Optical and electrical transport properties of α-Ga2O3 thin films with electrical compensation of Sn impurities

Polycrystalline α-Ga2O3 thin films containing secondary phase SnO were grown on BaF2 substrates by magnetron sputtering. The impurity tin concentration, electron concentration, and room temperature mobility of the α-Ga2O3 films are 4.5 × 1020 cm−3, 1.5 × 1015 cm−3, and 26.9 cm2 V−1 s−1, respectively...

Full description

Saved in:
Bibliographic Details
Published inAIP advances Vol. 14; no. 12; pp. 125001 - 125001-7
Main Authors Cao, Wentian, Qin, Xiaoqi, Wang, Shuyun
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.12.2024
AIP Publishing LLC
Subjects
Online AccessGet full text
ISSN2158-3226
2158-3226
DOI10.1063/5.0244593

Cover

Loading…
Abstract Polycrystalline α-Ga2O3 thin films containing secondary phase SnO were grown on BaF2 substrates by magnetron sputtering. The impurity tin concentration, electron concentration, and room temperature mobility of the α-Ga2O3 films are 4.5 × 1020 cm−3, 1.5 × 1015 cm−3, and 26.9 cm2 V−1 s−1, respectively, determined by secondary ion mass spectrometry and Hall effect experiments. The mobility vs temperature dependence confirms that the electrons are mainly subject to polar optical phonon scattering and ionized impurity scattering in the temperature range of 160–400 K. Two ionization energies, 29 and 71 meV, were determined for different temperature ranges by logarithmic resistivity vs the reciprocal of temperature, where the former is the shallow donor SnGa formed by the incorporation of tin into gallium sites. The latter is the shallow acceptor VSn–H associated with secondary phase SnO, and it is the electrical compensation of this shallow acceptor that results in the very low carrier concentration of α-Ga2O3 films. The photoluminescence spectrum exhibits 280 and 320 nm UV radiation, where 280 nm is due to the radiation recombination of electrons trapped by the deep donor state (EC−1.1 eV) with holes trapped by the VSn–H complex. In addition, there are several narrow radiation peaks in the visible region, and the energy levels involved in the radiation transitions are determined one by one after excluding the effects of interference and diffraction.
AbstractList Polycrystalline α-Ga2O3 thin films containing secondary phase SnO were grown on BaF2 substrates by magnetron sputtering. The impurity tin concentration, electron concentration, and room temperature mobility of the α-Ga2O3 films are 4.5 × 1020 cm−3, 1.5 × 1015 cm−3, and 26.9 cm2 V−1 s−1, respectively, determined by secondary ion mass spectrometry and Hall effect experiments. The mobility vs temperature dependence confirms that the electrons are mainly subject to polar optical phonon scattering and ionized impurity scattering in the temperature range of 160–400 K. Two ionization energies, 29 and 71 meV, were determined for different temperature ranges by logarithmic resistivity vs the reciprocal of temperature, where the former is the shallow donor SnGa formed by the incorporation of tin into gallium sites. The latter is the shallow acceptor VSn–H associated with secondary phase SnO, and it is the electrical compensation of this shallow acceptor that results in the very low carrier concentration of α-Ga2O3 films. The photoluminescence spectrum exhibits 280 and 320 nm UV radiation, where 280 nm is due to the radiation recombination of electrons trapped by the deep donor state (EC−1.1 eV) with holes trapped by the VSn–H complex. In addition, there are several narrow radiation peaks in the visible region, and the energy levels involved in the radiation transitions are determined one by one after excluding the effects of interference and diffraction.
Polycrystalline α-Ga2O3 thin films containing secondary phase SnO were grown on BaF2 substrates by magnetron sputtering. The impurity tin concentration, electron concentration, and room temperature mobility of the α-Ga2O3 films are 4.5 × 1020 cm−3, 1.5 × 1015 cm−3, and 26.9 cm2 V−1 s−1, respectively, determined by secondary ion mass spectrometry and Hall effect experiments. The mobility vs temperature dependence confirms that the electrons are mainly subject to polar optical phonon scattering and ionized impurity scattering in the temperature range of 160–400 K. Two ionization energies, 29 and 71 meV, were determined for different temperature ranges by logarithmic resistivity vs the reciprocal of temperature, where the former is the shallow donor SnGa formed by the incorporation of tin into gallium sites. The latter is the shallow acceptor VSn–H associated with secondary phase SnO, and it is the electrical compensation of this shallow acceptor that results in the very low carrier concentration of α-Ga2O3 films. The photoluminescence spectrum exhibits 280 and 320 nm UV radiation, where 280 nm is due to the radiation recombination of electrons trapped by the deep donor state (EC−1.1 eV) with holes trapped by the VSn–H complex. In addition, there are several narrow radiation peaks in the visible region, and the energy levels involved in the radiation transitions are determined one by one after excluding the effects of interference and diffraction.
