Optical and electrical transport properties of α-Ga2O3 thin films with electrical compensation of Sn impurities
Polycrystalline α-Ga2O3 thin films containing secondary phase SnO were grown on BaF2 substrates by magnetron sputtering. The impurity tin concentration, electron concentration, and room temperature mobility of the α-Ga2O3 films are 4.5 × 1020 cm−3, 1.5 × 1015 cm−3, and 26.9 cm2 V−1 s−1, respectively...
Saved in:
Published in | AIP advances Vol. 14; no. 12; pp. 125001 - 125001-7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.12.2024
AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
ISSN | 2158-3226 2158-3226 |
DOI | 10.1063/5.0244593 |
Cover
Loading…
Abstract | Polycrystalline α-Ga2O3 thin films containing secondary phase SnO were grown on BaF2 substrates by magnetron sputtering. The impurity tin concentration, electron concentration, and room temperature mobility of the α-Ga2O3 films are 4.5 × 1020 cm−3, 1.5 × 1015 cm−3, and 26.9 cm2 V−1 s−1, respectively, determined by secondary ion mass spectrometry and Hall effect experiments. The mobility vs temperature dependence confirms that the electrons are mainly subject to polar optical phonon scattering and ionized impurity scattering in the temperature range of 160–400 K. Two ionization energies, 29 and 71 meV, were determined for different temperature ranges by logarithmic resistivity vs the reciprocal of temperature, where the former is the shallow donor SnGa formed by the incorporation of tin into gallium sites. The latter is the shallow acceptor VSn–H associated with secondary phase SnO, and it is the electrical compensation of this shallow acceptor that results in the very low carrier concentration of α-Ga2O3 films. The photoluminescence spectrum exhibits 280 and 320 nm UV radiation, where 280 nm is due to the radiation recombination of electrons trapped by the deep donor state (EC−1.1 eV) with holes trapped by the VSn–H complex. In addition, there are several narrow radiation peaks in the visible region, and the energy levels involved in the radiation transitions are determined one by one after excluding the effects of interference and diffraction. |
---|---|
AbstractList | Polycrystalline α-Ga2O3 thin films containing secondary phase SnO were grown on BaF2 substrates by magnetron sputtering. The impurity tin concentration, electron concentration, and room temperature mobility of the α-Ga2O3 films are 4.5 × 1020 cm−3, 1.5 × 1015 cm−3, and 26.9 cm2 V−1 s−1, respectively, determined by secondary ion mass spectrometry and Hall effect experiments. The mobility vs temperature dependence confirms that the electrons are mainly subject to polar optical phonon scattering and ionized impurity scattering in the temperature range of 160–400 K. Two ionization energies, 29 and 71 meV, were determined for different temperature ranges by logarithmic resistivity vs the reciprocal of temperature, where the former is the shallow donor SnGa formed by the incorporation of tin into gallium sites. The latter is the shallow acceptor VSn–H associated with secondary phase SnO, and it is the electrical compensation of this shallow acceptor that results in the very low carrier concentration of α-Ga2O3 films. The photoluminescence spectrum exhibits 280 and 320 nm UV radiation, where 280 nm is due to the radiation recombination of electrons trapped by the deep donor state (EC−1.1 eV) with holes trapped by the VSn–H complex. In addition, there are several narrow radiation peaks in the visible region, and the energy levels involved in the radiation transitions are determined one by one after excluding the effects of interference and diffraction. Polycrystalline α-Ga2O3 thin films containing secondary phase SnO were grown on BaF2 substrates by magnetron sputtering. The impurity tin concentration, electron concentration, and room temperature mobility of the α-Ga2O3 films are 4.5 × 1020 cm−3, 1.5 × 1015 cm−3, and 26.9 cm2 V−1 s−1, respectively, determined by secondary ion mass spectrometry and Hall effect experiments. The mobility vs temperature dependence confirms that the electrons are mainly subject to polar optical phonon scattering and ionized impurity scattering in the temperature range of 160–400 K. Two ionization energies, 29 and 