Deep learning for side-channel analysis and introduction to ASCAD database

Recent works have demonstrated that deep learning algorithms were efficient to conduct security evaluations of embedded systems and had many advantages compared to the other methods. Unfortunately, their hyper-parametrization has often been kept secret by the authors who only discussed on the main d...

Full description

Saved in:
Bibliographic Details
Published inJournal of cryptographic engineering Vol. 10; no. 2; pp. 163 - 188
Main Authors Benadjila, Ryad, Prouff, Emmanuel, Strullu, Rémi, Cagli, Eleonora, Dumas, Cécile
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2020
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent works have demonstrated that deep learning algorithms were efficient to conduct security evaluations of embedded systems and had many advantages compared to the other methods. Unfortunately, their hyper-parametrization has often been kept secret by the authors who only discussed on the main design principles and on the attack efficiencies in some specific contexts. This is clearly an important limitation of previous works since (1) the latter parametrization is known to be a challenging question in machine learning and (2) it does not allow for the reproducibility of the presented results and (3) it does not allow to draw general conclusions. This paper aims to address these limitations in several ways. First, completing recent works, we propose a study of deep learning algorithms when applied in the context of side-channel analysis and we discuss the links with the classical template attacks. Secondly, for the first time, we address the question of the choice of the hyper-parameters for the class convolutional neural networks. Several benchmarks and rationales are given in the context of the analysis of a challenging masked implementation of the AES algorithm. Interestingly, our work shows that the approach followed to design the algorithm VGG-16 used for image recognition seems also to be sound when it comes to fix an architecture for side-channel analysis. To enable perfect reproducibility of our tests, this work also introduces an open platform including all the sources of the target implementation together with the campaign of electromagnetic measurements exploited in our benchmarks. This open database, named ASCAD, is the first one in its category and it has been specified to serve as a common basis for further works on this subject.
AbstractList Recent works have demonstrated that deep learning algorithms were efficient to conduct security evaluations of embedded systems and had many advantages compared to the other methods. Unfortunately, their hyper-parametrization has often been kept secret by the authors who only discussed on the main design principles and on the attack efficiencies in some specific contexts. This is clearly an important limitation of previous works since (1) the latter parametrization is known to be a challenging question in machine learning and (2) it does not allow for the reproducibility of the presented results and (3) it does not allow to draw general conclusions. This paper aims to address these limitations in several ways. First, completing recent works, we propose a study of deep learning algorithms when applied in the context of side-channel analysis and we discuss the links with the classical template attacks. Secondly, for the first time, we address the question of the choice of the hyper-parameters for the class convolutional neural networks. Several benchmarks and rationales are given in the context of the analysis of a challenging masked implementation of the AES algorithm. Interestingly, our work shows that the approach followed to design the algorithm VGG-16 used for image recognition seems also to be sound when it comes to fix an architecture for side-channel analysis. To enable perfect reproducibility of our tests, this work also introduces an open platform including all the sources of the target implementation together with the campaign of electromagnetic measurements exploited in our benchmarks. This open database, named ASCAD, is the first one in its category and it has been specified to serve as a common basis for further works on this subject.
Recent works have demonstrated that deep learning algorithms were efficient to conduct security evaluations of embedded systems and had many advantages compared to the other methods. Unfortunately, their hyper-parametrization has often been kept secret by the authors who only discussed on the main design principles and on the attack efficiencies in some specific contexts. This is clearly an important limitation of previous works since (1) the latter parametrization is known to be a challenging question in machine learning and (2) it does not allow for the reproducibility of the presented results and (3) it does not allow to draw general conclusions. This paper aims to address these limitations in several ways. First, completing recent works, we propose a study of deep learning algorithms when applied in the context of side-channel analysis and we discuss the links with the classical template attacks. Secondly, for the first time, we address the question of the choice of the hyper-parameters for the class convolutional neural networks. Several benchmarks and rationales are given in the context of the analysis of a challenging masked implementation of the AES algorithm. Interestingly, our work shows that the approach followed to design the algorithm VGG-16 used for image recognition seems also to be sound when it comes to fix an architecture for side-channel analysis. To enable perfect reproducibility of our tests, this work also introduces an open platform including all the sources of the target implementation together with the campaign of electromagnetic measurements exploited in our benchmarks. This open database, named ASCAD, is the first one in its category and it has been specified to serve as a common basis for further works on this subject.
Author Prouff, Emmanuel
Benadjila, Ryad
Strullu, Rémi
Dumas, Cécile
Cagli, Eleonora
Author_xml – sequence: 1
  givenname: Ryad
  surname: Benadjila
  fullname: Benadjila, Ryad
  organization: ANSSI
– sequence: 2
  givenname: Emmanuel
  orcidid: 0000-0002-3998-0478
  surname: Prouff
  fullname: Prouff, Emmanuel
  email: emmanuel.prouff@ssi.gouv.fr
  organization: ANSSI
– sequence: 3
  givenname: Rémi
  surname: Strullu
  fullname: Strullu, Rémi
  organization: ANSSI
– sequence: 4
  givenname: Eleonora
  surname: Cagli
  fullname: Cagli, Eleonora
  organization: CEA, LETI
– sequence: 5
  givenname: Cécile
  surname: Dumas
  fullname: Dumas, Cécile
  organization: CEA, LETI
BackLink https://hal.science/hal-02984494$$DView record in HAL
BookMark eNp9kE9LAzEQxYNUsNZ-AU8BTx5W82-32ePSqlUKHtRzmGazbWRNarIV-u1NXangoYdhHsN7M8nvHA2cdwahS0puKCGT20g5l2VGaCrCGMnkCRoyWiaR02Jw0ESeoXGMdkk4FyTPJ3yInmbGbHBrIDjrVrjxAUdbm0yvwTnTYnDQ7qKNSdTYui74eqs76x3uPK5eptUM19DBEqK5QKcNtNGMf_sIvd3fvU7n2eL54XFaLTLNc95lGoygUBQaWA2SC2BlqbnJiQahBVnWnAitWW6kpg1v0oxNQGsuITclFJqP0HW_dw2t2gT7AWGnPFg1rxZqPyOslEKU4osm71Xv3QT_uTWxU-9-G9KfomKCCF5OEovkYr1LBx9jMM1hLSVqj1j1iFVCrH4QK5lC8l9I2w72aLoAtj0e5X00pjtuZcLfq46kvgFuHpET
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3491916
crossref_primary_10_3390_electronics12153279
crossref_primary_10_1016_j_vlsi_2025_102373
crossref_primary_10_1109_ACCESS_2023_3301178
crossref_primary_10_1109_TC_2024_3416682
crossref_primary_10_1007_s13042_022_01588_6
crossref_primary_10_1109_TVLSI_2023_3339810
crossref_primary_10_1016_j_compeleceng_2024_109515
crossref_primary_10_1109_TCE_2024_3372018
crossref_primary_10_1016_j_phycom_2024_102288
crossref_primary_10_1109_ACCESS_2023_3311370
crossref_primary_10_1007_s13389_023_00342_0
crossref_primary_10_1541_ieejeiss_144_7
crossref_primary_10_1145_3569577
crossref_primary_10_1109_TIM_2023_3284933
crossref_primary_10_3390_electronics12234728
crossref_primary_10_1109_TC_2024_3477997
crossref_primary_10_1109_ACCESS_2022_3150833
crossref_primary_10_7717_peerj_cs_829
crossref_primary_10_1109_TCSII_2024_3371110
crossref_primary_10_62056_ay4c3txol7
crossref_primary_10_1002_spy2_481
crossref_primary_10_3390_electronics13173530
crossref_primary_10_1109_TVLSI_2021_3115420
crossref_primary_10_1109_TIFS_2022_3176189
crossref_primary_10_1186_s42400_023_00149_w
crossref_primary_10_1109_TC_2023_3234205
crossref_primary_10_1109_TIFS_2023_3326667
crossref_primary_10_1002_cpe_6764
crossref_primary_10_3390_math12152355
crossref_primary_10_1016_j_measen_2024_101137
crossref_primary_10_1109_TIFS_2021_3076928
crossref_primary_10_1109_TIFS_2023_3343947
crossref_primary_10_1016_j_jocs_2023_102078
crossref_primary_10_1109_TDSC_2023_3278857
crossref_primary_10_1109_TETC_2022_3218372
crossref_primary_10_1016_j_mejo_2023_105901
crossref_primary_10_3390_math12203279
crossref_primary_10_3390_s22218096
crossref_primary_10_1007_s10586_024_04701_2
crossref_primary_10_3390_electronics12163461
crossref_primary_10_1007_s10836_024_06149_z
crossref_primary_10_1016_j_compeleceng_2022_107686
crossref_primary_10_1016_j_patcog_2025_111374
crossref_primary_10_1002_cta_4486
crossref_primary_10_12677_AAM_2022_1112924
crossref_primary_10_1109_TIFS_2020_3045904
crossref_primary_10_1016_j_cose_2021_102471
crossref_primary_10_1109_ACCESS_2022_3140446
crossref_primary_10_1109_OJCS_2021_3061445
crossref_primary_10_1007_s11042_024_19722_7
crossref_primary_10_54691_akyt1k78
crossref_primary_10_1002_nem_2288
crossref_primary_10_1109_TIFS_2023_3287728
crossref_primary_10_3390_math11153265
crossref_primary_10_1109_TIFS_2023_3310350
crossref_primary_10_1109_JIOT_2024_3460802
crossref_primary_10_1007_s13042_025_02552_w
crossref_primary_10_1093_comjnl_bxac112
crossref_primary_10_1007_s13389_024_00363_3
crossref_primary_10_1109_ACCESS_2021_3072653
crossref_primary_10_3390_info12110462
crossref_primary_10_1109_TIFS_2023_3273169
crossref_primary_10_1109_TDSC_2024_3370711
crossref_primary_10_1155_2022_7375097
crossref_primary_10_1109_ACCESS_2022_3232064
crossref_primary_10_1007_s13389_024_00346_4
crossref_primary_10_1007_s11704_020_0209_4
crossref_primary_10_3390_computers13080210
crossref_primary_10_1016_j_mejo_2024_106546
crossref_primary_10_1186_s42400_021_00099_1
crossref_primary_10_1109_ACCESS_2024_3416199
crossref_primary_10_3390_app12168246
crossref_primary_10_1007_s13389_023_00320_6
crossref_primary_10_1109_ACCESS_2022_3187201
crossref_primary_10_3390_a16030127
crossref_primary_10_1109_TIFS_2024_3430854
crossref_primary_10_1007_s11227_023_05631_3
crossref_primary_10_1007_s13389_023_00328_y
crossref_primary_10_3390_s22072477
crossref_primary_10_1109_ACCESS_2023_3309422
crossref_primary_10_32604_cmc_2024_051613
crossref_primary_10_3390_electronics12153361
crossref_primary_10_1145_3687484
crossref_primary_10_1145_3701991
crossref_primary_10_1016_j_comnet_2021_108405
crossref_primary_10_1109_ACCESS_2020_3029206
crossref_primary_10_1109_TIFS_2024_3490782
crossref_primary_10_62056_a36cy7qiu
crossref_primary_10_1007_s13389_023_00330_4
crossref_primary_10_1587_elex_18_20210309
crossref_primary_10_1007_s13389_023_00311_7
crossref_primary_10_3390_electronics13132551
crossref_primary_10_1109_TIFS_2021_3092050
Cites_doi 10.1007/0-387-24555-3_5
10.1162/neco.1989.1.4.541
10.1098/rsta.1922.0009
10.1007/3-540-44709-1_26
10.1007/978-3-319-54669-8_1
10.1214/aos/1032181158
10.1007/978-3-319-49445-6_1
10.1007/s11263-015-0816-y
10.1007/978-3-319-15765-8_18
10.1109/HST.2015.7140247
10.1007/11545262_12
10.1007/978-3-319-21476-4_2
10.1109/ICCV.2009.5459469
10.1007/978-3-319-10175-0_17
10.1007/978-3-319-08302-5_7
10.1007/978-3-540-28632-5_2
10.1515/JMC.2008.013
10.1007/978-3-319-08302-5_5
10.1145/3065386
10.1080/14786440109462720
10.1007/BF00994018
10.25080/Majora-8b375195-003
10.1007/978-3-642-29912-4_18
10.1109/CVPR.2016.308
10.1007/3-540-36400-5_3
10.1007/s13389-011-0010-2
10.1109/TSP.2016.7760865
10.1007/3-540-44499-8_19
10.1007/978-3-642-37288-9_18
10.1007/978-3-319-10590-1_53
10.1109/CVPR.2016.90
10.1007/s13389-011-0023-x
10.1111/j.1469-1809.1936.tb02137.x
10.1109/CVPR.2015.7298594
10.1007/978-3-319-66787-4_3
10.1504/IJACT.2014.062722
10.1109/5.726791
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1007/s13389-019-00220-8
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2190-8516
EndPage 188
ExternalDocumentID oai_HAL_hal_02984494v1
10_1007_s13389_019_00220_8
GroupedDBID -EM
0R~
0VY
203
2VQ
30V
4.4
406
408
409
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ8
HF~
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PT4
RLLFE
ROL
RSV
S27
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
1XC
ID FETCH-LOGICAL-c353t-cae41a66ca2da834a299c3e50ca4c40bd304cc25e8c1f3f4c427acc38a5e9a6c3
IEDL.DBID U2A
ISSN 2190-8508
IngestDate Fri May 09 12:20:33 EDT 2025
Fri Jul 25 11:07:20 EDT 2025
Tue Jul 01 02:41:50 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Fri Feb 21 02:30:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Side-channel analysis
Machine learning
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-cae41a66ca2da834a299c3e50ca4c40bd304cc25e8c1f3f4c427acc38a5e9a6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3998-0478
PQID 2404397033
PQPubID 2043896
PageCount 26
ParticipantIDs hal_primary_oai_HAL_hal_02984494v1
proquest_journals_2404397033
crossref_primary_10_1007_s13389_019_00220_8
crossref_citationtrail_10_1007_s13389_019_00220_8
springer_journals_10_1007_s13389_019_00220_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of cryptographic engineering
PublicationTitleAbbrev J Cryptogr Eng
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer
References NairVHintonGEFürnkranzJJoachimsTRectified linear units improve restricted Boltzmann machinesProceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24 June 2010, Haifa, Israel2010MadisonOmnipress807814
LermanLBontempiGMarkowitchOPower analysis attack: an approach based on machine learningIJACT20143297115328722610.1504/IJACT.2014.0627221351.94055
Weston, J., Watkins, C.: Multi-class support vector machines. Technical Report CSD-TR-98-04, Royal Holloway, University of London (1998)
KocherPJaffeJJunBWienerMDifferential power analysisAdvances in Cryptology-CRYPTO’99. Lecture Notes in Computer Science1999BerlinSpringer388397
Group, H.: The hdf group. https://www.hdfgroup.org
Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: S. Mangard, A.Y. Poschmann (eds.) Constructive Side-Channel Analysis and Secure Design-6th International Workshop, COSADE 2015, Berlin, Germany, 13–14 April 2015. Revised Selected Papers, Lecture Notes in Computer Science, vol. 9064, pp. 20–33. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-21476-4_2
DogetJProuffERivainMStandaertFXUnivariate side channel attacks and leakage modelingJ. Cryptogr. Eng.20111212314410.1007/s13389-011-0010-2
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
Group, H.: HDF5 For Python. http://www.h5py.org
Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist
McAllester, D.A., Hazan, T., Keshet, J.: Direct loss minimization for structured prediction. In: J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, A. Culotta (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6–9 December 2010, Vancouver, British Columbia, Canada, pp. 1594–1602. Curran Associates, Inc., Red Hook (2010). http://papers.nips.cc/paper/4069-direct-loss-minimization-for-structured-prediction
ProuffERivainMKimSYungMLeeHWA generic method for secure SBox implementationWISA. Lecture Notes in Computer Science2008BerlinSpringer227244
Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks (2017). arXiv preprint arXiv:1706.02515
LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput.19891454155110.1162/neco.1989.1.4.541
Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: C. Carlet, M.A. Hasan, V. Saraswat (eds.) Security, Privacy, and Applied Cryptography Engineering-6th International Conference, SPACE 2016, Hyderabad, India, 14–18 December 2016. Proceedings, Lecture Notes in Computer Science, vol. 10076, pp. 3–26. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-49445-6_1
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
HospodarGGierlichsBMulderEDVerbauwhedeIVandewalleJMachine learning in side-channel analysis: a first studyJ. Cryptogr. Eng.20111429330210.1007/s13389-011-0023-x
Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures - profiling attacks without pre-processing. In: W. Fischer, N. Homma (eds.) Cryptographic Hardware and Embedded Systems-CHES 2017-19th International Conference, Taipei, Taiwan, September 25–28 2017, Proceedings, Lecture Notes in Computer Science, vol. 10529, pp. 45–68. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-66787-4_3
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
BergstraJBengioYRandom search for hyper-parameter optimizationJ. Mach. Learn. Res.201213(Feb)28130529137011283.68282
AkkarMLGiraudCÇ. KoçDNaccacheDPaarCAn Implementation of DES and AES, Secure against Some AttacksCryptographic Hardware and Embedded Systems–CHES 2001. Lecture Notes in Computer Science2001BerlinSpringer30931810.1007/3-540-44709-1_26
LeCunYBengioYConvolutional networks for images, speech, and time seriesThe Handbook of Brain Theory and Neural Networks19953361101995
LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE199886112278232410.1109/5.726791
Picek, S., Samiotis, I.P., Heuser, A., Kim, J., Bhasin, S., Legay, A.: On the Performance of Deep Learning for Side-channel Analysis. IACR Cryptology. ePrint Archive 2018, 004 (2018). http://eprint.iacr.org/2018/004
BartkewitzTLemke-RustKMangardSEfficient template attacks based on probabilistic multi-class support vector machinesSmart Card Research and Advanced Applications CARDIS. Lecture Notes in Computer Science2013BerlinSpringer26327610.1007/978-3-642-37288-9_18
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer (2014)
Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in Science Conference, pp. 13–20 (2013)
ANSSI: secaes-atmega8515 (2018). https://github.com/ANSSI-FR/secAES-ATmega8515
MessergesTKoçÇPaarCUsing second-order power analysis to attack DPA resistant softwareCryptographic Hardware and Embedded Systems-CHES 2000. Lecture Notes in Computer Science2000BerlinSpringer23825110.1007/3-540-44499-8_19
MartinasekZMalinaLTrasyKProfiling power analysis attack based on multi-layer perceptron networkComput. Probl. Sci. Eng.201534331710.1007/978-3-319-15765-8_18
RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMImagenet large scale visual recognition challengeInt. J. Comput. Vis.20151153211252342248210.1007/s11263-015-0816-y
LermanLMedeirosSFBontempiGMarkowitchOFriedmanJHastieTTibshiraniRA machine learning approach against a masked AESThe Elements of Statistical Learning. Springer Series in Statistics2014New YorkSpringer617510.1007/978-3-319-08302-5_5
GoodfellowIBengioYCourvilleADeep Learning2016CambridgeMIT Press1373.68009
RokachLMaimonOData Mining with Decision Trees: Theroy and Applications2008Inc, River EdgeWorld Scientific Publishing Co.1154.68098
Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–2153. IEEE (2009)
SchindlerWLemkeKPaarCRaoJSunarBA Stochastic model for differential side channel cryptanalysisCryptographic Hardware and Embedded Systems–CHES 2005. Lecture Notes in Computer Science2005BerlinSpringer
PearsonKOn lines and planes of closest fit to systems of points in spacePhilos. Mag.190121155957210.1080/14786440109462720
MangardSPramstallerNOswaldERaoJSunarBSuccessfully attacking masked AES hardware implementationsCryptographic Hardware and Embedded Systems-CHES 2005. Lecture Notes in Computer Science2005BerlinSpringer15717110.1007/11545262_12
FriedmanJHastieTTibshiraniRThe Elements of Statistical Learning. Springer Series in Statistics2001New YorkSpringer0973.62007
GoodfellowIJBengioYCourvilleACDeep Learning. Adaptive Computation and Machine Learning2016CambridgeMIT Press1373.68009
ANSSI: Ascad database (2018). https://github.com/ANSSI-FR/ASCAD
BrierEClavierCOlivierFJoyeMQuisquaterJJCorrelation power analysis with a leakage modelCryptographic Hardware and Embedded Systems–CHES 2004. Lecture Notes in Computer Science2004BerlinSpringer162910.1007/978-3-540-28632-5_2
ChariSRaoJRohatgiPKaliskiBJrKoçÇPaarCTemplate attacksCryptographic Hardware and Embedded Systems-CHES 2002. Lecture Notes in Computer Science2002BerlinSpringer132910.1007/3-540-36400-5_3
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org
Heuser, A., Zohner, M.: Intelligent machine homicide-breaking cryptographic devices using support vector machines. In: W. Schindler, S.A. Huss (eds.) Constructive Side-Channel Analysis and Secure Design-Third International Workshop, COSADE 2012, Darmstadt, Germany, 3–4 May 2012. Proceedings, Lecture Notes in Computer Science, vol. 7275, pp. 249–264. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29912-4_18
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386
Song, Y., Schwing, A.G., Zemel, R.S., Urtasun, R.: Direct loss minimization for training deep neural nets. CoRR (2015). arXiv:1511.06411
BishopCMPattern Recognition and Machine Learning2006BerlinSpringer1107.68072
Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA, 5–7 May 2015, pp. 106–111. IEEE Computer Society (2015). https://doi.org/10.1109/HST.2015.7140247
Ioffe, S., Szegedy, C.: Batc
J Friedman (220_CR20) 2001
CM Bishop (220_CR9) 2006
220_CR54
IJ Goodfellow (220_CR25) 2016
220_CR12
T Messerges (220_CR50) 2000
E Brier (220_CR11) 2004
220_CR52
E Prouff (220_CR55) 2008
I Goodfellow (220_CR24) 2016
P Kocher (220_CR34) 1999
220_CR47
220_CR46
220_CR49
W Schindler (220_CR59) 2005
S Mangard (220_CR45) 2005
RA Fisher (220_CR18) 1922; 222
220_CR43
220_CR44
220_CR40
220_CR39
K Pearson (220_CR53) 1901; 2
W Schindler (220_CR58) 2008; 2
S Chari (220_CR14) 2002
220_CR35
O Russakovsky (220_CR57) 2015; 115
220_CR8
220_CR6
G Hospodar (220_CR30) 2011; 1
220_CR32
220_CR1
220_CR31
Y LeCun (220_CR37) 1989; 1
220_CR33
220_CR4
220_CR3
220_CR29
220_CR28
T Bartkewitz (220_CR5) 2013
220_CR27
220_CR26
Y LeCun (220_CR36) 1995; 3361
ML Akkar (220_CR2) 2001
RA Fisher (220_CR19) 1936; 7
V Nair (220_CR51) 2010
L Rokach (220_CR56) 2008
220_CR21
220_CR65
L Breiman (220_CR10) 1996; 24
220_CR64
220_CR23
L Lerman (220_CR42) 2014
220_CR22
220_CR61
J Doget (220_CR17) 2011; 1
220_CR60
220_CR63
220_CR62
C Cortes (220_CR16) 1995; 20
Z Martinasek (220_CR48) 2015; 343
220_CR13
Y LeCun (220_CR38) 1998; 86
220_CR15
J Bergstra (220_CR7) 2012; 13
L Lerman (220_CR41) 2014; 3
References_xml – reference: Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–2153. IEEE (2009)
– reference: SchindlerWAdvanced stochastic methods in side channel analysis on block ciphers in the presence of maskingJ. Math. Cryptol.20082291310257335510.1515/JMC.2008.013
– reference: FisherRAOn the mathematical foundations of theoretical statisticsPhilos. Trans. R. Soc. Lond. Ser. A.192222230936810.1098/rsta.1922.000948.1280.02
– reference: HospodarGGierlichsBMulderEDVerbauwhedeIVandewalleJMachine learning in side-channel analysis: a first studyJ. Cryptogr. Eng.20111429330210.1007/s13389-011-0023-x
– reference: ANSSI: Ascad database (2018). https://github.com/ANSSI-FR/ASCAD
– reference: Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis attack based on MLP in DPA contest V4.2. In: 39th International Conference on Telecommunications and Signal Processing, TSP 2016, Vienna, Austria, 27–29 June 2016, pp. 223–226. IEEE (2016). https://doi.org/10.1109/TSP.2016.7760865
– reference: CortesCVapnikVSupport-vector networksMach. Learn.199520327329710.1007/BF009940180831.68098
– reference: FisherRAThe use of multiple measurements in taxonomic problemsAnn. Eugen.19367717918810.1111/j.1469-1809.1936.tb02137.x
– reference: Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386
– reference: RokachLMaimonOData Mining with Decision Trees: Theroy and Applications2008Inc, River EdgeWorld Scientific Publishing Co.1154.68098
– reference: Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures - profiling attacks without pre-processing. In: W. Fischer, N. Homma (eds.) Cryptographic Hardware and Embedded Systems-CHES 2017-19th International Conference, Taipei, Taiwan, September 25–28 2017, Proceedings, Lecture Notes in Computer Science, vol. 10529, pp. 45–68. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-66787-4_3
– reference: BreimanLHeuristics of instability and stabilization in model selectionAnn. Stat.199624623502383142595710.1214/aos/1032181158
– reference: Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
– reference: Group, H.: HDF5 For Python. http://www.h5py.org/
– reference: LermanLMedeirosSFBontempiGMarkowitchOFriedmanJHastieTTibshiraniRA machine learning approach against a masked AESThe Elements of Statistical Learning. Springer Series in Statistics2014New YorkSpringer617510.1007/978-3-319-08302-5_5
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
– reference: Song, Y., Schwing, A.G., Zemel, R.S., Urtasun, R.: Direct loss minimization for training deep neural nets. CoRR (2015). arXiv:1511.06411
– reference: AkkarMLGiraudCÇ. KoçDNaccacheDPaarCAn Implementation of DES and AES, Secure against Some AttacksCryptographic Hardware and Embedded Systems–CHES 2001. Lecture Notes in Computer Science2001BerlinSpringer30931810.1007/3-540-44709-1_26
– reference: Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer (2014)
– reference: LeCunYBengioYConvolutional networks for images, speech, and time seriesThe Handbook of Brain Theory and Neural Networks19953361101995
– reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE199886112278232410.1109/5.726791
– reference: PearsonKOn lines and planes of closest fit to systems of points in spacePhilos. Mag.190121155957210.1080/14786440109462720
– reference: BishopCMPattern Recognition and Machine Learning2006BerlinSpringer1107.68072
– reference: ProuffERivainMKimSYungMLeeHWA generic method for secure SBox implementationWISA. Lecture Notes in Computer Science2008BerlinSpringer227244
– reference: ChariSRaoJRohatgiPKaliskiBJrKoçÇPaarCTemplate attacksCryptographic Hardware and Embedded Systems-CHES 2002. Lecture Notes in Computer Science2002BerlinSpringer132910.1007/3-540-36400-5_3
– reference: FriedmanJHastieTTibshiraniRThe Elements of Statistical Learning. Springer Series in Statistics2001New YorkSpringer0973.62007
– reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org
– reference: He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
– reference: LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput.19891454155110.1162/neco.1989.1.4.541
– reference: McAllester, D.A., Hazan, T., Keshet, J.: Direct loss minimization for structured prediction. In: J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, A. Culotta (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6–9 December 2010, Vancouver, British Columbia, Canada, pp. 1594–1602. Curran Associates, Inc., Red Hook (2010). http://papers.nips.cc/paper/4069-direct-loss-minimization-for-structured-prediction
– reference: LermanLBontempiGMarkowitchOPower analysis attack: an approach based on machine learningIJACT20143297115328722610.1504/IJACT.2014.0627221351.94055
– reference: MartinasekZMalinaLTrasyKProfiling power analysis attack based on multi-layer perceptron networkComput. Probl. Sci. Eng.201534331710.1007/978-3-319-15765-8_18
– reference: Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)
– reference: Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in Science Conference, pp. 13–20 (2013)
– reference: Bengio, Y., Grandvalet, Y.: Bias in estimating the variance of k-fold cross-validation. In: Duchesne, P., Rémillard, B. (eds.) Statistical modeling and analysis for complex data problems, pp. 75–95. Springer, Berlin (2005)
– reference: KocherPJaffeJJunBWienerMDifferential power analysisAdvances in Cryptology-CRYPTO’99. Lecture Notes in Computer Science1999BerlinSpringer388397
– reference: BartkewitzTLemke-RustKMangardSEfficient template attacks based on probabilistic multi-class support vector machinesSmart Card Research and Advanced Applications CARDIS. Lecture Notes in Computer Science2013BerlinSpringer26327610.1007/978-3-642-37288-9_18
– reference: ANSSI: secaes-atmega8515 (2018). https://github.com/ANSSI-FR/secAES-ATmega8515
– reference: RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMImagenet large scale visual recognition challengeInt. J. Comput. Vis.20151153211252342248210.1007/s11263-015-0816-y
– reference: Picek, S., Samiotis, I.P., Heuser, A., Kim, J., Bhasin, S., Legay, A.: On the Performance of Deep Learning for Side-channel Analysis. IACR Cryptology. ePrint Archive 2018, 004 (2018). http://eprint.iacr.org/2018/004
– reference: GoodfellowIJBengioYCourvilleACDeep Learning. Adaptive Computation and Machine Learning2016CambridgeMIT Press1373.68009
– reference: Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: C. Carlet, M.A. Hasan, V. Saraswat (eds.) Security, Privacy, and Applied Cryptography Engineering-6th International Conference, SPACE 2016, Hyderabad, India, 14–18 December 2016. Proceedings, Lecture Notes in Computer Science, vol. 10076, pp. 3–26. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-49445-6_1
– reference: Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks (2017). arXiv preprint arXiv:1706.02515
– reference: NairVHintonGEFürnkranzJJoachimsTRectified linear units improve restricted Boltzmann machinesProceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24 June 2010, Haifa, Israel2010MadisonOmnipress807814
– reference: Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural network. In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced Applications-12th International Conference, CARDIS 2013, Berlin, Germany, 27–29 November 2013. Revised Selected Papers, Lecture Notes in Computer Science, vol. 8419, pp. 94–107. Springer, Berlin. https://doi.org/10.1007/978-3-319-08302-5_7
– reference: MangardSPramstallerNOswaldERaoJSunarBSuccessfully attacking masked AES hardware implementationsCryptographic Hardware and Embedded Systems-CHES 2005. Lecture Notes in Computer Science2005BerlinSpringer15717110.1007/11545262_12
– reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
– reference: MessergesTKoçÇPaarCUsing second-order power analysis to attack DPA resistant softwareCryptographic Hardware and Embedded Systems-CHES 2000. Lecture Notes in Computer Science2000BerlinSpringer23825110.1007/3-540-44499-8_19
– reference: Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: S. Mangard, A.Y. Poschmann (eds.) Constructive Side-Channel Analysis and Secure Design-6th International Workshop, COSADE 2015, Berlin, Germany, 13–14 April 2015. Revised Selected Papers, Lecture Notes in Computer Science, vol. 9064, pp. 20–33. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-21476-4_2
– reference: Weston, J., Watkins, C.: Multi-class support vector machines. Technical Report CSD-TR-98-04, Royal Holloway, University of London (1998)
– reference: Heuser, A., Zohner, M.: Intelligent machine homicide-breaking cryptographic devices using support vector machines. In: W. Schindler, S.A. Huss (eds.) Constructive Side-Channel Analysis and Secure Design-Third International Workshop, COSADE 2012, Darmstadt, Germany, 3–4 May 2012. Proceedings, Lecture Notes in Computer Science, vol. 7275, pp. 249–264. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29912-4_18
– reference: Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analysis for information extraction in the presence of masking. In: K. Lemke-Rust, M. Tunstall (eds.) Smart Card Research and Advanced Applications-15th International Conference, CARDIS 2016, Cannes, France, 7–9 November 2016, Revised Selected Papers, Lecture Notes in Computer Science, vol. 10146, pp. 1–22. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-54669-8_1
– reference: DogetJProuffERivainMStandaertFXUnivariate side channel attacks and leakage modelingJ. Cryptogr. Eng.20111212314410.1007/s13389-011-0010-2
– reference: O’Flynn, C., Chen, Z.D.: Chipwhisperer: An open-source platform for hardware embedded security research. In: E. Prouff (ed.) Constructive Side-Channel Analysis and Secure Design-5th International Workshop, COSADE 2014, Paris, France, 13–15 April 2014. Revised Selected Papers, Lecture Notes in Computer Science, vol. 8622, pp. 243–260. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-10175-0_17
– reference: BergstraJBengioYRandom search for hyper-parameter optimizationJ. Mach. Learn. Res.201213(Feb)28130529137011283.68282
– reference: Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR (2015). arXiv:1502.03167
– reference: LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/
– reference: GoodfellowIBengioYCourvilleADeep Learning2016CambridgeMIT Press1373.68009
– reference: BrierEClavierCOlivierFJoyeMQuisquaterJJCorrelation power analysis with a leakage modelCryptographic Hardware and Embedded Systems–CHES 2004. Lecture Notes in Computer Science2004BerlinSpringer162910.1007/978-3-540-28632-5_2
– reference: Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA, 5–7 May 2015, pp. 106–111. IEEE Computer Society (2015). https://doi.org/10.1109/HST.2015.7140247
– reference: Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556
– reference: SchindlerWLemkeKPaarCRaoJSunarBA Stochastic model for differential side channel cryptanalysisCryptographic Hardware and Embedded Systems–CHES 2005. Lecture Notes in Computer Science2005BerlinSpringer
– reference: Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
– reference: Group, H.: The hdf group. https://www.hdfgroup.org/
– reference: LeCun, Y., Huang, F.J.: Loss functions for discriminative training of energy-based models. In: R.G. Cowell, Z. Ghahramani (eds.) Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, AISTATS 2005, Bridgetown, Barbados, 6–8 January 2005. Society for Artificial Intelligence and Statistics (2005). http://www.gatsby.ucl.ac.uk/aistats/fullpapers/207.pdf
– ident: 220_CR15
– start-page: 388
  volume-title: Advances in Cryptology-CRYPTO’99. Lecture Notes in Computer Science
  year: 1999
  ident: 220_CR34
– ident: 220_CR40
– ident: 220_CR6
  doi: 10.1007/0-387-24555-3_5
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 220_CR37
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 222
  start-page: 309
  year: 1922
  ident: 220_CR18
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A.
  doi: 10.1098/rsta.1922.0009
– start-page: 309
  volume-title: Cryptographic Hardware and Embedded Systems–CHES 2001. Lecture Notes in Computer Science
  year: 2001
  ident: 220_CR2
  doi: 10.1007/3-540-44709-1_26
– ident: 220_CR12
  doi: 10.1007/978-3-319-54669-8_1
– volume: 3361
  start-page: 1995
  issue: 10
  year: 1995
  ident: 220_CR36
  publication-title: The Handbook of Brain Theory and Neural Networks
– volume: 24
  start-page: 2350
  issue: 6
  year: 1996
  ident: 220_CR10
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1032181158
– volume-title: Cryptographic Hardware and Embedded Systems–CHES 2005. Lecture Notes in Computer Science
  year: 2005
  ident: 220_CR59
– ident: 220_CR64
– ident: 220_CR44
  doi: 10.1007/978-3-319-49445-6_1
– ident: 220_CR60
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 220_CR57
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: 220_CR33
– volume: 343
  start-page: 317
  year: 2015
  ident: 220_CR48
  publication-title: Comput. Probl. Sci. Eng.
  doi: 10.1007/978-3-319-15765-8_18
– ident: 220_CR21
  doi: 10.1109/HST.2015.7140247
– volume-title: The Elements of Statistical Learning. Springer Series in Statistics
  year: 2001
  ident: 220_CR20
– start-page: 157
  volume-title: Cryptographic Hardware and Embedded Systems-CHES 2005. Lecture Notes in Computer Science
  year: 2005
  ident: 220_CR45
  doi: 10.1007/11545262_12
– ident: 220_CR26
– ident: 220_CR43
  doi: 10.1007/978-3-319-21476-4_2
– ident: 220_CR3
– ident: 220_CR54
– ident: 220_CR32
  doi: 10.1109/ICCV.2009.5459469
– ident: 220_CR22
– ident: 220_CR52
  doi: 10.1007/978-3-319-10175-0_17
– ident: 220_CR47
  doi: 10.1007/978-3-319-08302-5_7
– start-page: 16
  volume-title: Cryptographic Hardware and Embedded Systems–CHES 2004. Lecture Notes in Computer Science
  year: 2004
  ident: 220_CR11
  doi: 10.1007/978-3-540-28632-5_2
– volume: 13
  start-page: 281
  issue: (Feb)
  year: 2012
  ident: 220_CR7
  publication-title: J. Mach. Learn. Res.
– start-page: 807
  volume-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24 June 2010, Haifa, Israel
  year: 2010
  ident: 220_CR51
– volume: 2
  start-page: 291
  year: 2008
  ident: 220_CR58
  publication-title: J. Math. Cryptol.
  doi: 10.1515/JMC.2008.013
– volume-title: Deep Learning. Adaptive Computation and Machine Learning
  year: 2016
  ident: 220_CR25
– ident: 220_CR61
– start-page: 61
  volume-title: The Elements of Statistical Learning. Springer Series in Statistics
  year: 2014
  ident: 220_CR42
  doi: 10.1007/978-3-319-08302-5_5
– ident: 220_CR35
  doi: 10.1145/3065386
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  ident: 220_CR53
  publication-title: Philos. Mag.
  doi: 10.1080/14786440109462720
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 220_CR16
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: 220_CR8
  doi: 10.25080/Majora-8b375195-003
– ident: 220_CR27
– start-page: 227
  volume-title: WISA. Lecture Notes in Computer Science
  year: 2008
  ident: 220_CR55
– ident: 220_CR23
– ident: 220_CR29
  doi: 10.1007/978-3-642-29912-4_18
– ident: 220_CR63
  doi: 10.1109/CVPR.2016.308
– start-page: 13
  volume-title: Cryptographic Hardware and Embedded Systems-CHES 2002. Lecture Notes in Computer Science
  year: 2002
  ident: 220_CR14
  doi: 10.1007/3-540-36400-5_3
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: 220_CR9
– ident: 220_CR39
– volume: 1
  start-page: 123
  issue: 2
  year: 2011
  ident: 220_CR17
  publication-title: J. Cryptogr. Eng.
  doi: 10.1007/s13389-011-0010-2
– ident: 220_CR46
  doi: 10.1109/TSP.2016.7760865
– start-page: 238
  volume-title: Cryptographic Hardware and Embedded Systems-CHES 2000. Lecture Notes in Computer Science
  year: 2000
  ident: 220_CR50
  doi: 10.1007/3-540-44499-8_19
– volume-title: Data Mining with Decision Trees: Theroy and Applications
  year: 2008
  ident: 220_CR56
– ident: 220_CR4
– start-page: 263
  volume-title: Smart Card Research and Advanced Applications CARDIS. Lecture Notes in Computer Science
  year: 2013
  ident: 220_CR5
  doi: 10.1007/978-3-642-37288-9_18
– ident: 220_CR65
  doi: 10.1007/978-3-319-10590-1_53
– ident: 220_CR28
  doi: 10.1109/CVPR.2016.90
– volume-title: Deep Learning
  year: 2016
  ident: 220_CR24
– ident: 220_CR1
– volume: 1
  start-page: 293
  issue: 4
  year: 2011
  ident: 220_CR30
  publication-title: J. Cryptogr. Eng.
  doi: 10.1007/s13389-011-0023-x
– volume: 7
  start-page: 179
  issue: 7
  year: 1936
  ident: 220_CR19
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: 220_CR49
– ident: 220_CR62
  doi: 10.1109/CVPR.2015.7298594
– ident: 220_CR13
  doi: 10.1007/978-3-319-66787-4_3
– volume: 3
  start-page: 97
  issue: 2
  year: 2014
  ident: 220_CR41
  publication-title: IJACT
  doi: 10.1504/IJACT.2014.062722
– ident: 220_CR31
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 220_CR38
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
SSID ssib033405573
ssib031263732
ssj0002140048
Score 2.5388288
Snippet Recent works have demonstrated that deep learning algorithms were efficient to conduct security evaluations of embedded systems and had many advantages...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 163
SubjectTerms Algorithms
Artificial neural networks
Benchmarks
Circuits and Systems
Communications Engineering
Computer Communication Networks
Computer Science
Context
Cryptography and Security
Cryptology
Data Structures and Information Theory
Deep learning
Electromagnetic measurement
Embedded systems
Machine learning
Networks
Object recognition
Operating Systems
Parameterization
Questions
Regular Paper
Reproducibility
Systems analysis
Title Deep learning for side-channel analysis and introduction to ASCAD database
URI https://link.springer.com/article/10.1007/s13389-019-00220-8
https://www.proquest.com/docview/2404397033
https://hal.science/hal-02984494
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xuPTS8ijqlgVZVW9gKfY4iXPMAtsVBS5lJThFju0UJLQgWPj9eLLOLiCo1EPkyHFkacb2jO35vgH4iakNRqopeCMbw5VwDde20NwVpjE6d0kmCeB8epaNxur4Ir2IoLCHLtq9u5JsV-oF2C3spii2JzwED-V6GVbTsHenQK6xLLtRhEJmmC_QkoiKeKZwfvIiRTtuKetci6MOLkpE07zfzSuLtXxF8ZIvnNE396etWRquwefoT7JyNgDWYclPNuBLl6uBxam7CceH3t-xmCPiLwuuKqNEnZyAvxN_w0wkJwkvjl1T-Lqb8cqy6S0r_wSFMQomJaP3FcbDo_ODEY95FLjFFKfcGq-EyTJrpDMalQkmyKJPE2uUVUntMFHWytRrKxpsQp3MjbWoTeoLk1ncgpXJ7cR_AyZyq0VjnKglJenAukaX6LwIpfRepT0QnawqG0nGKdfFTbWgRyb5VkG-VSvfSvdgb_7P3Yxi45-tfwQVzBsSO_aoPKmojtjklSrUk-hBv9NQFefkQyWJSKgIKxz2YL_T2uLzx11-_7_m2_BJ0qa8Parpw8r0_tHvBM9lWu_CajkcDM6o_HX5-2i3HbjPb7_hQg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOMCllFLEAi0W4gaWYo-TOMcVD21h4VJW4mY5ttNWQguCbX9_PVlnFxAgcYgSOY4szYwzY3u-bwAOMHfRSTUVb2RjuRK-4dpVmvvKNlaXPiskAZwvr4rBSJ3f5DcJFPbYZbt3R5Ltn3oOdourKcrtiRfBQ7lehOUYDGiy5ZHsd1aEQhZYztGSiIp4pnC28yJFa7dUda7FUccQJaFpXh_mmcda_E35kk-C0Rfnp61bOvsMn1I8yfpTA1iHhTD-AmtdrQaWpu4GnJ-EcM9SjYhfLIaqjAp1cgL-jsMts4mcJD549ofS1_2UV5ZN7lj_Z1QYo2RScnpfYXR2en084KmOAneY44Q7G5SwReGs9FajstEFOQx55qxyKqs9Zso5mQftRINNbJOldQ61zUNlC4ebsDS-G4ctYKJ0WjTWi1pSkQ6sa_SZLqt4lyGovAeik5VxiWScal3cmjk9MsnXRPmaVr5G9-Bw9s39lGLj3d77UQWzjsSOPegPDbURm7xSlfonerDbacikOfloJBEJVfEPhz046rQ2f_32kNsf674HK4Pry6EZ_ri62IFVSQv0dttmF5YmD3_DtxjFTOrvrdH-Bxdk4SU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WDsZe2u6LZu02Mfa2iVo62ZYfQ9uQZVkZbIG-CVkfW6G4oXX391fn2Ek3tsEejI0sI7g7-U7S_X4H8A5zl5xUrHiU0XIlfOTaVZr7ykarS58VkgDOn8-K6ULNzvPzeyj-Ltt9OJJcYRqIpalpj5Y-Hm2Ab2llRXk-6SKoKNdb8FARGjhZ9EKOB4tCIQssN8hJREWcU7jehZGis2GqQNdhqlO40iNr_jzML95r6wflTt4LTH87S-1c1GQPdvrYko1XxvAEHoTmKewOdRtYP42fwewkhCXr60V8ZylsZVS0kxMIuAmXzPZEJenBswtKZfcrjlnWXrHx16Q8Roml5ACfw2Jy-u14yvuaCtxhji13Nihhi8JZ6a1GZZM7chjyzFnlVFZ7zJRzMg_aiYgxtcnSOofa5qGyhcMXsN1cNWEfmCidFtF6UUsq2IF1jT7TZZXuMgSVj0AMsjKuJxynuheXZkOVTPI1Sb6mk6_RI3i__ma5otv4Z--3SQXrjsSUPR3PDbURs7xSlfopRnA4aMj08_PGSCIVqtLfDkfwYdDa5vXfh3z5f93fwKMvJxMz_3j26QAeS1qrdzs4h7DdXt-GVymgaevXnc3eAW9q5Vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+side-channel+analysis+and+introduction+to+ASCAD+database&rft.jtitle=Journal+of+cryptographic+engineering&rft.au=Benadjila%2C+Ryad&rft.au=Prouff%2C+Emmanuel&rft.au=Strullu%2C+R%C3%A9mi&rft.au=Cagli%2C+Eleonora&rft.date=2020-06-01&rft.pub=Springer&rft.issn=2190-8508&rft.eissn=2190-8516&rft.volume=10&rft.issue=2&rft.spage=163&rft.epage=188&rft_id=info:doi/10.1007%2Fs13389-019-00220-8&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02984494v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-8508&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-8508&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-8508&client=summon