Author Wang, Shuyun
Cao, Wentian
Qin, Xiaoqi
Author_xml – sequence: 1
  givenname: Wentian
  surname: Cao
  fullname: Cao, Wentian
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250100, China
– sequence: 2
  givenname: Xiaoqi
  surname: Qin
  fullname: Qin, Xiaoqi
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250100, China
– sequence: 3
  givenname: Shuyun
  surname: Wang
  fullname: Wang, Shuyun
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250100, China
BookMark eNp9kcFuGyEQhlGVSnXcHPoGSD0l0ibAwC57rKLGjRTJh7ZnxLJQY61hC1hRHysvkmcqtqMop3AZGP75-Jk5R2chBovQF0quKWnhRlwTxrno4QNaMCpkA4y1Z2_2n9BFzltSF-8pkXyB5vVcvNET1mHEdrKmpOOxJB3yHFPBc4qzTcXbjKPDz0_NSrM14LLxATs_7TJ-9GXzttbE3WxD1sXHcKj5GbDfzfvkD5DP6KPTU7YXL3GJft99_3X7o3lYr-5vvz00BgSUZoTRMSFB8q4HU906IEMnYLQAA-PtYM0gpBlNR4EaRkfKwQnuWistc8MAS3R_4o5Rb9Wc_E6nfypqr46JmP4oXX9lJqucYKJnfde1LeHESjlI2Ve-s1yYelVZX0-s2ou_e5uL2sZ9CtW-Agq8F52oVpfo8qQyKeacrHt9lRJ1mI8S6mU-VXt10mbjy7FR74j_AwlWkZo
CODEN AAIDBI
Cites_doi 10.1063/1.1923757
10.1063/1.4968550
10.1103/physrevb.85.081109
10.1103/physrevb.87.235206
10.1063/1.5042646
10.1002/pssr.202000145
10.1016/j.jallcom.2018.09.230
10.1063/5.0207432
10.7567/apex.8.015503
10.1063/5.0135103
10.7567/jjap.55.030305
10.1063/1.4819068
10.1016/j.jallcom.2021.162830
10.1063/5.0027787
10.1063/5.0130935
10.1143/jjap.41.5237
10.1021/nl901514k
10.7567/jjap.55.1202a2
10.1088/1361-6463/ad4365
10.1063/5.0078752
10.7567/jjap.55.1202ba
10.1557/adv.2018.45
10.1063/1.4816759
10.1149/2.0081702jss
10.1002/pssa.201900892
10.1103/physrevmaterials.2.105203
10.1063/1.3277153
10.1103/physrevmaterials.1.024604
10.1063/1.3499306
10.1063/5.0027870
10.1063/5.0043903
10.1063/5.0131138
10.1103/physrevapplied.10.024047
10.1063/1.5142999
10.1063/1.5006941
10.1063/1.5094787
10.1016/0022-3697(78)90183-x
10.1063/5.0126698
10.1063/1.4821858
10.1039/d2tc01128j
10.1021/acs.chemmater.9b03926
10.1088/1361-6463/abbeb1
ContentType Journal Article
Copyright Author(s)
2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOA
DOI 10.1063/5.0244593
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2158-3226
EndPage 125001-7
ExternalDocumentID oai_doaj_org_article_f5259297766040e88b889ecbfe45c259
10_1063_5_0244593
adv
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  sequence: 0
  grantid: ZR2022MA013; ZR2022ME059
  funderid: https://doi.org/10.13039/501100007129
GroupedDBID 5VS
61.
AAFWJ
ABFTF
ACGFO
ADBBV
ADCTM
AEGXH
AENEX
AFPKN
AGKCL
AGLKD
AIAGR
AJDQP
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
FRP
GROUPED_DOAJ
HH5
KQ8
M~E
OK1
RIP
RNS
RQS
AAYXX
ABJGX
ADMLS
AHSDT
AKSGC
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c353t-d3df258384793c491f30b753de33b246becb58cdc7131c21d143f54f6e8e2fbb3
IEDL.DBID DOA
ISSN 2158-3226
IngestDate Wed Aug 27 01:31:50 EDT 2025
Mon Jun 30 13:58:13 EDT 2025
Thu Jul 03 08:45:35 EDT 2025
Thu Dec 05 09:33:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-d3df258384793c491f30b753de33b246becb58cdc7131c21d143f54f6e8e2fbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4562-7539
0000-0002-9026-9489
OpenAccessLink https://doaj.org/article/f5259297766040e88b889ecbfe45c259
PQID 3134957558
PQPubID 2050671
PageCount 7
ParticipantIDs proquest_journals_3134957558
doaj_primary_oai_doaj_org_article_f5259297766040e88b889ecbfe45c259
scitation_primary_10_1063_5_0244593
crossref_primary_10_1063_5_0244593
PublicationCentury 2000
PublicationDate 20241201
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241201
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP advances
PublicationYear 2024
Publisher American Institute of Physics
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: AIP Publishing LLC
References Nicol, Oshima, Roberts, Penman, Cameron, Chalker, Martin, Massabuau (c14) 2023; 122
