 10.1080/01621459.1987.10478472 10.1002/sim.4780130908 10.1111/j.2517-6161.1995.tb02037.x 10.1111/j.2517-6161.1982.tb01203.x |
ContentType | Journal Article |
Copyright | Copyright Grace Scientific Publishing, LLC 2012 Grace Scientific Publishing 2012 |
Copyright_xml | – notice: Copyright Grace Scientific Publishing, LLC 2012 – notice: Grace Scientific Publishing 2012 |
DBID | AAYXX CITATION |
DOI | 10.1080/15598608.2012.719803 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1559-8616 |
EndPage | 724 |
ExternalDocumentID | 10_1080_15598608_2012_719803 719803 |
GroupedDBID | -EM .7F 0R~ 4.4 406 8UJ AACDK AAHNG AAJBT AAUYE ABECU ABFIM ABFTV ABJNI ABKCH ABMQK ABPEM ABTAI ABTEG ABTKH ABTMW ABXPI ACAOD ACGFS ACHSB ACMLO ACOKC ACTIO ACZOJ ADCVX ADKNI ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AIJEM AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AQRUH AVBZW AXYYD BGNMA CCCUG CSCUP DKSSO DPUIP EBLON EBS EJD E~A E~B F5P FINBP FNLPD FSGXE GGCAI GTTXZ H13 HZ~ H~P IKXTQ IWAJR J9A JZLTJ J~4 KOV LLZTM M4Y M4Z NPVJJ NQJWS NU0 O9- P2P PT4 ROL RSV S-T SJN SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE TDBHL TFL TFT TFW TSG UOJIU UT5 UTJUX UU3 VEKWB VFIZW ZMTXR AASML AATNV ABAKF ACDTI ACPIV AIGIU AMYLF FIGPU AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c353t-dfe4c45f000e132b87fdd2a6a5b54dba11962d943cd7900b6a01e167eecfa7f33 |
ISSN | 1559-8608 |
IngestDate | Tue Jul 01 00:35:13 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Fri Feb 21 02:31:16 EST 2025 Wed Dec 25 09:05:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Profile likelihood 62P10 Conway-Maxwell Poisson (COM-Poisson) distribution Exponential distribution 62N02 Maximum likelihood estimators Cure rate models Lifetime data EM algorithm Asymptotic variances |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-dfe4c45f000e132b87fdd2a6a5b54dba11962d943cd7900b6a01e167eecfa7f33 |
PageCount | 27 |
ParticipantIDs | crossref_primary_10_1080_15598608_2012_719803 springer_journals_10_1080_15598608_2012_719803 crossref_citationtrail_10_1080_15598608_2012_719803 informaworld_taylorfrancis_310_1080_15598608_2012_719803 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20121200 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 20121200 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Journal of statistical theory and practice |
PublicationTitleAbbrev | J Stat Theory Pract |
PublicationYear | 2012 |
Publisher | Taylor & Francis Group Springer International Publishing |
Publisher_xml | – name: Taylor & Francis Group – name: Springer International Publishing |
References | Claeskens, Nguti, Janssen (CR3) 2008; 17 Berkson, Gage (CR2) 1952; 47 Lange (CR12) 1995; 57 Kokonendji, Mizère, Balakrishnan (CR11) 2008; 138 Yakovlev (CR21) 1994; 13 Hoggart, Griffin, George (CR8) 2001 Maller, Zhou (CR14) 1996 Rodrigues, de Castro, Cancho, Balakrishnan (CR17) 2009; 139 McLachlan, Krishnan (CR15) 2008 Self, Liang (CR18) 1987; 82 Ibrahim, Chen, Sinha (CR9) 2001 Yin, Ibrahim (CR24) 2005; 33 Balakrishnan, Peng (CR1) 2006; 25 Farewell (CR7) 1982; 38 Yakovlev, Tsodikov (CR22) 1996 Sy, Taylor (CR20) 2000; 56 Dempster, Laird, Rubin (CR6) 1977; 39 Shmueli, Minka, Kadane, Borle, Boatwright (CR19) 2005; 54 Conway, Maxwell (CR4) 1961; 12 Kadane, Shmueli, Minka, Borle, Boatwright (CR10) 2006; 1 Louis (CR13) 1982; 44 Meeker, Escobar (CR16) 1998 Yakovlev, Tsodikov, Bass (CR23) 1993; 116 Cox, Oakes (CR5) 1984 Conway R. W. (CIT0004) 1961; 12 Kadane J. B. (CIT0010) 2006; 1 Sy J. P. (CIT0020) 2000; 56 Dempster A. P. (CIT0006) 1977; 39 Farewell V. T. (CIT0007) 1982; 38 Shmueli G. (CIT0019) 2005; 54 Cox D. (CIT0005) 1984 Louis T. A. (CIT0013) 1982; 44 Balakrishnan N. (CIT0001) 2006; 25 Kokonendji C. C. (CIT0011) 2008; 138 Berkson J. (CIT0002) 1952; 47 Ibrahim J. G. (CIT0009) 2001 Meeker W. Q. (CIT0016) 1998 Maller R. A. (CIT0014) 1996 Rodrigues J. (CIT0017) 2009; 139 Yin G. (CIT0024) 2005; 33 Self S. G. (CIT0018) 1987; 82 Yakovlev A. Y. (CIT0021) 1994; 13 Yakovlev A. Y. (CIT0023) 1993; 116 Claeskens G. (CIT0003) 2008; 17 Lange K. (CIT0012) 1995; 57 McLachlan G. J. (CIT0015) 2008 Yakovlev A. Y. (CIT0022) 1996 CIT0008 |
References_xml | – volume: 12 start-page: 132 year: 1961 end-page: 136 ident: CR4 article-title: A queuing model with state dependent services rates publication-title: J. Ind. Eng. – volume: 44 start-page: 226 year: 1982 end-page: 233 ident: CR13 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J. R. Stat. Soc. Ser. B – volume: 54 start-page: 127 year: 2005 end-page: 142 ident: CR19 article-title: A useful distribution for fitting discrete data: revival of the Conway-Maxwell-Poisson distribution publication-title: J. R. Stat. Soc. Ser. C doi: 10.1111/j.1467-9876.2005.00474.x – year: 2001 ident: CR9 publication-title: Bayesian survival analysis doi: 10.1007/978-1-4757-3447-8 – volume: 33 start-page: 559 year: 2005 end-page: 570 ident: CR24 article-title: Cure rate models: a unified approach publication-title: Can. J. Stat. doi: 10.1002/cjs.5550330407 – volume: 57 start-page: 425 year: 1995 end-page: 437 ident: CR12 article-title: A gradient algorithm locally equivalent to the EM algorithm publication-title: J. R. Stat. Soc. Ser. B – year: 2008 ident: CR15 publication-title: The EM algorithm and extensions doi: 10.1002/9780470191613 – volume: 116 start-page: 197 year: 1993 end-page: 219 ident: CR23 article-title: A stochastic-model of hormesis publication-title: Math. Biosci. doi: 10.1016/0025-5564(93)90066-J – year: 1996 ident: CR14 publication-title: Survival analysis with long-term survivors – volume: 17 start-page: 69 year: 2008 end-page: 82 ident: CR3 article-title: One-sided tests in shared frailty models publication-title: Test doi: 10.1007/s11749-006-0023-9 – volume: 56 start-page: 227 year: 2000 end-page: 236 ident: CR20 article-title: Estimation in a Cox proportional hazards cure model publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00227.x – volume: 25 start-page: 2797 year: 2006 end-page: 2816 ident: CR1 article-title: Generalized gamma frailty model publication-title: Stat. Med. doi: 10.1002/sim.2375 – volume: 47 start-page: 501 year: 1952 end-page: 515 ident: CR2 article-title: Survival cure for cancer patients following treatment publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1952.10501187 – year: 1996 ident: CR22 publication-title: Stochastic models of tumor latency and their biostatistical applications doi: 10.1142/2420 – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: CR6 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B – year: 1984 ident: CR5 publication-title: Analysis of survival data – volume: 38 start-page: 1041 year: 1982 end-page: 1046 ident: CR7 article-title: The use of mixture models for the analysis of survival data with long-term survivors publication-title: Biometrics doi: 10.2307/2529885 – volume: 1 start-page: 363 year: 2006 end-page: 374 ident: CR10 article-title: Conjugate analysis of the Conway-Maxwell-Poisson distribution publication-title: Bayesian Anal. doi: 10.1214/06-BA113 – volume: 138 start-page: 1287 year: 2008 end-page: 1296 ident: CR11 article-title: Connections of the Poisson weight function to overdispersion and underdispersion publication-title: J. Stat. Plan. Inference doi: 10.1016/j.jspi.2007.05.028 – volume: 139 start-page: 3605 year: 2009 end-page: 3611 ident: CR17 article-title: COM-Poisson cure rate survival models and an application to a cutaneous melanoma data publication-title: J. Stat. Plan. Inference doi: 10.1016/j.jspi.2009.04.014 – volume: 82 start-page: 605 year: 1987 end-page: 610 ident: CR18 article-title: Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1987.10478472 – start-page: 61 year: 2001 end-page: 70 ident: CR8 article-title: A Bayesian partition model for customer attrition publication-title: Bayesian methods with applications to science, policy, and official statistics – year: 1998 ident: CR16 publication-title: Statistical methods for reliability data – volume: 13 start-page: 983 year: 1994 end-page: 985 ident: CR21 article-title: Parametric versus nonparametric methods for estimating cure rates based on censored survival-data publication-title: Stat. Med. doi: 10.1002/sim.4780130908 – volume: 57 start-page: 425 year: 1995 ident: CIT0012 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1995.tb02037.x – volume: 54 start-page: 127 year: 2005 ident: CIT0019 publication-title: J. R. Stat. Soc. Ser. C doi: 10.1111/j.0006-341X.2000.00227.x – volume: 33 start-page: 559 year: 2005 ident: CIT0024 publication-title: Can. J. Stat doi: 10.1002/cjs.5550330407 – volume: 12 start-page: 132 year: 1961 ident: CIT0004 publication-title: J. Ind. Eng – ident: CIT0008 – volume-title: Analysis of survival data year: 1984 ident: CIT0005 – volume: 82 start-page: 605 year: 1987 ident: CIT0018 publication-title: J. Am. Stat. Assoc doi: 10.1111/j.1467-9876.2005.00474.x – volume: 39 start-page: 1 year: 1977 ident: CIT0006 publication-title: J. R. Stat. Soc. Ser. B doi: 10.2307/2529885 – volume: 116 start-page: 197 year: 1993 ident: CIT0023 publication-title: Math. Biosci doi: 10.1002/cjs.5550330407 – volume: 56 start-page: 227 year: 2000 ident: CIT0020 publication-title: Biometrics doi: 10.1002/sim.4780130908 – volume: 13 start-page: 983 year: 1994 ident: CIT0021 publication-title: Stat. Med doi: 10.1002/sim.4780130908 – volume: 25 start-page: 2797 year: 2006 ident: CIT0001 publication-title: Stat. Med doi: 10.1002/sim.2375 – volume: 17 start-page: 69 year: 2008 ident: CIT0003 publication-title: Test doi: 10.1007/s11749-006-0023-9 – volume: 1 start-page: 363 year: 2006 ident: CIT0010 publication-title: Bayesian Anal doi: 10.1016/j.jspi.2007.05.028 – volume: 47 start-page: 501 year: 1952 ident: CIT0002 publication-title: J. Am. Stat. Assoc doi: 10.1080/01621459.1952.10501187 – volume-title: Bayesian survival analysis year: 2001 ident: CIT0009 doi: 10.1007/978-1-4757-3447-8 – volume: 44 start-page: 226 year: 1982 ident: CIT0013 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1982.tb01203.x – volume-title: Stochastic models of tumor latency and their biostatistical applications year: 1996 ident: CIT0022 doi: 10.1142/2420 – volume-title: Statistical methods for reliability data year: 1998 ident: CIT0016 doi: 10.1016/j.jspi.2009.04.014 – volume: 139 start-page: 3605 year: 2009 ident: CIT0017 publication-title: J. Stat. Plan. Inference doi: 10.1080/01621459.1987.10478472 – volume-title: Survival analysis with long-term survivors year: 1996 ident: CIT0014 doi: 10.1002/9780470191613 – volume-title: The EM algorithm and extensions year: 2008 ident: CIT0015 doi: 10.1002/9780470191613 – volume: 138 start-page: 1287 year: 2008 ident: CIT0011 publication-title: J. Stat. Plan. Inference doi: 10.1016/j.jspi.2007.05.028 – volume: 38 start-page: 1041 year: 1982 ident: CIT0007 publication-title: Biometrics doi: 10.2307/2529885 |
SSID | ssj0061033 |
Score | 2.090708 |
Snippet | In the recent work of
Rodrigues et al. (2009)
, a flexible cure rate survival model was developed by assuming the number of competing causes of the event of... In the recent work of Rodrigues et al. (2009), a flexible cure rate survival model was developed by assuming the number of competing causes of the event of... |
SourceID | crossref springer informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 698 |
SubjectTerms | Asymptotic variances Conway-Maxwell Poisson (COM-Poisson) distribution Cure rate models EM algorithm Exponential distribution Lifetime data Mathematics and Statistics Maximum likelihood estimators Probability Theory and Stochastic Processes Profile likelihood Statistical Theory and Methods Statistics |
Title | EM Algorithm-Based Likelihood Estimation for Some Cure Rate Models |
URI | https://www.tandfonline.com/doi/abs/10.1080/15598608.2012.719803 https://link.springer.com/article/10.1080/15598608.2012.719803 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdKd4ED4inGSz5wmxLi2LGTYzt1mkDtgXXSblHs2ICWtohmF_56Pj_SZOsYsEsUuU0c-fv5e_l7IPRBiZQZYat8cmUipomOihwM1wpEvc6szsptvvN8wU_P2aeL7GI0-jyIWrpqZax-3ZpXch-qwhjQ1WbJ_gdldy-FAbgH-sIVKAzXf6LxbH40ab5uwL7_toqmII9qsLEvdfPd1yqG3bvqYwnPNit9dGzPC76AfumaoDXbP-imNs3IVXC2oeguez8UFPApVb37s6kubYv60OR4EfcnUs61fBYPvQokvRGhsdxr8DHwhQVOaf2HPPHMUw_HfPJkx175AEVswCp5kQ-krvCZ1HsM3UdAEldGPnGheGksCMCJ9gJsF1bof3iADlKwGdIxOpicTKeLTjCDokhdvkX35V0mZZ58vG2Ca5rKtTq2e6fmThlZPkGPA6XwxEPiKRrp9TP0aL4rwbt9jqazOb4BDtyDA_fgwDAjtuDAFhzYggN7cLxA5yez5fFpFBpmRIpmtI1qo5limQExpwlNZS5MXacVrzKZsVpWBNhtWheMqloUSSJ5lRBNuNBamUoYSl-i8Xqz1q8QZkbXYEobY0DflKAHSloYyRUROk2KKj9EtFucUoVq8rapSVOSUHS2W9LSLmnpl_QQRbunfvhqKn_5fz5c97J1sDQekSW9-9G4o1EZtuz2zrle33-uN-hhv4feonH780q_A121le8DBn8DU8mJcA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EM+Algorithm-Based+Likelihood+Estimation+for+Some+Cure+Rate+Models&rft.jtitle=Journal+of+statistical+theory+and+practice&rft.au=Balakrishnan%2C+N.&rft.au=Pal%2C+S.&rft.date=2012-12-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=1559-8608&rft.eissn=1559-8616&rft.volume=6&rft.issue=4&rft.spage=698&rft.epage=724&rft_id=info:doi/10.1080%2F15598608.2012.719803&rft.externalDocID=719803 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-8608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-8608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-8608&client=summon |