71 meV, were determined for different temperature ranges by logarithmic resistivity vs the reciprocal of temperature, where the former is the shallow donor SnGa formed by the incorporation of tin into gallium sites. The latter is the shallow acceptor VSn–H associated with secondary phase SnO, and it is the electrical compensation of this shallow acceptor that results in the very low carrier concentration of α-Ga2O3 films. The photoluminescence spectrum exhibits 280 and 320 nm UV radiation, where 280 nm is due to the radiation recombination of electrons trapped by the deep donor state (EC−1.1 eV) with holes trapped by the VSn–H complex. In addition, there are several narrow radiation peaks in the visible region, and the energy levels involved in the radiation transitions are determined one by one after excluding the effects of interference and diffraction. |
Author | Wang, Shuyun Cao, Wentian Qin, Xiaoqi |
Author_xml | – sequence: 1 givenname: Wentian surname: Cao fullname: Cao, Wentian organization: School of Physics and Electronics, Shandong Normal University, Jinan 250100, China – sequence: 2 givenname: Xiaoqi surname: Qin fullname: Qin, Xiaoqi organization: School of Physics and Electronics, Shandong Normal University, Jinan 250100, China – sequence: 3 givenname: Shuyun surname: Wang fullname: Wang, Shuyun organization: School of Physics and Electronics, Shandong Normal University, Jinan 250100, China |
BookMark | eNp9kcFuGyEQhlGVSnXcHPoGSD0l0ibAwC57rKLGjRTJh7ZnxLJQY61hC1hRHysvkmcqtqMop3AZGP75-Jk5R2chBovQF0quKWnhRlwTxrno4QNaMCpkA4y1Z2_2n9BFzltSF-8pkXyB5vVcvNET1mHEdrKmpOOxJB3yHFPBc4qzTcXbjKPDz0_NSrM14LLxATs_7TJ-9GXzttbE3WxD1sXHcKj5GbDfzfvkD5DP6KPTU7YXL3GJft99_3X7o3lYr-5vvz00BgSUZoTRMSFB8q4HU906IEMnYLQAA-PtYM0gpBlNR4EaRkfKwQnuWistc8MAS3R_4o5Rb9Wc_E6nfypqr46JmP4oXX9lJqucYKJnfde1LeHESjlI2Ve-s1yYelVZX0-s2ou_e5uL2sZ9CtW-Agq8F52oVpfo8qQyKeacrHt9lRJ1mI8S6mU-VXt10mbjy7FR74j_AwlWkZo |
CODEN | AAIDBI |
Cites_doi | 10.1063/1.1923757 10.1063/1.4968550 10.1103/physrevb.85.081109 10.1103/physrevb.87.235206 10.1063/1.5042646 10.1002/pssr.202000145 10.1016/j.jallcom.2018.09.230 10.1063/5.0207432 10.7567/apex.8.015503 10.1063/5.0135103 10.7567/jjap.55.030305 10.1063/1.4819068 10.1016/j.jallcom.2021.162830 10.1063/5.0027787 10.1063/5.0130935 10.1143/jjap.41.5237 10.1021/nl901514k 10.7567/jjap.55.1202a2 10.1088/1361-6463/ad4365 10.1063/5.0078752 10.7567/jjap.55.1202ba 10.1557/adv.2018.45 10.1063/1.4816759 10.1149/2.0081702jss 10.1002/pssa.201900892 10.1103/physrevmaterials.2.105203 10.1063/1.3277153 10.1103/physrevmaterials.1.024604 10.1063/1.3499306 10.1063/5.0027870 10.1063/5.0043903 10.1063/5.0131138 10.1103/physrevapplied.10.024047 10.1063/1.5142999 10.1063/1.5006941 10.1063/1.5094787 10.1016/0022-3697(78)90183-x 10.1063/5.0126698 10.1063/1.4821858 10.1039/d2tc01128j 10.1021/acs.chemmater.9b03926 10.1088/1361-6463/abbeb1 |
ContentType | Journal Article |
Copyright | Author(s) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M DOA |
DOI | 10.1063/5.0244593 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2158-3226 |
EndPage | 125001-7 |
ExternalDocumentID | oai_doaj_org_article_f5259297766040e88b889ecbfe45c259 10_1063_5_0244593 adv |
GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province sequence: 0 grantid: ZR2022MA013; ZR2022ME059 funderid: https://doi.org/10.13039/501100007129 |
GroupedDBID | 5VS 61. AAFWJ ABFTF ACGFO ADBBV ADCTM AEGXH AENEX AFPKN AGKCL AGLKD AIAGR AJDQP ALMA_UNASSIGNED_HOLDINGS BCNDV EBS FRP GROUPED_DOAJ HH5 KQ8 M~E OK1 RIP RNS RQS AAYXX ABJGX ADMLS AHSDT AKSGC CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c353t-d3df258384793c491f30b753de33b246becb58cdc7131c21d143f54f6e8e2fbb3 |
IEDL.DBID | DOA |
ISSN | 2158-3226 |
IngestDate | Wed Aug 27 01:31:50 EDT 2025 Mon Jun 30 13:58:13 EDT 2025 Thu Jul 03 08:45:35 EDT 2025 Thu Dec 05 09:33:38 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-d3df258384793c491f30b753de33b246becb58cdc7131c21d143f54f6e8e2fbb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4562-7539 0000-0002-9026-9489 |
OpenAccessLink | https://doaj.org/article/f5259297766040e88b889ecbfe45c259 |
PQID | 3134957558 |
PQPubID | 2050671 |
PageCount | 7 |