Pearton, Yang, Cary, Ren, Kim, Tadjer, Mastro, Mastro (c2) 2018; 5
Maximenko, Mazeina, Picard, Freitas, Bermudez, Prokes (c18) 2009; 9
Guo, Fu, Zhang, Zhang, Liang, Liu, Cao, Pan (c25) 2010; 96
Uchida, Kaneko, Fujita (c35) 2018; 3
Egbo, Lähnemann, Falkenstein, Varley, Bierwagen (c21) 2023; 122
Oshima, Ahmadi (c1) 2022; 121
Kuramata, Koshi, Watanabe, Yamaoka, Masui, Yamakoshi (c4) 2016; 55
Cho, Lee, Park, Kim (c11) 2002; 41
Dai, Hao, Cui, Zhang, Kuang, Wang, Ren, Gu, Ye (c22) 2024; 57
Polyakov, Smirnov, Shchemerov, Pearton, Ren, Chernykh, Lagov, Kulevoy (c27) 2018; 6
Shan, Walukiewicz, Ager, Yu, Yuan, Xin, Cantwell, Song, Song (c41) 2005; 86
Wang, Chen, Ren, Gu, Ye (c19) 2020; 54
Ma, Tanen, Verma, Guo, Luo, Xing, Jena (c38) 2016; 109
Wakamatsu, Isobe, Takane, Kaneko, Tanaka (c36) 2024; 135
Oishi, Harada, Koga, Kasu (c32) 2016; 55
Harwig, Kellendonk, Slappendel (c16) 1978; 39
Feng, Bhuiyan, Xia, Moore, Chen, McGlone, Daughton, Arehart, Ringel, Rajan, Zhao (c8) 2020; 14
Son, Jeon (c23) 2019; 773
Huynh, Lem, Kuramata, Phillips, Ton-That (c12) 2018; 2
Wheeler, Nepal, Boris, Qadri, Nyakiti (c24) 2020; 32
Mauze, Zhang, Itoh, Ahmadi, Speck (c6) 2020; 117
Zhang, Shi, Qi, Chen, Zhang (c40) 2020; 8
Segura, Artús, Cuscó, Goldhahn, Feneberg (c29) 2017; 1
Varley, Janotti, Franchini, Van de Walle (c17) 2012; 85
Baldini, Albrecht, Fiedler, Irmscher, Schewski, Wagner (c7) 2016; 6
Polyakov, Smirnov, Shchemerov, Yakimov, Nikolaev, Stepanov, Pechnikov, Chernykh, Shcherbachev, Shikoh, Kochkova, Vasilev, Pearton (c13) 2019; 7
Varley, Schleife, Janotti, Van de Walle (c34) 2013; 103
Kumar, Singh, Tak, Patel, Asokan, Kanjilal (c39) 2021; 118
Fu, Jian, Mu, Li, Wang, Jia, Li, Long, Shi, Tao (c5) 2022; 896
Kracht, Karg, Feneberg, Bläsing, Schörmann, Goldhahn, Eickhoff (c28) 2018; 10
Zacherle, Schmidt, Martin (c26) 2013; 87
Murakami, Nomura, Goto, Sasaki, Kawara, Thieu, Togashi, Kumagai, Higashiwaki, Kuramata, Yamakoshi, Monemar, Koukitu (c9) 2014; 8
Shapenkov, Vyvenko, Ubyivovk, Medvedev, Varygin, Chikiryaka, Pechnikov, Scheglov, Stepanov, Nikolaev (c10) 2020; 217
Wang, Su, Lin, Zhang, Chang, Hao (c3) 2022; 10
Egbo, Luna, Lähnemann, Hoffmann, Trampert, Grümbel, Kluth, Feneberg, Goldhahn, Bierwagen (c20) 2023; 133
Onuma, Fujioka, Yamaguchi, Higashiwaki, Sasaki, Masui, Honda (c15) 2013; 103
Sharma, Singisetti (c42) 2021; 118
Higashiwaki, Sasaki, Kamimura, Hoi Wong, Krishnamurthy, Kuramata, Masui, Yamakoshi (c33) 2013; 103
Akaiwa, Kaneko, Ichino, Fujita (c37) 2016; 55
Varley, Weber, Janotti, Van de Walle (c31) 2010; 97
Zhang, Zhang, Chen, Wang, Zhang, Liu, Xu, Yang, Ye (c30) 2022; 120
(2024120216493378300_c1) 2022; 121
(2024120216493378300_c23) 2019; 773
(2024120216493378300_c15) 2013; 103
(2024120216493378300_c24) 2020; 32
(2024120216493378300_c17) 2012; 85
(2024120216493378300_c30) 2022; 120
(2024120216493378300_c16) 1978; 39
(2024120216493378300_c34) 2013; 103
(2024120216493378300_c41) 2005; 86
(2024120216493378300_c2) 2018; 5
(2024120216493378300_c20) 2023; 133
(2024120216493378300_c3) 2022; 10
(2024120216493378300_c36) 2024; 135
(2024120216493378300_c22) 2024; 57
(2024120216493378300_c19) 2020; 54
(2024120216493378300_c29) 2017; 1
(2024120216493378300_c38) 2016; 109
(2024120216493378300_c6) 2020; 117
(2024120216493378300_c10) 2020; 217
(2024120216493378300_c12) 2018; 2
(2024120216493378300_c28) 2018; 10
(2024120216493378300_c21) 2023; 122
(2024120216493378300_c42) 2021; 118
(2024120216493378300_c33) 2013; 103
(2024120216493378300_c39) 2021; 118
(2024120216493378300_c7) 2016; 6
(2024120216493378300_c8) 2020; 14
(2024120216493378300_c5) 2022; 896
(2024120216493378300_c13) 2019; 7
(2024120216493378300_c27) 2018; 6
(2024120216493378300_c11) 2002; 41
(2024120216493378300_c31) 2010; 97
(2024120216493378300_c40) 2020; 8
(2024120216493378300_c37) 2016; 55
(2024120216493378300_c14) 2023; 122
(2024120216493378300_c9) 2014; 8
(2024120216493378300_c4) 2016; 55
(2024120216493378300_c26) 2013; 87
(2024120216493378300_c18) 2009; 9
(2024120216493378300_c35) 2018; 3
(2024120216493378300_c25) 2010; 96
(2024120216493378300_c32) 2016; 55
References_xml – volume: 5
  start-page: 011301
  year: 2018
  ident: c2
  article-title: A review of Ga O materials, processing, and devices
  publication-title: Appl. Phys. Rev.
– volume: 122
  start-page: 062102
  year: 2023
  ident: c14
  article-title: Hydrogen-related 3.8 eV UV luminescence in -Ga O
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 024047
  year: 2018
  ident: c28
  article-title: Anisotropic optical properties of metastable (01-12) -Ga O grown by plasma-assisted molecular beam epitaxy
  publication-title: Phys. Rev. Appl.
– volume: 10
  start-page: 13395
  year: 2022
  ident: c3
  article-title: Recent progress on the effects of impurities and defects on the properties of Ga O
  publication-title: J. Mater. Chem. C
– volume: 86
  start-page: 191911
  year: 2005
  ident: c41
  article-title: Nature of room-temperature photoluminescence in ZnO
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 3245
  year: 2009
  ident: c18
  article-title: Cathodoluminescence studies of the inhomogeneities in Sn-doped Ga o nanowires
  publication-title: Nano Lett.
– volume: 8
  start-page: 015503
  year: 2014
  ident: c9
  article-title: Homoepitaxial growth of -Ga O layers by halide vapor phase epitaxy
  publication-title: Appl. Phys. Express
– volume: 54
  start-page: 043002
  year: 2020
  ident: c19
  article-title: Deep-level defects in gallium oxide
  publication-title: J. Phys. D: Appl. Phys.
– volume: 8
  start-page: 020906
  year: 2020
  ident: c40
  article-title: Recent progress on the electronic structure, defect, and doping properties of Ga O
  publication-title: APL Mater.
– volume: 118
  start-page: 032101
  year: 2021
  ident: c42
  article-title: Low field electron transport in -Ga O : An approach
  publication-title: Appl. Phys. Lett.
– volume: 57
  start-page: 355102
  year: 2024
  ident: c22
  article-title: Temperature-dependent epitaxial evolution of carbon-free corundum -Ga O on sapphire
  publication-title: J. Phys. D: Appl. Phys.
– volume: 133
  start-page: 045701
  year: 2023
  ident: c20
  article-title: Epitaxial synthesis of unintentionally doped p-type SnO (001) via suboxide molecular beam epitaxy
  publication-title: J. Appl. Phys.
– volume: 122
  start-page: 122101
  year: 2023
  ident: c21
  article-title: Acceptor and compensating donor doping of single crystalline SnO (001) films grown by molecular beam epitaxy and its perspectives for optoelectronics and gas-sensing
  publication-title: Appl. Phys. Lett.
– volume: 103
  start-page: 123511
  year: 2013
  ident: c33
  article-title: Depletion-mode Ga O metal-oxide-semiconductor field-effect transistors on -Ga O (010) substrates and temperature dependence of their device characteristics
  publication-title: Appl. Phys. Lett.
– volume: 109
  start-page: 212101
  year: 2016
  ident: c38
  article-title: Intrinsic electron mobility limits in -Ga O
  publication-title: Appl. Phys. Lett.
– volume: 41
  start-page: 5237
  year: 2002
  ident: c11
  article-title: Temperature dependence of photoluminescence of -Ga O powders
  publication-title: Jpn. J. Appl. Phys.
– volume: 96
  start-page: 042113
  year: 2010
  ident: c25
  article-title: Microstructure, optical, and electrical properties of p-type SnO thin films
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 105203
  year: 2018
  ident: c12
  article-title: Kinetics of charge carrier recombination in -Ga O crystals
  publication-title: Phys. Rev. Mater.
– volume: 217
  start-page: 1900892
  year: 2020
  ident: c10
  article-title: Halide vapor phase epitaxy - and -Ga O epitaxial films grown on patterned sapphire substrates
  publication-title: Physica Status Solidi A
– volume: 118
  start-page: 062102
  year: 2021
  ident: c39
  article-title: Wide range temperature-dependent (80–630 K) study of Hall effect and the Seebeck coefficient of -Ga O single crystals
  publication-title: Appl. Phys. Lett.
– volume: 32
  start-page: 1140
  year: 2020
  ident: c24
  article-title: Phase control of crystalline Ga O films by plasma-enhanced atomic layer deposition
  publication-title: Chem. Mater.
– volume: 773
  start-page: 631
  year: 2019
  ident: c23
  article-title: Optimization of the growth temperature of -Ga O epilayers grown by halide vapor phase epitaxy
  publication-title: J. Alloys Compd.
– volume: 6
  start-page: Q3040
  year: 2016
  ident: c7
  article-title: Editors’ choice–Si- and Sn-doped homoepitaxial -Ga O layers grown by MOVPE on (010)-oriented substrates
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 121
  start-page: 260501
  year: 2022
  ident: c1
  article-title: Progress and challenges in the development of ultra-wide bandgap semiconductor -Ga O toward realizing power device applications
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 051103
  year: 2019
  ident: c13
  article-title: Deep trap spectra of Sn-doped -Ga O grown by halide vapor phase epitaxy on sapphire
  publication-title: APL Mater.
– volume: 55
  start-page: 1202A2
  year: 2016
  ident: c4
  article-title: High-quality -Ga O single crystals grown by edge-defined film-fed growth
  publication-title: Jpn. J. Appl. Phys.
– volume: 120
  start-page: 072101
  year: 2022
  ident: c30
  article-title: Non-equilibrium epitaxy of metastable polymorphs of ultrawide-bandgap gallium oxide
  publication-title: Appl. Phys. Lett.
– volume: 55
  start-page: 030305
  year: 2016
  ident: c32
  article-title: Conduction mechanism in highly doped -Ga O (−201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes
  publication-title: Jpn. J. Appl. Phys.
– volume: 117
  start-page: 222102
  year: 2020
  ident: c6
  article-title: Sn doping of (010) -Ga O films grown by plasma-assisted molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
– volume: 55
  start-page: 1202BA
  year: 2016
  ident: c37
  article-title: Conductivity control of Sn-doped -Ga O thin films grown on sapphire substrates
  publication-title: Jpn. J. Appl. Phys.
– volume: 896
  start-page: 162830
  year: 2022
  ident: c5
  article-title: Crystal growth and design of Sn-doped -Ga o : Morphology, defect and property studies of cylindrical crystal by EFG
  publication-title: J. Alloys Compd.
– volume: 103
  start-page: 041910
  year: 2013
  ident: c15
  article-title: Correlation between blue luminescence intensity and resistivity in -Ga O single crystals
  publication-title: Appl. Phys. Lett.
– volume: 87
  start-page: 235206
  year: 2013
  ident: c26
  article-title: Ab initio calculations on the defect structure of -Ga O
  publication-title: Phys. Rev. B
– volume: 103
  start-page: 082118
  year: 2013
  ident: c34
  article-title: Ambipolar doping in SnO
  publication-title: Appl. Phys. Lett.
– volume: 135
  start-page: 155705
  year: 2024
  ident: c36
  article-title: Ge doping of -Ga O thin films via mist chemical vapor deposition and their application in Schottky barrier diodes
  publication-title: J. Appl. Phys.
– volume: 1
  start-page: 024604
  year: 2017
  ident: c29
  article-title: Band gap of corundumlike -Ga O determined by absorption and ellipsometry
  publication-title: Phys. Rev. Mater.
– volume: 3
  start-page: 171
  year: 2018
  ident: c35
  article-title: Electrical characterization of Si-doped n-type -Ga O on sapphire substrates
  publication-title: MRS Adv.
– volume: 14
  start-page: 2000145
  year: 2020
  ident: c8
  article-title: Probing charge transport and background doping in metal-organic chemical vapor deposition-grown (010) -Ga O
  publication-title: Physica Status Solidi (RRL)
– volume: 6
  start-page: 096102
  year: 2018
  ident: c27
  article-title: Hole traps and persistent photocapacitance in proton irradiated -Ga O films doped with Si
  publication-title: APL Mater.
– volume: 97
  start-page: 142106
  year: 2010
  ident: c31
  article-title: Oxygen vacancies and donor impurities in -Ga O
  publication-title: Appl. Phys. Lett.
– volume: 85
  start-page: 081109
  year: 2012
  ident: c17
  article-title: Role of self-trapping in luminescence and -type conductivity of wide-band-gap oxides
  publication-title: Phys. Rev. B
– volume: 39
  start-page: 675
  year: 1978
  ident: c16
  article-title: The ultraviolet luminescence of -galliumsesquioxide
  publication-title: J. Phys. Chem. Solids
– volume: 86
  start-page: 191911
  year: 2005
  ident: 2024120216493378300_c41
  article-title: Nature of room-temperature photoluminescence in ZnO
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1923757
– volume: 109
  start-page: 212101
  year: 2016
  ident: 2024120216493378300_c38
  article-title: Intrinsic electron mobility limits in β-Ga2O3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4968550
– volume: 85
  start-page: 081109
  year: 2012
  ident: 2024120216493378300_c17
  article-title: Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.85.081109
– volume: 87
  start-page: 235206
  year: 2013
  ident: 2024120216493378300_c26
  article-title: Ab initio calculations on the defect structure of β-Ga2O3
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.87.235206
– volume: 6
  start-page: 096102
  year: 2018
  ident: 2024120216493378300_c27
  article-title: Hole traps and persistent photocapacitance in proton irradiated β-Ga2O3 films doped with Si
  publication-title: APL Mater.
  doi: 10.1063/1.5042646
– volume: 14
  start-page: 2000145
  year: 2020
  ident: 2024120216493378300_c8
  article-title: Probing charge transport and background doping in metal-organic chemical vapor deposition-grown (010) β-Ga2O3
  publication-title: Physica Status Solidi (RRL)
  doi: 10.1002/pssr.202000145
– volume: 773
  start-page: 631
  year: 2019
  ident: 2024120216493378300_c23
  article-title: Optimization of the growth temperature of α-Ga2O3 epilayers grown by halide vapor phase epitaxy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.09.230
– volume: 135
  start-page: 155705
  year: 2024
  ident: 2024120216493378300_c36
  article-title: Ge doping of α-Ga2O3 thin films via mist chemical vapor deposition and their application in Schottky barrier diodes
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0207432
– volume: 8
  start-page: 015503
  year: 2014
  ident: 2024120216493378300_c9
  article-title: Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy
  publication-title: Appl. Phys. Express
  doi: 10.7567/apex.8.015503
– volume: 122
  start-page: 062102
  year: 2023
  ident: 2024120216493378300_c14
  article-title: Hydrogen-related 3.8 eV UV luminescence in α-Ga2O3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0135103
– volume: 55
  start-page: 030305
  year: 2016
  ident: 2024120216493378300_c32
  article-title: Conduction mechanism in highly doped β-Ga2O3(−201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/jjap.55.030305
– volume: 103
  start-page: 082118
  year: 2013
  ident: 2024120216493378300_c34
  article-title: Ambipolar doping in SnO
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4819068
– volume: 896
  start-page: 162830
  year: 2022
  ident: 2024120216493378300_c5
  article-title: Crystal growth and design of Sn-doped β-Ga2o3: Morphology, defect and property studies of cylindrical crystal by EFG
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.162830
– volume: 118
  start-page: 032101
  year: 2021
  ident: 2024120216493378300_c42
  article-title: Low field electron transport in α-Ga2O3: An ab initio approach
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0027787
– volume: 122
  start-page: 122101
  year: 2023
  ident: 2024120216493378300_c21
  article-title: Acceptor and compensating donor doping of single crystalline SnO (001) films grown by molecular beam epitaxy and its perspectives for optoelectronics and gas-sensing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0130935
– volume: 41
  start-page: 5237
  year: 2002
  ident: 2024120216493378300_c11
  article-title: Temperature dependence of photoluminescence of α-Ga2O3 powders
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/jjap.41.5237
– volume: 9
  start-page: 3245
  year: 2009
  ident: 2024120216493378300_c18
  article-title: Cathodoluminescence studies of the inhomogeneities in Sn-doped Ga2o3 nanowires
  publication-title: Nano Lett.
  doi: 10.1021/nl901514k
– volume: 55
  start-page: 1202A2
  year: 2016
  ident: 2024120216493378300_c4
  article-title: High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/jjap.55.1202a2
– volume: 57
  start-page: 355102
  year: 2024
  ident: 2024120216493378300_c22
  article-title: Temperature-dependent epitaxial evolution of carbon-free corundum α-Ga2O3 on sapphire
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ad4365
– volume: 120
  start-page: 072101
  year: 2022
  ident: 2024120216493378300_c30
  article-title: Non-equilibrium epitaxy of metastable polymorphs of ultrawide-bandgap gallium oxide
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0078752
– volume: 55
  start-page: 1202BA
  year: 2016
  ident: 2024120216493378300_c37
  article-title: Conductivity control of Sn-doped α-Ga2O3 thin films grown on sapphire substrates
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/jjap.55.1202ba
– volume: 3
  start-page: 171
  year: 2018
  ident: 2024120216493378300_c35
  article-title: Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates
  publication-title: MRS Adv.
  doi: 10.1557/adv.2018.45
– volume: 103
  start-page: 041910
  year: 2013
  ident: 2024120216493378300_c15
  article-title: Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4816759
– volume: 6
  start-page: Q3040
  year: 2016
  ident: 2024120216493378300_c7
  article-title: Editors’ choice–Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0081702jss
– volume: 217
  start-page: 1900892
  year: 2020
  ident: 2024120216493378300_c10
  article-title: Halide vapor phase epitaxy α- and ɛ-Ga2O3 epitaxial films grown on patterned sapphire substrates
  publication-title: Physica Status Solidi A
  doi: 10.1002/pssa.201900892
– volume: 2
  start-page: 105203
  year: 2018
  ident: 2024120216493378300_c12
  article-title: Kinetics of charge carrier recombination in β-Ga2O3 crystals
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/physrevmaterials.2.105203
– volume: 96
  start-page: 042113
  year: 2010
  ident: 2024120216493378300_c25
  article-title: Microstructure, optical, and electrical properties of p-type SnO thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3277153
– volume: 1
  start-page: 024604
  year: 2017
  ident: 2024120216493378300_c29
  article-title: Band gap of corundumlike α-Ga2O3 determined by absorption and ellipsometry
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/physrevmaterials.1.024604
– volume: 97
  start-page: 142106
  year: 2010
  ident: 2024120216493378300_c31
  article-title: Oxygen vacancies and donor impurities in β-Ga2O3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3499306
– volume: 117
  start-page: 222102
  year: 2020
  ident: 2024120216493378300_c6
  article-title: Sn doping of (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0027870
– volume: 118
  start-page: 062102
  year: 2021
  ident: 2024120216493378300_c39
  article-title: Wide range temperature-dependent (80–630 K) study of Hall effect and the Seebeck coefficient of β-Ga2O3 single crystals
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0043903
– volume: 133
  start-page: 045701
  year: 2023
  ident: 2024120216493378300_c20
  article-title: Epitaxial synthesis of unintentionally doped p-type SnO (001) via suboxide molecular beam epitaxy
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0131138
– volume: 10
  start-page: 024047
  year: 2018
  ident: 2024120216493378300_c28
  article-title: Anisotropic optical properties of metastable (01-12)α-Ga2O3 grown by plasma-assisted molecular beam epitaxy
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/physrevapplied.10.024047
– volume: 8
  start-page: 020906
  year: 2020
  ident: 2024120216493378300_c40
  article-title: Recent progress on the electronic structure, defect, and doping properties of Ga2O3
  publication-title: APL Mater.
  doi: 10.1063/1.5142999
– volume: 5
  start-page: 011301
  year: 2018
  ident: 2024120216493378300_c2
  article-title: A review of Ga2O3 materials, processing, and devices
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5006941
– volume: 7
  start-page: 051103
  year: 2019
  ident: 2024120216493378300_c13
  article-title: Deep trap spectra of Sn-doped α-Ga2O3 grown by halide vapor phase epitaxy on sapphire
  publication-title: APL Mater.
  doi: 10.1063/1.5094787
– volume: 39
  start-page: 675
  year: 1978
  ident: 2024120216493378300_c16
  article-title: The ultraviolet luminescence of β-galliumsesquioxide
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(78)90183-x
– volume: 121
  start-page: 260501
  year: 2022
  ident: 2024120216493378300_c1
  article-title: Progress and challenges in the development of ultra-wide bandgap semiconductor α-Ga2O3 toward realizing power device applications
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0126698
– volume: 103
  start-page: 123511
  year: 2013
  ident: 2024120216493378300_c33
  article-title: Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4821858
– volume: 10
  start-page: 13395
  year: 2022
  ident: 2024120216493378300_c3
  article-title: Recent progress on the effects of impurities and defects on the properties of Ga2O3
  publication-title: J. Mater. Chem. C
  doi: 10.1039/d2tc01128j
– volume: 32
  start-page: 1140
  year: 2020
  ident: 2024120216493378300_c24
  article-title: Phase control of crystalline Ga2O3 films by plasma-enhanced atomic layer deposition
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b03926
– volume: 54
  start-page: 043002
  year: 2020
  ident: 2024120216493378300_c19
  article-title: Deep-level defects in gallium oxide
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/abbeb1
SSID ssj0000491084
Score 2.352617
Snippet Polycrystalline α-Ga2O3 thin films containing secondary phase SnO were grown on BaF2 substrates by magnetron sputtering. The impurity tin concentration,...
SourceID doaj
proquest
crossref
scitation
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 125001
SubjectTerms Barium fluorides
Carrier density
Compensation
Electrons
Energy levels
Gallium oxides
Hall effect
Impurities
Magnetic properties
Magnetron sputtering
Optical properties
Photoluminescence
Radiation
Room temperature
Scattering
Secondary ion mass spectrometry
Temperature dependence
Thin films
Tin
Tin oxides
Transport properties
Ultraviolet radiation
SummonAdditionalLinks – databaseName: AIP Open Access Journals
  dbid: AJDQP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB60RfRFPLFaJaivq22uTR_rTcELFXxbmgsLdru06w_zj_ibnOxuS30oCAt7JSHMl-x8M5OdAJzG1uEw4C7CM494n9tISyMj7pVGDcOpo-EH5_sHeffGe-_ifQlOFkTwJTsXZ6hGuOiwZahTJMc4jOvd3tXz08yVgiS33VJ8mjdovs4fbVMk5f_DJFdRzZQR7zmlcrMB6xUbJN0Svk1YcukWrBSrMs1kG7LHrHA1EzT3SblhTXGbTzOSkyz40schKSoZefLzHd326SMj-ccgJX7wOZyQ4GidrxvWkKPpWnQn1HlJyWCYhT3ssJEdeLu5fr28i6otEiLDBMsjy6ynIfIZHGQG5eBZS6MFYh1jmnKJCGmhjDVoi7YNbVukR15wL51CELRmu1BLR6nbAyIRGqsoHrHmvCP7wsex1R0X941WXjTgeCrKJCszYSRFBFuyRCSVvBtwEYQ8KxCSVxcPENGkmguJF2hzUSSeUuInxCmllepgR73jwuCrBjSnECXVjJokLORRRG4pVANOZrAt7sn-v0odwBrFy3J9ShNq-fjLHSLLyPVRNcp-AcMdzrI
  priority: 102
  providerName: American Institute of Physics
Title Optical and electrical transport properties of α-Ga2O3 thin films with electrical compensation of Sn impurities
URI http://dx.doi.org/10.1063/5.0244593
https://www.proquest.com/docview/3134957558
https://doaj.org/article/f5259297766040e88b889ecbfe45c259
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EEb2IT6xWWdRrbLuvbI9qrSLWKrXQW8i-sGLT0MYf5h_xNzmbpKU9iBchsOSxyzDfJjM7O_kGoYvQWJgGzAbQsoDFzARKaBEwJxVYGEYs8T84d57EfZ89DPhgodSXzwkr6IELxdUcBwedgJciBMw3K6WSsmm1cpZxDbf81xds3sJi6r3wext1yWZUQoLW-CVYI8abdMkA5Tz9S87lBlieYhN8wc60t9FW6SDiq0KwHbRik120nidq6ukeSrtpHn3GcWJwUcMmP81mJOU49eH1iedJxWOHv7-Cu5h0Kc7ehgl2w4_RFPvY62Jfn1YOq9lcHN-nl-DhKPVl7WCQfdRv377e3Adl1YRAU06zwFDjiN8M9TEzDXpwtK5gUWIspYowAaApLrXRsDxtaNIw4DE5zpywEnBRih6g1WSc2EOEBaBlJIEjVIw1RcxdGBrVtGGslXS8gs5mqozSghwjyje1BY14VOq7gq69kucPeD7r_AKgHJUoR3-hXEHVGURR-ZJNI-qpFcHd5LKCzuew_S7J0X9Icow2CYxXZLRU0Wo2-bQn4Jdk6hStXbU6jz3fPrRenk_zKfkDFz_jKQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9wwEB5xqKIvFbSgbsthFV4NrK94H7mXu1VB4s2KL3UlCBEb-F_8EX4T4yS7XR6QkCJFceJoNONkvhmPPwNsZD7gMBCB4llQkQtPrXKKiqgtehjBAksLnM8vVP9anNzIm7Y2J62FQSGGm_mgbCiC_dNWq0B6i5jzsfxPOKD4ltxEByNkj0_DLEbjCgf47M7J_p_f4yQLwt_uthYjRqHJPm_8UE3X_wZjzqEDaubCJ9zN4Tx8aXEi2WnkWoCpUHyFT3W9pht-g_KyrJPQJC88abayqS-rEVc5KVOW_SHRpZL7SF6e6VHOLjmp_g0KEge3d0OSUrCTfVN1OQa1tTipz9-CDO7KtLsdvmQRrg8Prvb6tN08gToueUU995GlOdGUOnOoh8i3LcYmPnBumVBoOyu18w6j1K5jXY_AKUoRVdBoHmv5EswU90X4DkSh0bxmeGRWiJ7KZcwyb3shy53VUXbg10iVpmw4Mkw9t624kabVdwd2k5LHDyRa67oBDW1aI5soMRpjCEmVwp9L0Npq3UNBYxDS4a0OLI9MZNpvbWh4YlhE1Cl1B9bHZntfkh8femoN5vpX52fm7Pji9Cd8ZtjcVLEsw0z18BhWEItUdrUdca8Nhtux
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+and+electrical+transport+properties+of+%CE%B1+-Ga2O3+thin+films+with+electrical+compensation+of+Sn+impurities&rft.jtitle=AIP+advances&rft.au=Cao%2C+Wentian&rft.au=Qin%2C+Xiaoqi&rft.au=Wang%2C+Shuyun&rft.date=2024-12-01&rft.issn=2158-3226&rft.eissn=2158-3226&rft.volume=14&rft.issue=12&rft_id=info:doi/10.1063%2F5.0244593&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0244593
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon