Deep learning for side-channel analysis and introduction to ASCAD database
Recent works have demonstrated that deep learning algorithms were efficient to conduct security evaluations of embedded systems and had many advantages compared to the other methods. Unfortunately, their hyper-parametrization has often been kept secret by the authors who only discussed on the main d...
Saved in:
Published in | Journal of cryptographic engineering Vol. 10; no. 2; pp. 163 - 188 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2020
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent works have demonstrated that deep learning algorithms were efficient to conduct security evaluations of embedded systems and had many advantages compared to the other methods. Unfortunately, their
hyper-parametrization
has often been kept secret by the authors who only discussed on the main design principles and on the attack efficiencies in some specific contexts. This is clearly an important limitation of previous works since (1) the latter parametrization is known to be a challenging question in machine learning and (2) it does not allow for the reproducibility of the presented results and (3) it does not allow to draw general conclusions. This paper aims to address these limitations in several ways. First, completing recent works, we propose a study of deep learning algorithms when applied in the context of side-channel analysis and we discuss the links with the classical template attacks. Secondly, for the first time, we address the question of the choice of the hyper-parameters for the class convolutional neural networks. Several benchmarks and rationales are given in the context of the analysis of a challenging masked implementation of the AES algorithm. Interestingly, our work shows that the approach followed to design the algorithm VGG-16 used for image recognition seems also to be sound when it comes to fix an architecture for side-channel analysis. To enable perfect reproducibility of our tests, this work also introduces an open platform including all the sources of the target implementation together with the campaign of electromagnetic measurements exploited in our benchmarks. This open database, named ASCAD, is the first one in its category and it has been specified to serve as a common basis for further works on this subject. |
---|---|
AbstractList | Recent works have demonstrated that deep learning algorithms were efficient to conduct security evaluations of embedded systems and had many advantages compared to the other methods. Unfortunately, their hyper-parametrization has often been kept secret by the authors who only discussed on the main design principles and on the attack efficiencies in some specific contexts. This is clearly an important limitation of previous works since (1) the latter parametrization is known to be a challenging question in machine learning and (2) it does not allow for the reproducibility of the presented results and (3) it does not allow to draw general conclusions. This paper aims to address these limitations in several ways. First, completing recent works, we propose a study of deep learning algorithms when applied in the context of side-channel analysis and we discuss the links with the classical template attacks. Secondly, for the first time, we address the question of the choice of the hyper-parameters for the class convolutional neural networks. Several benchmarks and rationales are given in the context of the analysis of a challenging masked implementation of the AES algorithm. Interestingly, our work shows that the approach followed to design the algorithm VGG-16 used for image recognition seems also to be sound when it comes to fix an architecture for side-channel analysis. To enable perfect reproducibility of our tests, this work also introduces an open platform including all the sources of the target implementation together with the campaign of electromagnetic measurements exploited in our benchmarks. This open database, named ASCAD, is the first one in its category and it has been specified to serve as a common basis for further works on this subject. Recent works have demonstrated that deep learning algorithms were efficient to conduct security evaluations of embedded systems and had many advantages compared to the other methods. Unfortunately, their hyper-parametrization has often been kept secret by the authors who only discussed on the main design principles and on the attack efficiencies in some specific contexts. This is clearly an important limitation of previous works since (1) the latter parametrization is known to be a challenging question in machine learning and (2) it does not allow for the reproducibility of the presented results and (3) it does not allow to draw general conclusions. This paper aims to address these limitations in several ways. First, completing recent works, we propose a study of deep learning algorithms when applied in the context of side-channel analysis and we discuss the links with the classical template attacks. Secondly, for the first time, we address the question of the choice of the hyper-parameters for the class convolutional neural networks. Several benchmarks and rationales are given in the context of the analysis of a challenging masked implementation of the AES algorithm. Interestingly, our work shows that the approach followed to design the algorithm VGG-16 used for image recognition seems also to be sound when it comes to fix an architecture for side-channel analysis. To enable perfect reproducibility of our tests, this work also introduces an open platform including all the sources of the target implementation together with the campaign of electromagnetic measurements exploited in our benchmarks. This open database, named ASCAD, is the first one in its category and it has been specified to serve as a common basis for further works on this subject. |
Author | Prouff, Emmanuel Benadjila, Ryad Strullu, Rémi Dumas, Cécile Cagli, Eleonora |
Author_xml | – sequence: 1 givenname: Ryad surname: Benadjila fullname: Benadjila, Ryad organization: ANSSI – sequence: 2 givenname: Emmanuel orcidid: 0000-0002-3998-0478 surname: Prouff fullname: Prouff, Emmanuel email: emmanuel.prouff@ssi.gouv.fr organization: ANSSI – sequence: 3 givenname: Rémi surname: Strullu fullname: Strullu, Rémi organization: ANSSI – sequence: 4 givenname: Eleonora surname: Cagli fullname: Cagli, Eleonora organization: CEA, LETI – sequence: 5 givenname: Cécile surname: Dumas fullname: Dumas, Cécile organization: CEA, LETI |
BackLink | https://hal.science/hal-02984494$$DView record in HAL |
BookMark | eNp9kE9LAzEQxYNUsNZ-AU8BTx5W82-32ePSqlUKHtRzmGazbWRNarIV-u1NXangoYdhHsN7M8nvHA2cdwahS0puKCGT20g5l2VGaCrCGMnkCRoyWiaR02Jw0ESeoXGMdkk4FyTPJ3yInmbGbHBrIDjrVrjxAUdbm0yvwTnTYnDQ7qKNSdTYui74eqs76x3uPK5eptUM19DBEqK5QKcNtNGMf_sIvd3fvU7n2eL54XFaLTLNc95lGoygUBQaWA2SC2BlqbnJiQahBVnWnAitWW6kpg1v0oxNQGsuITclFJqP0HW_dw2t2gT7AWGnPFg1rxZqPyOslEKU4osm71Xv3QT_uTWxU-9-G9KfomKCCF5OEovkYr1LBx9jMM1hLSVqj1j1iFVCrH4QK5lC8l9I2w72aLoAtj0e5X00pjtuZcLfq46kvgFuHpET |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3491916 crossref_primary_10_3390_electronics12153279 crossref_primary_10_1016_j_vlsi_2025_102373 crossref_primary_10_1109_ACCESS_2023_3301178 crossref_primary_10_1109_TC_2024_3416682 crossref_primary_10_1007_s13042_022_01588_6 crossref_primary_10_1109_TVLSI_2023_3339810 crossref_primary_10_1016_j_compeleceng_2024_109515 crossref_primary_10_1109_TCE_2024_3372018 crossref_primary_10_1016_j_phycom_2024_102288 crossref_primary_10_1109_ACCESS_2023_3311370 crossref_primary_10_1007_s13389_023_00342_0 crossref_primary_10_1541_ieejeiss_144_7 crossref_primary_10_1145_3569577 crossref_primary_10_1109_TIM_2023_3284933 crossref_primary_10_3390_electronics12234728 crossref_primary_10_1109_TC_2024_3477997 crossref_primary_10_1109_ACCESS_2022_3150833 crossref_primary_10_7717_peerj_cs_829 crossref_primary_10_1109_TCSII_2024_3371110 crossref_primary_10_62056_ay4c3txol7 crossref_primary_10_1002_spy2_481 crossref_primary_10_3390_electronics13173530 crossref_primary_10_1109_TVLSI_2021_3115420 crossref_primary_10_1109_TIFS_2022_3176189 crossref_primary_10_1186_s42400_023_00149_w crossref_primary_10_1109_TC_2023_3234205 crossref_primary_10_1109_TIFS_2023_3326667 crossref_primary_10_1002_cpe_6764 crossref_primary_10_3390_math12152355 crossref_primary_10_1016_j_measen_2024_101137 crossref_primary_10_1109_TIFS_2021_3076928 crossref_primary_10_1109_TIFS_2023_3343947 crossref_primary_10_1016_j_jocs_2023_102078 crossref_primary_10_1109_TDSC_2023_3278857 crossref_primary_10_1109_TETC_2022_3218372 crossref_primary_10_1016_j_mejo_2023_105901 crossref_primary_10_3390_math12203279 crossref_primary_10_3390_s22218096 crossref_primary_10_1007_s10586_024_04701_2 crossref_primary_10_3390_electronics12163461 crossref_primary_10_1007_s10836_024_06149_z crossref_primary_10_1016_j_compeleceng_2022_107686 crossref_primary_10_1016_j_patcog_2025_111374 crossref_primary_10_1002_cta_4486 crossref_primary_10_12677_AAM_2022_1112924 crossref_primary_10_1109_TIFS_2020_3045904 crossref_primary_10_1016_j_cose_2021_102471 crossref_primary_10_1109_ACCESS_2022_3140446 crossref_primary_10_1109_OJCS_2021_3061445 crossref_primary_10_1007_s11042_024_19722_7 crossref_primary_10_54691_akyt1k78 crossref_primary_10_1002_nem_2288 crossref_primary_10_1109_TIFS_2023_3287728 crossref_primary_10_3390_math11153265 crossref_primary_10_1109_TIFS_2023_3310350 crossref_primary_10_1109_JIOT_2024_3460802 crossref_primary_10_1007_s13042_025_02552_w crossref_primary_10_1093_comjnl_bxac112 crossref_primary_10_1007_s13389_024_00363_3 crossref_primary_10_1109_ACCESS_2021_3072653 crossref_primary_10_3390_info12110462 crossref_primary_10_1109_TIFS_2023_3273169 crossref_primary_10_1109_TDSC_2024_3370711 crossref_primary_10_1155_2022_7375097 crossref_primary_10_1109_ACCESS_2022_3232064 crossref_primary_10_1007_s13389_024_00346_4 crossref_primary_10_1007_s11704_020_0209_4 crossref_primary_10_3390_computers13080210 crossref_primary_10_1016_j_mejo_2024_106546 crossref_primary_10_1186_s42400_021_00099_1 crossref_primary_10_1109_ACCESS_2024_3416199 crossref_primary_10_3390_app12168246 crossref_primary_10_1007_s13389_023_00320_6 crossref_primary_10_1109_ACCESS_2022_3187201 crossref_primary_10_3390_a16030127 crossref_primary_10_1109_TIFS_2024_3430854 crossref_primary_10_1007_s11227_023_05631_3 crossref_primary_10_1007_s13389_023_00328_y crossref_primary_10_3390_s22072477 crossref_primary_10_1109_ACCESS_2023_3309422 crossref_primary_10_32604_cmc_2024_051613 crossref_primary_10_3390_electronics12153361 crossref_primary_10_1145_3687484 crossref_primary_10_1145_3701991 crossref_primary_10_1016_j_comnet_2021_108405 crossref_primary_10_1109_ACCESS_2020_3029206 crossref_primary_10_1109_TIFS_2024_3490782 crossref_primary_10_62056_a36cy7qiu crossref_primary_10_1007_s13389_023_00330_4 crossref_primary_10_1587_elex_18_20210309 crossref_primary_10_1007_s13389_023_00311_7 crossref_primary_10_3390_electronics13132551 crossref_primary_10_1109_TIFS_2021_3092050 |
Cites_doi | 10.1007/0-387-24555-3_5 10.1162/neco.1989.1.4.541 10.1098/rsta.1922.0009 10.1007/3-540-44709-1_26 10.1007/978-3-319-54669-8_1 10.1214/aos/1032181158 10.1007/978-3-319-49445-6_1 10.1007/s11263-015-0816-y 10.1007/978-3-319-15765-8_18 10.1109/HST.2015.7140247 10.1007/11545262_12 10.1007/978-3-319-21476-4_2 10.1109/ICCV.2009.5459469 10.1007/978-3-319-10175-0_17 10.1007/978-3-319-08302-5_7 10.1007/978-3-540-28632-5_2 10.1515/JMC.2008.013 10.1007/978-3-319-08302-5_5 10.1145/3065386 10.1080/14786440109462720 10.1007/BF00994018 10.25080/Majora-8b375195-003 10.1007/978-3-642-29912-4_18 10.1109/CVPR.2016.308 10.1007/3-540-36400-5_3 10.1007/s13389-011-0010-2 10.1109/TSP.2016.7760865 10.1007/3-540-44499-8_19 10.1007/978-3-642-37288-9_18 10.1007/978-3-319-10590-1_53 10.1109/CVPR.2016.90 10.1007/s13389-011-0023-x 10.1111/j.1469-1809.1936.tb02137.x 10.1109/CVPR.2015.7298594 10.1007/978-3-319-66787-4_3 10.1504/IJACT.2014.062722 10.1109/5.726791 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1007/s13389-019-00220-8 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2190-8516 |
EndPage | 188 |
ExternalDocumentID | oai_HAL_hal_02984494v1 10_1007_s13389_019_00220_8 |
GroupedDBID | -EM 0R~ 0VY 203 2VQ 30V 4.4 406 408 409 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ8 HF~ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J PT4 RLLFE ROL RSV S27 SCO SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ 1XC |
ID | FETCH-LOGICAL-c353t-cae41a66ca2da834a299c3e50ca4c40bd304cc25e8c1f3f4c427acc38a5e9a6c3 |
IEDL.DBID | U2A |
ISSN | 2190-8508 |
IngestDate | Fri May 09 12:20:33 EDT 2025 Fri Jul 25 11:07:20 EDT 2025 Tue Jul 01 02:41:50 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Fri Feb 21 02:30:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Deep learning Side-channel analysis Machine learning |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-cae41a66ca2da834a299c3e50ca4c40bd304cc25e8c1f3f4c427acc38a5e9a6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3998-0478 |
PQID | 2404397033 |
PQPubID | 2043896 |
PageCount | 26 |
ParticipantIDs | hal_primary_oai_HAL_hal_02984494v1 proquest_journals_2404397033 crossref_primary_10_1007_s13389_019_00220_8 crossref_citationtrail_10_1007_s13389_019_00220_8 springer_journals_10_1007_s13389_019_00220_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of cryptographic engineering |
PublicationTitleAbbrev | J Cryptogr Eng |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer |
References | NairVHintonGEFürnkranzJJoachimsTRectified linear units improve restricted Boltzmann machinesProceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24 June 2010, Haifa, Israel2010MadisonOmnipress807814 LermanLBontempiGMarkowitchOPower analysis attack: an approach based on machine learningIJACT20143297115328722610.1504/IJACT.2014.0627221351.94055 Weston, J., Watkins, C.: Multi-class support vector machines. Technical Report CSD-TR-98-04, Royal Holloway, University of London (1998) KocherPJaffeJJunBWienerMDifferential power analysisAdvances in Cryptology-CRYPTO’99. Lecture Notes in Computer Science1999BerlinSpringer388397 Group, H.: The hdf group. https://www.hdfgroup.org Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: S. Mangard, A.Y. Poschmann (eds.) Constructive Side-Channel Analysis and Secure Design-6th International Workshop, COSADE 2015, Berlin, Germany, 13–14 April 2015. Revised Selected Papers, Lecture Notes in Computer Science, vol. 9064, pp. 20–33. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-21476-4_2 DogetJProuffERivainMStandaertFXUnivariate side channel attacks and leakage modelingJ. Cryptogr. Eng.20111212314410.1007/s13389-011-0010-2 Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010) Group, H.: HDF5 For Python. http://www.h5py.org Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist McAllester, D.A., Hazan, T., Keshet, J.: Direct loss minimization for structured prediction. In: J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, A. Culotta (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6–9 December 2010, Vancouver, British Columbia, Canada, pp. 1594–1602. Curran Associates, Inc., Red Hook (2010). http://papers.nips.cc/paper/4069-direct-loss-minimization-for-structured-prediction ProuffERivainMKimSYungMLeeHWA generic method for secure SBox implementationWISA. Lecture Notes in Computer Science2008BerlinSpringer227244 Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks (2017). arXiv preprint arXiv:1706.02515 LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput.19891454155110.1162/neco.1989.1.4.541 Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: C. Carlet, M.A. Hasan, V. Saraswat (eds.) Security, Privacy, and Applied Cryptography Engineering-6th International Conference, SPACE 2016, Hyderabad, India, 14–18 December 2016. Proceedings, Lecture Notes in Computer Science, vol. 10076, pp. 3–26. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-49445-6_1 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015) HospodarGGierlichsBMulderEDVerbauwhedeIVandewalleJMachine learning in side-channel analysis: a first studyJ. Cryptogr. Eng.20111429330210.1007/s13389-011-0023-x Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures - profiling attacks without pre-processing. In: W. Fischer, N. Homma (eds.) Cryptographic Hardware and Embedded Systems-CHES 2017-19th International Conference, Taipei, Taiwan, September 25–28 2017, Proceedings, Lecture Notes in Computer Science, vol. 10529, pp. 45–68. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-66787-4_3 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016) BergstraJBengioYRandom search for hyper-parameter optimizationJ. Mach. Learn. Res.201213(Feb)28130529137011283.68282 AkkarMLGiraudCÇ. KoçDNaccacheDPaarCAn Implementation of DES and AES, Secure against Some AttacksCryptographic Hardware and Embedded Systems–CHES 2001. Lecture Notes in Computer Science2001BerlinSpringer30931810.1007/3-540-44709-1_26 LeCunYBengioYConvolutional networks for images, speech, and time seriesThe Handbook of Brain Theory and Neural Networks19953361101995 LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE199886112278232410.1109/5.726791 Picek, S., Samiotis, I.P., Heuser, A., Kim, J., Bhasin, S., Legay, A.: On the Performance of Deep Learning for Side-channel Analysis. IACR Cryptology. ePrint Archive 2018, 004 (2018). http://eprint.iacr.org/2018/004 BartkewitzTLemke-RustKMangardSEfficient template attacks based on probabilistic multi-class support vector machinesSmart Card Research and Advanced Applications CARDIS. Lecture Notes in Computer Science2013BerlinSpringer26327610.1007/978-3-642-37288-9_18 Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer (2014) Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in Science Conference, pp. 13–20 (2013) ANSSI: secaes-atmega8515 (2018). https://github.com/ANSSI-FR/secAES-ATmega8515 MessergesTKoçÇPaarCUsing second-order power analysis to attack DPA resistant softwareCryptographic Hardware and Embedded Systems-CHES 2000. Lecture Notes in Computer Science2000BerlinSpringer23825110.1007/3-540-44499-8_19 MartinasekZMalinaLTrasyKProfiling power analysis attack based on multi-layer perceptron networkComput. Probl. Sci. Eng.201534331710.1007/978-3-319-15765-8_18 RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMImagenet large scale visual recognition challengeInt. J. Comput. Vis.20151153211252342248210.1007/s11263-015-0816-y LermanLMedeirosSFBontempiGMarkowitchOFriedmanJHastieTTibshiraniRA machine learning approach against a masked AESThe Elements of Statistical Learning. Springer Series in Statistics2014New YorkSpringer617510.1007/978-3-319-08302-5_5 GoodfellowIBengioYCourvilleADeep Learning2016CambridgeMIT Press1373.68009 RokachLMaimonOData Mining with Decision Trees: Theroy and Applications2008Inc, River EdgeWorld Scientific Publishing Co.1154.68098 Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–2153. IEEE (2009) SchindlerWLemkeKPaarCRaoJSunarBA Stochastic model for differential side channel cryptanalysisCryptographic Hardware and Embedded Systems–CHES 2005. Lecture Notes in Computer Science2005BerlinSpringer PearsonKOn lines and planes of closest fit to systems of points in spacePhilos. Mag.190121155957210.1080/14786440109462720 MangardSPramstallerNOswaldERaoJSunarBSuccessfully attacking masked AES hardware implementationsCryptographic Hardware and Embedded Systems-CHES 2005. Lecture Notes in Computer Science2005BerlinSpringer15717110.1007/11545262_12 FriedmanJHastieTTibshiraniRThe Elements of Statistical Learning. Springer Series in Statistics2001New YorkSpringer0973.62007 GoodfellowIJBengioYCourvilleACDeep Learning. Adaptive Computation and Machine Learning2016CambridgeMIT Press1373.68009 ANSSI: Ascad database (2018). https://github.com/ANSSI-FR/ASCAD BrierEClavierCOlivierFJoyeMQuisquaterJJCorrelation power analysis with a leakage modelCryptographic Hardware and Embedded Systems–CHES 2004. Lecture Notes in Computer Science2004BerlinSpringer162910.1007/978-3-540-28632-5_2 ChariSRaoJRohatgiPKaliskiBJrKoçÇPaarCTemplate attacksCryptographic Hardware and Embedded Systems-CHES 2002. Lecture Notes in Computer Science2002BerlinSpringer132910.1007/3-540-36400-5_3 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org Heuser, A., Zohner, M.: Intelligent machine homicide-breaking cryptographic devices using support vector machines. In: W. Schindler, S.A. Huss (eds.) Constructive Side-Channel Analysis and Secure Design-Third International Workshop, COSADE 2012, Darmstadt, Germany, 3–4 May 2012. Proceedings, Lecture Notes in Computer Science, vol. 7275, pp. 249–264. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29912-4_18 Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386 Song, Y., Schwing, A.G., Zemel, R.S., Urtasun, R.: Direct loss minimization for training deep neural nets. CoRR (2015). arXiv:1511.06411 BishopCMPattern Recognition and Machine Learning2006BerlinSpringer1107.68072 Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA, 5–7 May 2015, pp. 106–111. IEEE Computer Society (2015). https://doi.org/10.1109/HST.2015.7140247 Ioffe, S., Szegedy, C.: Batc J Friedman (220_CR20) 2001 CM Bishop (220_CR9) 2006 220_CR54 IJ Goodfellow (220_CR25) 2016 220_CR12 T Messerges (220_CR50) 2000 E Brier (220_CR11) 2004 220_CR52 E Prouff (220_CR55) 2008 I Goodfellow (220_CR24) 2016 P Kocher (220_CR34) 1999 220_CR47 220_CR46 220_CR49 W Schindler (220_CR59) 2005 S Mangard (220_CR45) 2005 RA Fisher (220_CR18) 1922; 222 220_CR43 220_CR44 220_CR40 220_CR39 K Pearson (220_CR53) 1901; 2 W Schindler (220_CR58) 2008; 2 S Chari (220_CR14) 2002 220_CR35 O Russakovsky (220_CR57) 2015; 115 220_CR8 220_CR6 G Hospodar (220_CR30) 2011; 1 220_CR32 220_CR1 220_CR31 Y LeCun (220_CR37) 1989; 1 220_CR33 220_CR4 220_CR3 220_CR29 220_CR28 T Bartkewitz (220_CR5) 2013 220_CR27 220_CR26 Y LeCun (220_CR36) 1995; 3361 ML Akkar (220_CR2) 2001 RA Fisher (220_CR19) 1936; 7 V Nair (220_CR51) 2010 L Rokach (220_CR56) 2008 220_CR21 220_CR65 L Breiman (220_CR10) 1996; 24 220_CR64 220_CR23 L Lerman (220_CR42) 2014 220_CR22 220_CR61 J Doget (220_CR17) 2011; 1 220_CR60 220_CR63 220_CR62 C Cortes (220_CR16) 1995; 20 Z Martinasek (220_CR48) 2015; 343 220_CR13 Y LeCun (220_CR38) 1998; 86 220_CR15 J Bergstra (220_CR7) 2012; 13 L Lerman (220_CR41) 2014; 3 |
References_xml | – reference: Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–2153. IEEE (2009) – reference: SchindlerWAdvanced stochastic methods in side channel analysis on block ciphers in the presence of maskingJ. Math. Cryptol.20082291310257335510.1515/JMC.2008.013 – reference: FisherRAOn the mathematical foundations of theoretical statisticsPhilos. Trans. R. Soc. Lond. Ser. A.192222230936810.1098/rsta.1922.000948.1280.02 – reference: HospodarGGierlichsBMulderEDVerbauwhedeIVandewalleJMachine learning in side-channel analysis: a first studyJ. Cryptogr. Eng.20111429330210.1007/s13389-011-0023-x – reference: ANSSI: Ascad database (2018). https://github.com/ANSSI-FR/ASCAD – reference: Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis attack based on MLP in DPA contest V4.2. In: 39th International Conference on Telecommunications and Signal Processing, TSP 2016, Vienna, Austria, 27–29 June 2016, pp. 223–226. IEEE (2016). https://doi.org/10.1109/TSP.2016.7760865 – reference: CortesCVapnikVSupport-vector networksMach. Learn.199520327329710.1007/BF009940180831.68098 – reference: FisherRAThe use of multiple measurements in taxonomic problemsAnn. Eugen.19367717918810.1111/j.1469-1809.1936.tb02137.x – reference: Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386 – reference: RokachLMaimonOData Mining with Decision Trees: Theroy and Applications2008Inc, River EdgeWorld Scientific Publishing Co.1154.68098 – reference: Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures - profiling attacks without pre-processing. In: W. Fischer, N. Homma (eds.) Cryptographic Hardware and Embedded Systems-CHES 2017-19th International Conference, Taipei, Taiwan, September 25–28 2017, Proceedings, Lecture Notes in Computer Science, vol. 10529, pp. 45–68. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-66787-4_3 – reference: BreimanLHeuristics of instability and stabilization in model selectionAnn. Stat.199624623502383142595710.1214/aos/1032181158 – reference: Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010) – reference: Group, H.: HDF5 For Python. http://www.h5py.org/ – reference: LermanLMedeirosSFBontempiGMarkowitchOFriedmanJHastieTTibshiraniRA machine learning approach against a masked AESThe Elements of Statistical Learning. Springer Series in Statistics2014New YorkSpringer617510.1007/978-3-319-08302-5_5 – reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016) – reference: Song, Y., Schwing, A.G., Zemel, R.S., Urtasun, R.: Direct loss minimization for training deep neural nets. CoRR (2015). arXiv:1511.06411 – reference: AkkarMLGiraudCÇ. KoçDNaccacheDPaarCAn Implementation of DES and AES, Secure against Some AttacksCryptographic Hardware and Embedded Systems–CHES 2001. Lecture Notes in Computer Science2001BerlinSpringer30931810.1007/3-540-44709-1_26 – reference: Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer (2014) – reference: LeCunYBengioYConvolutional networks for images, speech, and time seriesThe Handbook of Brain Theory and Neural Networks19953361101995 – reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE199886112278232410.1109/5.726791 – reference: PearsonKOn lines and planes of closest fit to systems of points in spacePhilos. Mag.190121155957210.1080/14786440109462720 – reference: BishopCMPattern Recognition and Machine Learning2006BerlinSpringer1107.68072 – reference: ProuffERivainMKimSYungMLeeHWA generic method for secure SBox implementationWISA. Lecture Notes in Computer Science2008BerlinSpringer227244 – reference: ChariSRaoJRohatgiPKaliskiBJrKoçÇPaarCTemplate attacksCryptographic Hardware and Embedded Systems-CHES 2002. Lecture Notes in Computer Science2002BerlinSpringer132910.1007/3-540-36400-5_3 – reference: FriedmanJHastieTTibshiraniRThe Elements of Statistical Learning. Springer Series in Statistics2001New YorkSpringer0973.62007 – reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org – reference: He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) – reference: LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput.19891454155110.1162/neco.1989.1.4.541 – reference: McAllester, D.A., Hazan, T., Keshet, J.: Direct loss minimization for structured prediction. In: J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, A. Culotta (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6–9 December 2010, Vancouver, British Columbia, Canada, pp. 1594–1602. Curran Associates, Inc., Red Hook (2010). http://papers.nips.cc/paper/4069-direct-loss-minimization-for-structured-prediction – reference: LermanLBontempiGMarkowitchOPower analysis attack: an approach based on machine learningIJACT20143297115328722610.1504/IJACT.2014.0627221351.94055 – reference: MartinasekZMalinaLTrasyKProfiling power analysis attack based on multi-layer perceptron networkComput. Probl. Sci. Eng.201534331710.1007/978-3-319-15765-8_18 – reference: Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011) – reference: Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in Science Conference, pp. 13–20 (2013) – reference: Bengio, Y., Grandvalet, Y.: Bias in estimating the variance of k-fold cross-validation. In: Duchesne, P., Rémillard, B. (eds.) Statistical modeling and analysis for complex data problems, pp. 75–95. Springer, Berlin (2005) – reference: KocherPJaffeJJunBWienerMDifferential power analysisAdvances in Cryptology-CRYPTO’99. Lecture Notes in Computer Science1999BerlinSpringer388397 – reference: BartkewitzTLemke-RustKMangardSEfficient template attacks based on probabilistic multi-class support vector machinesSmart Card Research and Advanced Applications CARDIS. Lecture Notes in Computer Science2013BerlinSpringer26327610.1007/978-3-642-37288-9_18 – reference: ANSSI: secaes-atmega8515 (2018). https://github.com/ANSSI-FR/secAES-ATmega8515 – reference: RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMImagenet large scale visual recognition challengeInt. J. Comput. Vis.20151153211252342248210.1007/s11263-015-0816-y – reference: Picek, S., Samiotis, I.P., Heuser, A., Kim, J., Bhasin, S., Legay, A.: On the Performance of Deep Learning for Side-channel Analysis. IACR Cryptology. ePrint Archive 2018, 004 (2018). http://eprint.iacr.org/2018/004 – reference: GoodfellowIJBengioYCourvilleACDeep Learning. Adaptive Computation and Machine Learning2016CambridgeMIT Press1373.68009 – reference: Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: C. Carlet, M.A. Hasan, V. Saraswat (eds.) Security, Privacy, and Applied Cryptography Engineering-6th International Conference, SPACE 2016, Hyderabad, India, 14–18 December 2016. Proceedings, Lecture Notes in Computer Science, vol. 10076, pp. 3–26. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-49445-6_1 – reference: Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks (2017). arXiv preprint arXiv:1706.02515 – reference: NairVHintonGEFürnkranzJJoachimsTRectified linear units improve restricted Boltzmann machinesProceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24 June 2010, Haifa, Israel2010MadisonOmnipress807814 – reference: Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural network. In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced Applications-12th International Conference, CARDIS 2013, Berlin, Germany, 27–29 November 2013. Revised Selected Papers, Lecture Notes in Computer Science, vol. 8419, pp. 94–107. Springer, Berlin. https://doi.org/10.1007/978-3-319-08302-5_7 – reference: MangardSPramstallerNOswaldERaoJSunarBSuccessfully attacking masked AES hardware implementationsCryptographic Hardware and Embedded Systems-CHES 2005. Lecture Notes in Computer Science2005BerlinSpringer15717110.1007/11545262_12 – reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015) – reference: MessergesTKoçÇPaarCUsing second-order power analysis to attack DPA resistant softwareCryptographic Hardware and Embedded Systems-CHES 2000. Lecture Notes in Computer Science2000BerlinSpringer23825110.1007/3-540-44499-8_19 – reference: Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: S. Mangard, A.Y. Poschmann (eds.) Constructive Side-Channel Analysis and Secure Design-6th International Workshop, COSADE 2015, Berlin, Germany, 13–14 April 2015. Revised Selected Papers, Lecture Notes in Computer Science, vol. 9064, pp. 20–33. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-21476-4_2 – reference: Weston, J., Watkins, C.: Multi-class support vector machines. Technical Report CSD-TR-98-04, Royal Holloway, University of London (1998) – reference: Heuser, A., Zohner, M.: Intelligent machine homicide-breaking cryptographic devices using support vector machines. In: W. Schindler, S.A. Huss (eds.) Constructive Side-Channel Analysis and Secure Design-Third International Workshop, COSADE 2012, Darmstadt, Germany, 3–4 May 2012. Proceedings, Lecture Notes in Computer Science, vol. 7275, pp. 249–264. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29912-4_18 – reference: Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analysis for information extraction in the presence of masking. In: K. Lemke-Rust, M. Tunstall (eds.) Smart Card Research and Advanced Applications-15th International Conference, CARDIS 2016, Cannes, France, 7–9 November 2016, Revised Selected Papers, Lecture Notes in Computer Science, vol. 10146, pp. 1–22. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-54669-8_1 – reference: DogetJProuffERivainMStandaertFXUnivariate side channel attacks and leakage modelingJ. Cryptogr. Eng.20111212314410.1007/s13389-011-0010-2 – reference: O’Flynn, C., Chen, Z.D.: Chipwhisperer: An open-source platform for hardware embedded security research. In: E. Prouff (ed.) Constructive Side-Channel Analysis and Secure Design-5th International Workshop, COSADE 2014, Paris, France, 13–15 April 2014. Revised Selected Papers, Lecture Notes in Computer Science, vol. 8622, pp. 243–260. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-10175-0_17 – reference: BergstraJBengioYRandom search for hyper-parameter optimizationJ. Mach. Learn. Res.201213(Feb)28130529137011283.68282 – reference: Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR (2015). arXiv:1502.03167 – reference: LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/ – reference: GoodfellowIBengioYCourvilleADeep Learning2016CambridgeMIT Press1373.68009 – reference: BrierEClavierCOlivierFJoyeMQuisquaterJJCorrelation power analysis with a leakage modelCryptographic Hardware and Embedded Systems–CHES 2004. Lecture Notes in Computer Science2004BerlinSpringer162910.1007/978-3-540-28632-5_2 – reference: Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA, 5–7 May 2015, pp. 106–111. IEEE Computer Society (2015). https://doi.org/10.1109/HST.2015.7140247 – reference: Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556 – reference: SchindlerWLemkeKPaarCRaoJSunarBA Stochastic model for differential side channel cryptanalysisCryptographic Hardware and Embedded Systems–CHES 2005. Lecture Notes in Computer Science2005BerlinSpringer – reference: Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras – reference: Group, H.: The hdf group. https://www.hdfgroup.org/ – reference: LeCun, Y., Huang, F.J.: Loss functions for discriminative training of energy-based models. In: R.G. Cowell, Z. Ghahramani (eds.) Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, AISTATS 2005, Bridgetown, Barbados, 6–8 January 2005. Society for Artificial Intelligence and Statistics (2005). http://www.gatsby.ucl.ac.uk/aistats/fullpapers/207.pdf – ident: 220_CR15 – start-page: 388 volume-title: Advances in Cryptology-CRYPTO’99. Lecture Notes in Computer Science year: 1999 ident: 220_CR34 – ident: 220_CR40 – ident: 220_CR6 doi: 10.1007/0-387-24555-3_5 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 220_CR37 publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 222 start-page: 309 year: 1922 ident: 220_CR18 publication-title: Philos. Trans. R. Soc. Lond. Ser. A. doi: 10.1098/rsta.1922.0009 – start-page: 309 volume-title: Cryptographic Hardware and Embedded Systems–CHES 2001. Lecture Notes in Computer Science year: 2001 ident: 220_CR2 doi: 10.1007/3-540-44709-1_26 – ident: 220_CR12 doi: 10.1007/978-3-319-54669-8_1 – volume: 3361 start-page: 1995 issue: 10 year: 1995 ident: 220_CR36 publication-title: The Handbook of Brain Theory and Neural Networks – volume: 24 start-page: 2350 issue: 6 year: 1996 ident: 220_CR10 publication-title: Ann. Stat. doi: 10.1214/aos/1032181158 – volume-title: Cryptographic Hardware and Embedded Systems–CHES 2005. Lecture Notes in Computer Science year: 2005 ident: 220_CR59 – ident: 220_CR64 – ident: 220_CR44 doi: 10.1007/978-3-319-49445-6_1 – ident: 220_CR60 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 220_CR57 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – ident: 220_CR33 – volume: 343 start-page: 317 year: 2015 ident: 220_CR48 publication-title: Comput. Probl. Sci. Eng. doi: 10.1007/978-3-319-15765-8_18 – ident: 220_CR21 doi: 10.1109/HST.2015.7140247 – volume-title: The Elements of Statistical Learning. Springer Series in Statistics year: 2001 ident: 220_CR20 – start-page: 157 volume-title: Cryptographic Hardware and Embedded Systems-CHES 2005. Lecture Notes in Computer Science year: 2005 ident: 220_CR45 doi: 10.1007/11545262_12 – ident: 220_CR26 – ident: 220_CR43 doi: 10.1007/978-3-319-21476-4_2 – ident: 220_CR3 – ident: 220_CR54 – ident: 220_CR32 doi: 10.1109/ICCV.2009.5459469 – ident: 220_CR22 – ident: 220_CR52 doi: 10.1007/978-3-319-10175-0_17 – ident: 220_CR47 doi: 10.1007/978-3-319-08302-5_7 – start-page: 16 volume-title: Cryptographic Hardware and Embedded Systems–CHES 2004. Lecture Notes in Computer Science year: 2004 ident: 220_CR11 doi: 10.1007/978-3-540-28632-5_2 – volume: 13 start-page: 281 issue: (Feb) year: 2012 ident: 220_CR7 publication-title: J. Mach. Learn. Res. – start-page: 807 volume-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24 June 2010, Haifa, Israel year: 2010 ident: 220_CR51 – volume: 2 start-page: 291 year: 2008 ident: 220_CR58 publication-title: J. Math. Cryptol. doi: 10.1515/JMC.2008.013 – volume-title: Deep Learning. Adaptive Computation and Machine Learning year: 2016 ident: 220_CR25 – ident: 220_CR61 – start-page: 61 volume-title: The Elements of Statistical Learning. Springer Series in Statistics year: 2014 ident: 220_CR42 doi: 10.1007/978-3-319-08302-5_5 – ident: 220_CR35 doi: 10.1145/3065386 – volume: 2 start-page: 559 issue: 11 year: 1901 ident: 220_CR53 publication-title: Philos. Mag. doi: 10.1080/14786440109462720 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 220_CR16 publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: 220_CR8 doi: 10.25080/Majora-8b375195-003 – ident: 220_CR27 – start-page: 227 volume-title: WISA. Lecture Notes in Computer Science year: 2008 ident: 220_CR55 – ident: 220_CR23 – ident: 220_CR29 doi: 10.1007/978-3-642-29912-4_18 – ident: 220_CR63 doi: 10.1109/CVPR.2016.308 – start-page: 13 volume-title: Cryptographic Hardware and Embedded Systems-CHES 2002. Lecture Notes in Computer Science year: 2002 ident: 220_CR14 doi: 10.1007/3-540-36400-5_3 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: 220_CR9 – ident: 220_CR39 – volume: 1 start-page: 123 issue: 2 year: 2011 ident: 220_CR17 publication-title: J. Cryptogr. Eng. doi: 10.1007/s13389-011-0010-2 – ident: 220_CR46 doi: 10.1109/TSP.2016.7760865 – start-page: 238 volume-title: Cryptographic Hardware and Embedded Systems-CHES 2000. Lecture Notes in Computer Science year: 2000 ident: 220_CR50 doi: 10.1007/3-540-44499-8_19 – volume-title: Data Mining with Decision Trees: Theroy and Applications year: 2008 ident: 220_CR56 – ident: 220_CR4 – start-page: 263 volume-title: Smart Card Research and Advanced Applications CARDIS. Lecture Notes in Computer Science year: 2013 ident: 220_CR5 doi: 10.1007/978-3-642-37288-9_18 – ident: 220_CR65 doi: 10.1007/978-3-319-10590-1_53 – ident: 220_CR28 doi: 10.1109/CVPR.2016.90 – volume-title: Deep Learning year: 2016 ident: 220_CR24 – ident: 220_CR1 – volume: 1 start-page: 293 issue: 4 year: 2011 ident: 220_CR30 publication-title: J. Cryptogr. Eng. doi: 10.1007/s13389-011-0023-x – volume: 7 start-page: 179 issue: 7 year: 1936 ident: 220_CR19 publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1936.tb02137.x – ident: 220_CR49 – ident: 220_CR62 doi: 10.1109/CVPR.2015.7298594 – ident: 220_CR13 doi: 10.1007/978-3-319-66787-4_3 – volume: 3 start-page: 97 issue: 2 year: 2014 ident: 220_CR41 publication-title: IJACT doi: 10.1504/IJACT.2014.062722 – ident: 220_CR31 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 220_CR38 publication-title: Proc. IEEE doi: 10.1109/5.726791 |
SSID | ssib033405573 ssib031263732 ssj0002140048 |
Score | 2.5388288 |
Snippet | Recent works have demonstrated that deep learning algorithms were efficient to conduct security evaluations of embedded systems and had many advantages... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 163 |
SubjectTerms | Algorithms Artificial neural networks Benchmarks Circuits and Systems Communications Engineering Computer Communication Networks Computer Science Context Cryptography and Security Cryptology Data Structures and Information Theory Deep learning Electromagnetic measurement Embedded systems Machine learning Networks Object recognition Operating Systems Parameterization Questions Regular Paper Reproducibility Systems analysis |
Title | Deep learning for side-channel analysis and introduction to ASCAD database |
URI | https://link.springer.com/article/10.1007/s13389-019-00220-8 https://www.proquest.com/docview/2404397033 https://hal.science/hal-02984494 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xuPTS8ijqlgVZVW9gKfY4iXPMAtsVBS5lJThFju0UJLQgWPj9eLLOLiCo1EPkyHFkacb2jO35vgH4iakNRqopeCMbw5VwDde20NwVpjE6d0kmCeB8epaNxur4Ir2IoLCHLtq9u5JsV-oF2C3spii2JzwED-V6GVbTsHenQK6xLLtRhEJmmC_QkoiKeKZwfvIiRTtuKetci6MOLkpE07zfzSuLtXxF8ZIvnNE396etWRquwefoT7JyNgDWYclPNuBLl6uBxam7CceH3t-xmCPiLwuuKqNEnZyAvxN_w0wkJwkvjl1T-Lqb8cqy6S0r_wSFMQomJaP3FcbDo_ODEY95FLjFFKfcGq-EyTJrpDMalQkmyKJPE2uUVUntMFHWytRrKxpsQp3MjbWoTeoLk1ncgpXJ7cR_AyZyq0VjnKglJenAukaX6LwIpfRepT0QnawqG0nGKdfFTbWgRyb5VkG-VSvfSvdgb_7P3Yxi45-tfwQVzBsSO_aoPKmojtjklSrUk-hBv9NQFefkQyWJSKgIKxz2YL_T2uLzx11-_7_m2_BJ0qa8Parpw8r0_tHvBM9lWu_CajkcDM6o_HX5-2i3HbjPb7_hQg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOMCllFLEAi0W4gaWYo-TOMcVD21h4VJW4mY5ttNWQguCbX9_PVlnFxAgcYgSOY4szYwzY3u-bwAOMHfRSTUVb2RjuRK-4dpVmvvKNlaXPiskAZwvr4rBSJ3f5DcJFPbYZbt3R5Ltn3oOdourKcrtiRfBQ7lehOUYDGiy5ZHsd1aEQhZYztGSiIp4pnC28yJFa7dUda7FUccQJaFpXh_mmcda_E35kk-C0Rfnp61bOvsMn1I8yfpTA1iHhTD-AmtdrQaWpu4GnJ-EcM9SjYhfLIaqjAp1cgL-jsMts4mcJD549ofS1_2UV5ZN7lj_Z1QYo2RScnpfYXR2en084KmOAneY44Q7G5SwReGs9FajstEFOQx55qxyKqs9Zso5mQftRINNbJOldQ61zUNlC4ebsDS-G4ctYKJ0WjTWi1pSkQ6sa_SZLqt4lyGovAeik5VxiWScal3cmjk9MsnXRPmaVr5G9-Bw9s39lGLj3d77UQWzjsSOPegPDbURm7xSlfonerDbacikOfloJBEJVfEPhz046rQ2f_32kNsf674HK4Pry6EZ_ri62IFVSQv0dttmF5YmD3_DtxjFTOrvrdH-Bxdk4SU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WDsZe2u6LZu02Mfa2iVo62ZYfQ9uQZVkZbIG-CVkfW6G4oXX391fn2Ek3tsEejI0sI7g7-U7S_X4H8A5zl5xUrHiU0XIlfOTaVZr7ykarS58VkgDOn8-K6ULNzvPzeyj-Ltt9OJJcYRqIpalpj5Y-Hm2Ab2llRXk-6SKoKNdb8FARGjhZ9EKOB4tCIQssN8hJREWcU7jehZGis2GqQNdhqlO40iNr_jzML95r6wflTt4LTH87S-1c1GQPdvrYko1XxvAEHoTmKewOdRtYP42fwewkhCXr60V8ZylsZVS0kxMIuAmXzPZEJenBswtKZfcrjlnWXrHx16Q8Roml5ACfw2Jy-u14yvuaCtxhji13Nihhi8JZ6a1GZZM7chjyzFnlVFZ7zJRzMg_aiYgxtcnSOofa5qGyhcMXsN1cNWEfmCidFtF6UUsq2IF1jT7TZZXuMgSVj0AMsjKuJxynuheXZkOVTPI1Sb6mk6_RI3i__ma5otv4Z--3SQXrjsSUPR3PDbURs7xSlfopRnA4aMj08_PGSCIVqtLfDkfwYdDa5vXfh3z5f93fwKMvJxMz_3j26QAeS1qrdzs4h7DdXt-GVymgaevXnc3eAW9q5Vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+side-channel+analysis+and+introduction+to+ASCAD+database&rft.jtitle=Journal+of+cryptographic+engineering&rft.au=Benadjila%2C+Ryad&rft.au=Prouff%2C+Emmanuel&rft.au=Strullu%2C+R%C3%A9mi&rft.au=Cagli%2C+Eleonora&rft.date=2020-06-01&rft.pub=Springer&rft.issn=2190-8508&rft.eissn=2190-8516&rft.volume=10&rft.issue=2&rft.spage=163&rft.epage=188&rft_id=info:doi/10.1007%2Fs13389-019-00220-8&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02984494v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-8508&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-8508&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-8508&client=summon |