ParticipantIDs | proquest_journals_3134957558 doaj_primary_oai_doaj_org_article_f5259297766040e88b889ecbfe45c259 scitation_primary_10_1063_5_0244593 crossref_primary_10_1063_5_0244593 |
PublicationCentury | 2000 |
PublicationDate | 20241201 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241201 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | AIP advances |
PublicationYear | 2024 |
Publisher | American Institute of Physics AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: AIP Publishing LLC |
References | Nicol, Oshima, Roberts, Penman, Cameron, Chalker, Martin, Massabuau (c14) 2023; 122 Pearton, Yang, Cary, Ren, Kim, Tadjer, Mastro, Mastro (c2) 2018; 5 Maximenko, Mazeina, Picard, Freitas, Bermudez, Prokes (c18) 2009; 9 Guo, Fu, Zhang, Zhang, Liang, Liu, Cao, Pan (c25) 2010; 96 Uchida, Kaneko, Fujita (c35) 2018; 3 Egbo, Lähnemann, Falkenstein, Varley, Bierwagen (c21) 2023; 122 Oshima, Ahmadi (c1) 2022; 121 Kuramata, Koshi, Watanabe, Yamaoka, Masui, Yamakoshi (c4) 2016; 55 Cho, Lee, Park, Kim (c11) 2002; 41 Dai, Hao, Cui, Zhang, Kuang, Wang, Ren, Gu, Ye (c22) 2024; 57 Polyakov, Smirnov, Shchemerov, Pearton, Ren, Chernykh, Lagov, Kulevoy (c27) 2018; 6 Shan, Walukiewicz, Ager, Yu, Yuan, Xin, Cantwell, Song, Song (c41) 2005; 86 Wang, Chen, Ren, Gu, Ye (c19) 2020; 54 Ma, Tanen, Verma, Guo, Luo, Xing, Jena (c38) 2016; 109 Wakamatsu, Isobe, Takane, Kaneko, Tanaka (c36) 2024; 135 Oishi, Harada, Koga, Kasu (c32) 2016; 55 Harwig, Kellendonk, Slappendel (c16) 1978; 39 Feng, Bhuiyan, Xia, Moore, Chen, McGlone, Daughton, Arehart, Ringel, Rajan, Zhao (c8) 2020; 14 Son, Jeon (c23) 2019; 773 Huynh, Lem, Kuramata, Phillips, Ton-That (c12) 2018; 2 Wheeler, Nepal, Boris, Qadri, Nyakiti (c24) 2020; 32 Mauze, Zhang, Itoh, Ahmadi, Speck (c6) 2020; 117 Zhang, Shi, Qi, Chen, Zhang (c40) 2020; 8 Segura, Artús, Cuscó, Goldhahn, Feneberg (c29) 2017; 1 Varley, Janotti, Franchini, Van de Walle (c17) 2012; 85 Baldini, Albrecht, Fiedler, Irmscher, Schewski, Wagner (c7) 2016; 6 Polyakov, Smirnov, Shchemerov, Yakimov, Nikolaev, Stepanov, Pechnikov, Chernykh, Shcherbachev, Shikoh, Kochkova, Vasilev, Pearton (c13) 2019; 7 Varley, Schleife, Janotti, Van de Walle (c34) 2013; 103 Kumar, Singh, Tak, Patel, Asokan, Kanjilal (c39) 2021; 118 Fu, Jian, Mu, Li, Wang, Jia, Li, Long, Shi, Tao (c5) 2022; 896 Kracht, Karg, Feneberg, Bläsing, Schörmann, Goldhahn, Eickhoff (c28) 2018; 10 Zacherle, Schmidt, Martin (c26) 2013; 87 Murakami, Nomura, Goto, Sasaki, Kawara, Thieu, Togashi, Kumagai, Higashiwaki, Kuramata, Yamakoshi, Monemar, Koukitu (c9) 2014; 8 Shapenkov, Vyvenko, Ubyivovk, Medvedev, Varygin, Chikiryaka, Pechnikov, Scheglov, Stepanov, Nikolaev (c10) 2020; 217 Wang, Su, Lin, Zhang, Chang, Hao (c3) 2022; 10 Egbo, Luna, Lähnemann, Hoffmann, Trampert, Grümbel, Kluth, Feneberg, Goldhahn, Bierwagen (c20) 2023; 133 Onuma, Fujioka, Yamaguchi, Higashiwaki, Sasaki, Masui, Honda (c15) 2013; 103 Sharma, Singisetti (c42) 2021; 118 Higashiwaki, Sasaki, Kamimura, Hoi Wong, Krishnamurthy, Kuramata, Masui, Yamakoshi (c33) 2013; 103 Akaiwa, Kaneko, Ichino, Fujita (c37) 2016; 55 Varley, Weber, Janotti, Van de Walle (c31) 2010; 97 Zhang, Zhang, Chen, Wang, Zhang, Liu, Xu, Yang, Ye (c30) 2022; 120 (2024120216493378300_c1) 2022; 121 (2024120216493378300_c23) 2019; 773 (2024120216493378300_c15) 2013; 103 (2024120216493378300_c24) 2020; 32 (2024120216493378300_c17) 2012; 85 (2024120216493378300_c30) 2022; 120 (2024120216493378300_c16) 1978; 39 (2024120216493378300_c34) 2013; 103 (2024120216493378300_c41) 2005; 86 (2024120216493378300_c2) 2018; 5 (2024120216493378300_c20) 2023; 133 (2024120216493378300_c3) 2022; 10 (2024120216493378300_c36) 2024; 135 (2024120216493378300_c22) 2024; 57 (2024120216493378300_c19) 2020; 54 (2024120216493378300_c29) 2017; 1 (2024120216493378300_c38) 2016; 109 (2024120216493378300_c6) 2020; 117 (2024120216493378300_c10) 2020; 217 (2024120216493378300_c12) 2018; 2 (2024120216493378300_c28) 2018; 10 (2024120216493378300_c21) 2023; 122 (2024120216493378300_c42) 2021; 118 (2024120216493378300_c33) 2013; 103 (2024120216493378300_c39) 2021; 118 (2024120216493378300_c7) 2016; 6 (2024120216493378300_c8) 2020; 14 (2024120216493378300_c5) 2022; 896 (2024120216493378300_c13) 2019; 7 (2024120216493378300_c27) 2018; 6 (2024120216493378300_c11) 2002; 41 (2024120216493378300_c31) 2010; 97 (2024120216493378300_c40) 2020; 8 (2024120216493378300_c37) 2016; 55 (2024120216493378300_c14) 2023; 122 (2024120216493378300_c9) 2014; 8 (2024120216493378300_c4) 2016; 55 (2024120216493378300_c26) 2013; 87 (2024120216493378300_c18) 2009; 9 (2024120216493378300_c35) 2018; 3 (2024120216493378300_c25) 2010; 96 (2024120216493378300_c32) 2016; 55 |
References_xml | – volume: 5 start-page: 011301 year: 2018 ident: c2 article-title: A review of Ga O materials, processing, and devices publication-title: Appl. Phys. Rev. – volume: 122 start-page: 062102 year: 2023 ident: c14 article-title: Hydrogen-related 3.8 eV UV luminescence in -Ga O publication-title: Appl. Phys. Lett. – volume: 10 start-page: 024047 year: 2018 ident: c28 article-title: Anisotropic optical properties of metastable (01-12) -Ga O grown by plasma-assisted molecular beam epitaxy publication-title: Phys. Rev. Appl. – volume: 10 start-page: 13395 year: 2022 ident: c3 article-title: Recent progress on the effects of impurities and defects on the properties of Ga O publication-title: J. Mater. Chem. C – volume: 86 start-page: 191911 year: 2005 ident: c41 article-title: Nature of room-temperature photoluminescence in ZnO publication-title: Appl. Phys. Lett. – volume: 9 start-page: 3245 year: 2009 ident: c18 article-title: Cathodoluminescence studies of the inhomogeneities in Sn-doped Ga o nanowires publication-title: Nano Lett. – volume: 8 start-page: 015503 year: 2014 ident: c9 article-title: Homoepitaxial growth of -Ga O layers by halide vapor phase epitaxy publication-title: Appl. Phys. Express – volume: 54 start-page: 043002 year: 2020 ident: c19 article-title: Deep-level defects in gallium oxide publication-title: J. Phys. D: Appl. Phys. – volume: 8 start-page: 020906 year: 2020 ident: c40 article-title: Recent progress on the electronic structure, defect, and doping properties of Ga O publication-title: APL Mater. – volume: 118 start-page: 032101 year: 2021 ident: c42 article-title: Low field electron transport in -Ga O : An approach publication-title: Appl. Phys. Lett. – volume: 57 start-page: 355102 year: 2024 ident: c22 article-title: Temperature-dependent epitaxial evolution of carbon-free corundum -Ga O on sapphire publication-title: J. Phys. D: Appl. Phys. – volume: 133 start-page: 045701 year: 2023 ident: c20 article-title: Epitaxial synthesis of unintentionally doped p-type SnO (001) via suboxide molecular beam epitaxy publication-title: J. Appl. Phys. – volume: 122 start-page: 122101 year: 2023 ident: c21 article-title: Acceptor and compensating donor doping of single crystalline SnO (001) films grown by molecular beam epitaxy and its perspectives for optoelectronics and gas-sensing publication-title: Appl. Phys. Lett. – volume: 103 start-page: 123511 year: 2013 ident: c33 article-title: Depletion-mode Ga O metal-oxide-semiconductor field-effect transistors on -Ga O (010) substrates and temperature dependence of their device characteristics publication-title: Appl. Phys. Lett. – volume: 109 start-page: 212101 year: 2016 ident: c38 article-title: Intrinsic electron mobility limits in -Ga O publication-title: Appl. Phys. Lett. – volume: 41 start-page: 5237 year: 2002 ident: c11 article-title: Temperature dependence of photoluminescence of -Ga O powders publication-title: Jpn. J. Appl. Phys. – volume: 96 start-page: 042113 year: 2010 ident: c25 article-title: Microstructure, optical, and electrical properties of p-type SnO thin films publication-title: Appl. Phys. Lett. – volume: 2 start-page: 105203 year: 2018 ident: c12 article-title: Kinetics of charge carrier recombination in -Ga O crystals publication-title: Phys. Rev. Mater. – volume: 217 start-page: 1900892 year: 2020 ident: c10 article-title: Halide vapor phase epitaxy - and -Ga O epitaxial films grown on patterned sapphire substrates publication-title: Physica Status Solidi A – volume: 118 start-page: 062102 year: 2021 ident: c39 article-title: Wide range temperature-dependent (80–630 K) study of Hall effect and the Seebeck coefficient of -Ga O single crystals publication-title: Appl. Phys. Lett. – volume: 32 start-page: 1140 year: 2020 ident: c24 article-title: Phase control of crystalline Ga O films by plasma-enhanced atomic layer deposition publication-title: Chem. Mater. – volume: 773 start-page: 631 year: 2019 ident: c23 article-title: Optimization of the growth temperature of -Ga O epilayers grown by halide vapor phase epitaxy publication-title: J. Alloys Compd. – volume: 6 start-page: Q3040 year: 2016 ident: c7 article-title: Editors’ choice–Si- and Sn-doped homoepitaxial -Ga O layers grown by MOVPE on (010)-oriented substrates publication-title: ECS J. Solid State Sci. Technol. – volume: 121 start-page: 260501 year: 2022 ident: c1 article-title: Progress and challenges in the development of ultra-wide bandgap semiconductor -Ga O toward realizing power device applications publication-title: Appl. Phys. Lett. – volume: 7 start-page: 051103 year: 2019 ident: c13 article-title: Deep trap spectra of Sn-doped -Ga O grown by halide vapor phase epitaxy on sapphire publication-title: APL Mater. – volume: 55 start-page: 1202A2 year: 2016 ident: c4 article-title: High-quality -Ga O single crystals grown by edge-defined film-fed growth publication-title: Jpn. J. Appl. Phys. – volume: 120 start-page: 072101 year: 2022 ident: c30 article-title: Non-equilibrium epitaxy of metastable polymorphs of ultrawide-bandgap gallium oxide publication-title: Appl. Phys. Lett. – volume: 55 start-page: 030305 year: 2016 ident: c32 article-title: Conduction mechanism in highly doped -Ga O (−201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes publication-title: Jpn. J. Appl. Phys. – volume: 117 start-page: 222102 year: 2020 ident: c6 article-title: Sn doping of (010) -Ga O films grown by plasma-assisted molecular beam epitaxy publication-title: Appl. Phys. Lett. – volume: 55 start-page: 1202BA year: 2016 ident: c37 article-title: Conductivity control of Sn-doped -Ga O thin films grown on sapphire substrates publication-title: Jpn. J. Appl. Phys. – volume: 896 start-page: 162830 year: 2022 ident: c5 article-title: Crystal growth and design of Sn-doped -Ga o : Morphology, defect and property studies of cylindrical crystal by EFG publication-title: J. Alloys Compd. – volume: 103 start-page: 041910 year: 2013 ident: c15 article-title: Correlation between blue luminescence intensity and resistivity in -Ga O single crystals publication-title: Appl. Phys. Lett. – volume: 87 start-page: 235206 year: 2013 ident: c26 article-title: Ab initio calculations on the defect structure of -Ga O publication-title: Phys. Rev. B – volume: 103 start-page: 082118 year: 2013 ident: c34 article-title: Ambipolar doping in SnO publication-title: Appl. Phys. Lett. – volume: 135 start-page: 155705 year: 2024 ident: c36 article-title: Ge doping of -Ga O thin films via mist chemical vapor deposition and their application in Schottky barrier diodes publication-title: J. Appl. Phys. – volume: 1 start-page: 024604 year: 2017 ident: c29 article-title: Band gap of corundumlike -Ga O determined by absorption and ellipsometry publication-title: Phys. Rev. Mater. – volume: 3 start-page: 171 year: 2018 ident: c35 article-title: Electrical characterization of Si-doped n-type -Ga O on sapphire substrates publication-title: MRS Adv. – volume: 14 start-page: 2000145 year: 2020 ident: c8 article-title: Probing charge transport and background doping in metal-organic chemical vapor deposition-grown (010) -Ga O publication-title: Physica Status Solidi (RRL) – volume: 6 start-page: 096102 year: 2018 ident: c27 article-title: Hole traps and persistent photocapacitance in proton irradiated -Ga O films doped with Si publication-title: APL Mater. – volume: 97 start-page: 142106 year: 2010 ident: c31 article-title: Oxygen vacancies and donor impurities in -Ga O publication-title: Appl. Phys. Lett. – volume: 85 start-page: 081109 year: 2012 ident: c17 article-title: Role of self-trapping in luminescence and -type conductivity of wide-band-gap oxides publication-title: Phys. Rev. B – volume: 39 start-page: 675 year: 1978 ident: c16 article-title: The ultraviolet luminescence of -galliumsesquioxide publication-title: J. Phys. Chem. Solids – volume: 86 start-page: 191911 year: 2005 ident: 2024120216493378300_c41 article-title: Nature of room-temperature photoluminescence in ZnO publication-title: Appl. Phys. Lett. doi: 10.1063/1.1923757 – volume: 109 start-page: 212101 year: 2016 ident: 2024120216493378300_c38 article-title: Intrinsic electron mobility limits in β-Ga2O3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4968550 – volume: 85 start-page: 081109 year: 2012 ident: 2024120216493378300_c17 article-title: Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides publication-title: Phys. Rev. B doi: 10.1103/physrevb.85.081109 – volume: 87 start-page: 235206 year: 2013 ident: 2024120216493378300_c26 article-title: Ab initio calculations on the defect structure of β-Ga2O3 publication-title: Phys. Rev. B doi: 10.1103/physrevb.87.235206 – volume: 6 start-page: 096102 year: 2018 ident: 2024120216493378300_c27 article-title: Hole traps and persistent photocapacitance in proton irradiated β-Ga2O3 films doped with Si publication-title: APL Mater. doi: 10.1063/1.5042646 – volume: 14 start-page: 2000145 year: 2020 ident: 2024120216493378300_c8 article-title: Probing charge transport and background doping in metal-organic chemical vapor deposition-grown (010) β-Ga2O3 publication-title: Physica Status Solidi (RRL) doi: 10.1002/pssr.202000145 – volume: 773 start-page: 631 year: 2019 ident: 2024120216493378300_c23 article-title: Optimization of the growth temperature of α-Ga2O3 epilayers grown by halide vapor phase epitaxy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.09.230 – volume: 135 start-page: 155705 year: 2024 ident: 2024120216493378300_c36 article-title: Ge doping of α-Ga2O3 thin films via mist chemical vapor deposition and their application in Schottky barrier diodes publication-title: J. Appl. Phys. doi: 10.1063/5.0207432 – volume: 8 start-page: 015503 year: 2014 ident: 2024120216493378300_c9 article-title: Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy publication-title: Appl. Phys. Express doi: 10.7567/apex.8.015503 – volume: 122 start-page: 062102 year: 2023 ident: 2024120216493378300_c14 article-title: Hydrogen-related 3.8 eV UV luminescence in α-Ga2O3 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0135103 – volume: 55 start-page: 030305 year: 2016 ident: 2024120216493378300_c32 article-title: Conduction mechanism in highly doped β-Ga2O3(−201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes publication-title: Jpn. J. Appl. Phys. doi: 10.7567/jjap.55.030305 – volume: 103 start-page: 082118 year: 2013 ident: 2024120216493378300_c34 article-title: Ambipolar doping in SnO publication-title: Appl. Phys. Lett. doi: 10.1063/1.4819068 – volume: 896 start-page: 162830 year: 2022 ident: 2024120216493378300_c5 article-title: Crystal growth and design of Sn-doped β-Ga2o3: Morphology, defect and property studies of cylindrical crystal by EFG publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.162830 – volume: 118 start-page: 032101 year: 2021 ident: 2024120216493378300_c42 article-title: Low field electron transport in α-Ga2O3: An ab initio approach publication-title: Appl. Phys. Lett. doi: 10.1063/5.0027787 – volume: 122 start-page: 122101 year: 2023 ident: 2024120216493378300_c21 article-title: Acceptor and compensating donor doping of single crystalline SnO (001) films grown by molecular beam epitaxy and its perspectives for optoelectronics and gas-sensing publication-title: Appl. Phys. Lett. doi: 10.1063/5.0130935 – volume: 41 start-page: 5237 year: 2002 ident: 2024120216493378300_c11 article-title: Temperature dependence of photoluminescence of α-Ga2O3 powders publication-title: Jpn. J. Appl. Phys. doi: 10.1143/jjap.41.5237 – volume: 9 start-page: 3245 year: 2009 ident: 2024120216493378300_c18 article-title: Cathodoluminescence studies of the inhomogeneities in Sn-doped Ga2o3 nanowires publication-title: Nano Lett. doi: 10.1021/nl901514k – volume: 55 start-page: 1202A2 year: 2016 ident: 2024120216493378300_c4 article-title: High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth publication-title: Jpn. J. Appl. Phys. doi: 10.7567/jjap.55.1202a2 – volume: 57 start-page: 355102 year: 2024 ident: 2024120216493378300_c22 article-title: Temperature-dependent epitaxial evolution of carbon-free corundum α-Ga2O3 on sapphire publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ad4365 – volume: 120 start-page: 072101 year: 2022 ident: 2024120216493378300_c30 article-title: Non-equilibrium epitaxy of metastable polymorphs of ultrawide-bandgap gallium oxide publication-title: Appl. Phys. Lett. doi: 10.1063/5.0078752 – volume: 55 start-page: 1202BA year: 2016 ident: 2024120216493378300_c37 article-title: Conductivity control of Sn-doped α-Ga2O3 thin films grown on sapphire substrates publication-title: Jpn. J. Appl. Phys. doi: 10.7567/jjap.55.1202ba – volume: 3 start-page: 171 year: 2018 ident: 2024120216493378300_c35 article-title: Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates publication-title: MRS Adv. doi: 10.1557/adv.2018.45 – volume: 103 start-page: 041910 year: 2013 ident: 2024120216493378300_c15 article-title: Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.4816759 – volume: 6 start-page: Q3040 year: 2016 ident: 2024120216493378300_c7 article-title: Editors’ choice–Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0081702jss – volume: 217 start-page: 1900892 year: 2020 ident: 2024120216493378300_c10 article-title: Halide vapor phase epitaxy α- and ɛ-Ga2O3 epitaxial films grown on patterned sapphire substrates publication-title: Physica Status Solidi A doi: 10.1002/pssa.201900892 – volume: 2 start-page: 105203 year: 2018 ident: 2024120216493378300_c12 article-title: Kinetics of charge carrier recombination in β-Ga2O3 crystals publication-title: Phys. Rev. Mater. doi: 10.1103/physrevmaterials.2.105203 – volume: 96 start-page: 042113 year: 2010 ident: 2024120216493378300_c25 article-title: Microstructure, optical, and electrical properties of p-type SnO thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3277153 – volume: 1 start-page: 024604 year: 2017 ident: 2024120216493378300_c29 article-title: Band gap of corundumlike α-Ga2O3 determined by absorption and ellipsometry publication-title: Phys. Rev. Mater. doi: 10.1103/physrevmaterials.1.024604 – volume: 97 start-page: 142106 year: 2010 ident: 2024120216493378300_c31 article-title: Oxygen vacancies and donor impurities in β-Ga2O3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3499306 – volume: 117 start-page: 222102 year: 2020 ident: 2024120216493378300_c6 article-title: Sn doping of (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy publication-title: Appl. Phys. Lett. doi: 10.1063/5.0027870 – volume: 118 start-page: 062102 year: 2021 ident: 2024120216493378300_c39 article-title: Wide range temperature-dependent (80–630 K) study of Hall effect and the Seebeck coefficient of β-Ga2O3 single crystals publication-title: Appl. Phys. Lett. doi: 10.1063/5.0043903 – volume: 133 start-page: 045701 year: 2023 ident: 2024120216493378300_c20 article-title: Epitaxial synthesis of unintentionally doped p-type SnO (001) via suboxide molecular beam epitaxy publication-title: J. Appl. Phys. doi: 10.1063/5.0131138 – volume: 10 start-page: 024047 year: 2018 ident: 2024120216493378300_c28 article-title: Anisotropic optical properties of metastable (01-12)α-Ga2O3 grown by plasma-assisted molecular beam epitaxy publication-title: Phys. Rev. Appl. doi: 10.1103/physrevapplied.10.024047 – volume: 8 start-page: 020906 year: 2020 ident: 2024120216493378300_c40 article-title: Recent progress on the electronic structure, defect, and doping properties of Ga2O3 publication-title: APL Mater. doi: 10.1063/1.5142999 – volume: 5 start-page: 011301 year: 2018 ident: 2024120216493378300_c2 article-title: A review of Ga2O3 materials, processing, and devices publication-title: Appl. Phys. Rev. doi: 10.1063/1.5006941 – volume: 7 start-page: 051103 year: 2019 ident: 2024120216493378300_c13 article-title: Deep trap spectra of Sn-doped α-Ga2O3 grown by halide vapor phase epitaxy on sapphire publication-title: APL Mater. doi: 10.1063/1.5094787 – volume: 39 start-page: 675 year: 1978 ident: 2024120216493378300_c16 article-title: The ultraviolet luminescence of β-galliumsesquioxide publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(78)90183-x – volume: 121 start-page: 260501 year: 2022 ident: 2024120216493378300_c1 article-title: Progress and challenges in the development of ultra-wide bandgap semiconductor α-Ga2O3 toward realizing power device applications publication-title: Appl. Phys. Lett. doi: 10.1063/5.0126698 – volume: 103 start-page: 123511 year: 2013 ident: 2024120216493378300_c33 article-title: Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics publication-title: Appl. Phys. Lett. doi: 10.1063/1.4821858 – volume: 10 start-page: 13395 year: 2022 ident: 2024120216493378300_c3 article-title: Recent progress on the effects of impurities and defects on the properties of Ga2O3 publication-title: J. Mater. Chem. C doi: 10.1039/d2tc01128j – volume: 32 start-page: 1140 year: 2020 ident: 2024120216493378300_c24 article-title: Phase control of crystalline Ga2O3 films by plasma-enhanced atomic layer deposition publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03926 – volume: 54 start-page: 043002 year: 2020 ident: 2024120216493378300_c19 article-title: Deep-level defects in gallium oxide publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/abbeb1 |
SSID | ssj0000491084 |
Score | 2.352617 |
Snippet | Polycrystalline α-Ga2O3 thin films containing secondary phase SnO were grown on BaF2 substrates by magnetron sputtering. The impurity tin concentration,... |
SourceID | doaj proquest crossref scitation |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 125001 |
SubjectTerms | Barium fluorides Carrier density Compensation Electrons Energy levels Gallium oxides Hall effect Impurities Magnetic properties Magnetron sputtering Optical properties Photoluminescence Radiation Room temperature Scattering Secondary ion mass spectrometry Temperature dependence Thin films Tin Tin oxides Transport properties Ultraviolet radiation |
SummonAdditionalLinks | – databaseName: AIP Open Access Journals dbid: AJDQP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB60RfRFPLFaJaivq22uTR_rTcELFXxbmgsLdru06w_zj_ibnOxuS30oCAt7JSHMl-x8M5OdAJzG1uEw4C7CM494n9tISyMj7pVGDcOpo-EH5_sHeffGe-_ifQlOFkTwJTsXZ6hGuOiwZahTJMc4jOvd3tXz08yVgiS33VJ8mjdovs4fbVMk5f_DJFdRzZQR7zmlcrMB6xUbJN0Svk1YcukWrBSrMs1kG7LHrHA1EzT3SblhTXGbTzOSkyz40schKSoZefLzHd326SMj-ccgJX7wOZyQ4GidrxvWkKPpWnQn1HlJyWCYhT3ssJEdeLu5fr28i6otEiLDBMsjy6ynIfIZHGQG5eBZS6MFYh1jmnKJCGmhjDVoi7YNbVukR15wL51CELRmu1BLR6nbAyIRGqsoHrHmvCP7wsex1R0X941WXjTgeCrKJCszYSRFBFuyRCSVvBtwEYQ8KxCSVxcPENGkmguJF2hzUSSeUuInxCmllepgR73jwuCrBjSnECXVjJokLORRRG4pVANOZrAt7sn-v0odwBrFy3J9ShNq-fjLHSLLyPVRNcp-AcMdzrI priority: 102 providerName: American Institute of Physics |
Title | Optical and electrical transport properties of α-Ga2O3 thin films with electrical compensation of Sn impurities |
URI | http://dx.doi.org/10.1063/5.0244593 https://www.proquest.com/docview/3134957558 https://doaj.org/article/f5259297766040e88b889ecbfe45c259 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EEb2IT6xWWdRrbLuvbI9qrSLWKrXQW8i-sGLT0MYf5h_xNzmbpKU9iBchsOSxyzDfJjM7O_kGoYvQWJgGzAbQsoDFzARKaBEwJxVYGEYs8T84d57EfZ89DPhgodSXzwkr6IELxdUcBwedgJciBMw3K6WSsmm1cpZxDbf81xds3sJi6r3wext1yWZUQoLW-CVYI8abdMkA5Tz9S87lBlieYhN8wc60t9FW6SDiq0KwHbRik120nidq6ukeSrtpHn3GcWJwUcMmP81mJOU49eH1iedJxWOHv7-Cu5h0Kc7ehgl2w4_RFPvY62Jfn1YOq9lcHN-nl-DhKPVl7WCQfdRv377e3Adl1YRAU06zwFDjiN8M9TEzDXpwtK5gUWIspYowAaApLrXRsDxtaNIw4DE5zpywEnBRih6g1WSc2EOEBaBlJIEjVIw1RcxdGBrVtGGslXS8gs5mqozSghwjyje1BY14VOq7gq69kucPeD7r_AKgHJUoR3-hXEHVGURR-ZJNI-qpFcHd5LKCzuew_S7J0X9Icow2CYxXZLRU0Wo2-bQn4Jdk6hStXbU6jz3fPrRenk_zKfkDFz_jKQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9wwEB5xqKIvFbSgbsthFV4NrK94H7mXu1VB4s2KL3UlCBEb-F_8EX4T4yS7XR6QkCJFceJoNONkvhmPPwNsZD7gMBCB4llQkQtPrXKKiqgtehjBAksLnM8vVP9anNzIm7Y2J62FQSGGm_mgbCiC_dNWq0B6i5jzsfxPOKD4ltxEByNkj0_DLEbjCgf47M7J_p_f4yQLwt_uthYjRqHJPm_8UE3X_wZjzqEDaubCJ9zN4Tx8aXEi2WnkWoCpUHyFT3W9pht-g_KyrJPQJC88abayqS-rEVc5KVOW_SHRpZL7SF6e6VHOLjmp_g0KEge3d0OSUrCTfVN1OQa1tTipz9-CDO7KtLsdvmQRrg8Prvb6tN08gToueUU995GlOdGUOnOoh8i3LcYmPnBumVBoOyu18w6j1K5jXY_AKUoRVdBoHmv5EswU90X4DkSh0bxmeGRWiJ7KZcwyb3shy53VUXbg10iVpmw4Mkw9t624kabVdwd2k5LHDyRa67oBDW1aI5soMRpjCEmVwp9L0Npq3UNBYxDS4a0OLI9MZNpvbWh4YlhE1Cl1B9bHZntfkh8femoN5vpX52fm7Pji9Cd8ZtjcVLEsw0z18BhWEItUdrUdca8Nhtux |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+and+electrical+transport+properties+of+%CE%B1+-Ga2O3+thin+films+with+electrical+compensation+of+Sn+impurities&rft.jtitle=AIP+advances&rft.au=Cao%2C+Wentian&rft.au=Qin%2C+Xiaoqi&rft.au=Wang%2C+Shuyun&rft.date=2024-12-01&rft.issn=2158-3226&rft.eissn=2158-3226&rft.volume=14&rft.issue=12&rft_id=info:doi/10.1063%2F5.0244593&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0244593 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon |