The Effect of Natural Thermal Cycles on Rock Outcrops: Knowledge and Prospect
In recent years, interest in the effect of positive temperatures on rock faces has increased, as evidenced by the extensive literature on the subject. The subsurface rock masses of rock slopes are submitted to uncontrollable natural temperature cycles which cause deformation, displacement, opening a...
Saved in:
Published in | Rock mechanics and rock engineering Vol. 56; no. 9; pp. 6797 - 6822 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.09.2023
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, interest in the effect of positive temperatures on rock faces has increased, as evidenced by the extensive literature on the subject. The subsurface rock masses of rock slopes are submitted to uncontrollable natural temperature cycles which cause deformation, displacement, opening and closing of discontinuities and can lead to surface failure or more important rockfalls. In this paper we offer a review of the publications on this theme focusing on in situ observations and measurements. Measurements are described and analysed considering conditions of temperature and insolation, displacements, strains, focusing on two French sites (Les Rochers de Valabres and La Roque-Gageac). Mechanical analysis is then performed. The impact of temperature variation is studied from basic assumptions to much more complex ones. Thermoelasticity is first assessed, and analytical computation is suggested, fracture mechanism and fatigue are also considered. Finally, we outline some challenges to be addressed in the coming years.
Highlights
The article reviews the accumulated knowledge on the effect of positive temperature changes on slope stability. Excluding the effect of water freezing and thawing.
The different types of measurements are reviewed considering surface and in-depth measurements of temperature, displacements, fracture opening, and strain.
Simple thermo-elastic analysis, alongside solutions from fracture mechanics are proposed.
A focus is proposed on 2 French sites to illustrate interpretations.
The conclusion summarizes the points of consensus, the aspects that are still under discussion among authors or should be more debated and open to pending challenges for the next years. |
---|---|
AbstractList | In recent years, interest in the effect of positive temperatures on rock faces has increased, as evidenced by the extensive literature on the subject. The subsurface rock masses of rock slopes are submitted to uncontrollable natural temperature cycles which cause deformation, displacement, opening and closing of discontinuities and can lead to surface failure or more important rockfalls. In this paper we offer a review of the publications on this theme focusing on in situ observations and measurements. Measurements are described and analysed considering conditions of temperature and insolation, displacements, strains, focusing on two French sites (Les Rochers de Valabres and La Roque-Gageac). Mechanical analysis is then performed. The impact of temperature variation is studied from basic assumptions to much more complex ones. Thermoelasticity is first assessed, and analytical computation is suggested, fracture mechanism and fatigue are also considered. Finally, we outline some challenges to be addressed in the coming years. In recent years, interest in the effect of positive temperatures on rock faces has increased, as evidenced by the extensive literature on the subject. The subsurface rock masses of rock slopes are submitted to uncontrollable natural temperature cycles which cause deformation, displacement, opening and closing of discontinuities and can lead to surface failure or more important rockfalls. In this paper we offer a review of the publications on this theme focusing on in situ observations and measurements. Measurements are described and analysed considering conditions of temperature and insolation, displacements, strains, focusing on two French sites (Les Rochers de Valabres and La Roque-Gageac). Mechanical analysis is then performed. The impact of temperature variation is studied from basic assumptions to much more complex ones. Thermoelasticity is first assessed, and analytical computation is suggested, fracture mechanism and fatigue are also considered. Finally, we outline some challenges to be addressed in the coming years. HighlightsThe article reviews the accumulated knowledge on the effect of positive temperature changes on slope stability. Excluding the effect of water freezing and thawing.The different types of measurements are reviewed considering surface and in-depth measurements of temperature, displacements, fracture opening, and strain.Simple thermo-elastic analysis, alongside solutions from fracture mechanics are proposed.A focus is proposed on 2 French sites to illustrate interpretations.The conclusion summarizes the points of consensus, the aspects that are still under discussion among authors or should be more debated and open to pending challenges for the next years. In recent years, interest in the effect of positive temperatures on rock faces has increased, as evidenced by the extensive literature on the subject. The subsurface rock masses of rock slopes are submitted to uncontrollable natural temperature cycles which cause deformation, displacement, opening and closing of discontinuities and can lead to surface failure or more important rockfalls. In this paper we offer a review of the publications on this theme focusing on in situ observations and measurements. Measurements are described and analysed considering conditions of temperature and insolation, displacements, strains, focusing on two French sites (Les Rochers de Valabres and La Roque-Gageac). Mechanical analysis is then performed. The impact of temperature variation is studied from basic assumptions to much more complex ones. Thermoelasticity is first assessed, and analytical computation is suggested, fracture mechanism and fatigue are also considered. Finally, we outline some challenges to be addressed in the coming years. Highlights The article reviews the accumulated knowledge on the effect of positive temperature changes on slope stability. Excluding the effect of water freezing and thawing. The different types of measurements are reviewed considering surface and in-depth measurements of temperature, displacements, fracture opening, and strain. Simple thermo-elastic analysis, alongside solutions from fracture mechanics are proposed. A focus is proposed on 2 French sites to illustrate interpretations. The conclusion summarizes the points of consensus, the aspects that are still under discussion among authors or should be more debated and open to pending challenges for the next years. |
Author | Gasc-Barbier, Muriel Merrien-Soukatchoff, Véronique |
Author_xml | – sequence: 1 givenname: Véronique orcidid: 0000-0002-0843-6947 surname: Merrien-Soukatchoff fullname: Merrien-Soukatchoff, Véronique email: veronique.merrien@lecnam.net organization: Laboratoire Géomatique & Foncier (EA 4630), Conservatoire National des Arts et Métiers, Risk Analysis Group, Institute of Earth Sciences, University of Lausanne – sequence: 2 givenname: Muriel orcidid: 0000-0001-9192-9816 surname: Gasc-Barbier fullname: Gasc-Barbier, Muriel organization: GeoCoD |
BackLink | https://hal.science/hal-04140973$$DView record in HAL |
BookMark | eNp9kE1LAzEQhoNUsFb_gKeAJw-rk49Ntt5KqR9YrUgFbyHNZtut201Ntor_3tRVBA89hIGZ55158x6iTu1qi9AJgXMCIC8CgACWAI2PcQoJ2UNdwhlPeMpeOqgLMo6oYPQAHYawBIhDmXXR_XRh8agorGmwK_CDbjZeVzh2_SrW4aepbMCuxk_OvOLJpjHercMlvqvdR2XzucW6zvGjd2EdVxyh_UJXwR7_1B56vhpNhzfJeHJ9OxyME8NS1iQmy9K-hDyPNqgFOROcMFEAAZsKoYmwUpo01SkIJgkleWFJls-oJNpQIyzrobN270JXau3LlfafyulS3QzGatsDTjj0JXsnkT1t2bV3bxsbGrV0G19He4pmqeQZ9Ps8UllLxf-F4G2hTNnopnR143VZKQJqG7Rqg1YxaPUdtNoeoP-kv452ilgrChGu59b_udqh-gJbH48C |
CitedBy_id | crossref_primary_10_1016_j_geomorph_2024_109353 crossref_primary_10_1016_j_ijdrr_2024_104270 crossref_primary_10_1038_s41598_024_65527_x crossref_primary_10_1007_s00603_024_04250_5 |
Cites_doi | 10.1002/esp.4155 10.1016/j.ijrmms.2004.11.003 10.1029/JB091iB12p12743 10.5169/seals-224989 10.1007/978-94-011-5346-1 10.1002/2017rg000557 10.3390/s23042237 10.1177/030913338300700404 10.3390/s18072221 10.1002/esp.208 10.2307/1551649 10.1016/j.geomorph.2009.04.005 10.1086/624483 10.1016/j.enggeo.2021.106293 10.1016/s0341-8162(03)00113-9 10.1051/epjconf/201714014012 10.1088/1755-1315/833/1/012152 10.1002/esp.3192 10.1016/0191-8141(82)90005-0 10.1038/s41467-017-02728-1 10.1007/s10712-021-09632-w 10.1029/2011JF002006 10.1002/ppp.501 10.1007/s10346-005-0013-0 10.2516/ogst:2001036 10.1002/ppp.620 10.1016/j.geomorph.2009.09.015 10.1016/S0169-555X(99)00072-0 10.1016/S0040-1951(99)00066-9 10.5194/nhess-14-1953-2014 10.1201/NOE0415443180.ch29 10.1051/geotech/2020013 10.5194/esurf-2022-15 10.1007/BF01020113 10.1201/b16816-80 10.1016/j.coldregions.2010.11.003 10.1002/esp.1957 10.1007/s00603-020-02075-6 10.1016/j.ijrmms.2013.03.005 10.1016/0148-9062(89)90001-6 10.1016/j.ijrmms.2020.104440 10.1111/j.1365-246X.1983.tb01911.x 10.1002/esp.1076 10.2475/ajs.261.4.376 10.1016/B978-0-12-818234-5.00200-5 10.51257/a-v1-b5060 10.1016/j.enggeo.2015.05.017 10.1029/2020GL089062 10.1002/2016JF003992 10.1016/j.dib.2021.107568 10.1201/9780367823177 10.1061/(ASCE)1090-0241(2003)129:8(697) 10.1007/s10346-010-0224-x 10.1007/s11629-021-7073-z 10.1007/s00603-012-0247-9 10.1016/0341-8162(90)90045-F 10.1016/j.enggeo.2018.08.013 10.2475/ajs.s5-26.152.97 10.1201/b16955-34 10.5194/nhess-22-207-2022 10.1016/j.enggeo.2010.11.006 10.1080/02723646.2020.1847242 10.5194/gi-10-203-2021 10.1007/978-3-7091-2750-6_1 10.1130/B31422.1 10.1002/esp.2167 10.1029/2011jf002007 10.1201/b16816-187 10.1029/2011jf002006 10.1175/bams-d-20-0325.1 10.1007/s10346-020-01524-1 10.1130/0091-7613(1984)12<306:Rtfsma>2.0.Co;2 10.1002/(SICI)1099-1530(199701)8:1<69::AID-PPP236>3.0.CO;2-Q 10.1007/s00603-008-0019-8 10.1016/j.geomorph.2010.07.003 10.1007/s00254-008-1672-7 10.1038/ngeo2686 10.1016/0148-9062(74)91111-5 10.1201/9780203885284-c150 10.1201/b16816-148 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KR7 L.G L6V M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U 1XC |
DOI | 10.1007/s00603-023-03420-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1434-453X |
EndPage | 6822 |
ExternalDocumentID | oai_HAL_hal_04140973v1 10_1007_s00603_023_03420_1 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V L8X LAS LK5 LLZTM M2P M4Y M7R M7S MA- MK~ MM- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 Y6R YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ZY4 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TN 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H96 KR7 L.G PKEHL PQEST PQGLB PQUKI Q9U 1XC |
ID | FETCH-LOGICAL-c353t-c885970dd0012e07b64136f010e566a16e77c55a50637121dfe18db271ac2c6e3 |
IEDL.DBID | U2A |
ISSN | 0723-2632 |
IngestDate | Sat Jun 28 06:31:37 EDT 2025 Fri Jul 25 19:06:40 EDT 2025 Tue Jul 01 03:35:27 EDT 2025 Thu Apr 24 23:13:02 EDT 2025 Fri Feb 21 02:43:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Boreholes Thermoelasticity In situ devices Analytical computations Rockfalls Numerical modelling Rock slope stability Rock slope stability; Rockfalls, Thermoelasticity; In situ devices; Boreholes; Analytical computations; numerical modelling |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-c885970dd0012e07b64136f010e566a16e77c55a50637121dfe18db271ac2c6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9192-9816 0000-0002-0843-6947 |
PQID | 2857480994 |
PQPubID | 60272 |
PageCount | 26 |
ParticipantIDs | hal_primary_oai_HAL_hal_04140973v1 proquest_journals_2857480994 crossref_citationtrail_10_1007_s00603_023_03420_1 crossref_primary_10_1007_s00603_023_03420_1 springer_journals_10_1007_s00603_023_03420_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Wien |
PublicationTitle | Rock mechanics and rock engineering |
PublicationTitleAbbrev | Rock Mech Rock Eng |
PublicationYear | 2023 |
Publisher | Springer Vienna Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V – name: Springer Verlag |
References | RacekOBlahůtJHartvichFObservation of the rock slope thermal regime, coupled with crackmeter stability monitoring: initial results from three different sites in Czechia (central Europe)Geosci Instrum Method Data Syst202110220321810.5194/gi-10-203-2021 MatsuokaNMurtonJFrost weathering: Recent advances and future directionsPermafrost Periglac Process200819219521010.1002/ppp.620 Walton RJ, Worotnicki GA A comparison of three borehole instruments for monitoring the change of rock stress with time. In: Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, 1–3 September 1986 1986. HumbertPDubouchetAFezansGRemaudDCESAR-LCPC, un progiciel de calcul dédié au génie civilBulletin Des Laboratoires Des Ponts Et Chaussées Réf20054573737 JenkinsKASmithBJDaytime rock surface temperature variability and its implications for mechanical rock weathering: Tenerife, Canary IslandsCATENA1990174–544945910.1016/0341-8162(90)90045-F VirelyDGasc-BarbierMMerrien-SoukatchoffVMore than eleven years of temperature and displacements recorded on and in a limestone cliff: datasetData Brief20213910756810.1016/j.dib.2021.107568 Gasc-Barbier M, Merrien-Soukatchoff V, Genois J-L, Mougins C, Azémard P (2023) 10 years of thermo-mechanical monitoring of rock columns - les chandelles de l’Escalette, France. Paper presented at the 15th ISRM Congress 2023 & 72nd Geomechanics Colloquium, Salzburg Bertolus G (1998) Approche en site naturel des couplages thermo-hydro-mécaniques d’un massif carbonaté fracturé. Institut National Polytechnique de Lorraine, Nancy CollinsBDStockGMEppesM-CLewisSWCorbettSCSmithJBThermal influences on spontaneous rock dome exfoliationNat Commun20189176210.1038/s41467-017-02728-1 StockGMMartelSJCollinsBDHarpELProgressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USAEarth Surf Proc Land201237554656110.1002/esp.3192 HatzorYHKeyblock stability in seismically active rock slopes—snake path cliff, MasadaJ Geotech Geoenviron Eng2003129869771010.1061/(ASCE)1090-0241(2003)129:8(697) SoldatiMCorsiniAPasutoALandslides and climate change in the Italian Dolomites since the Late glacialCATENA200455214116110.1016/s0341-8162(03)00113-9 Bakun-MazorDKeissarYFeldheimADetournayCHatzorYHThermally-induced wedging-ratcheting failure mechanism in rock slopesRock Mech Rock Eng20205362521253810.1007/s00603-020-02075-6 Clément C, Gunzburger Y, Merrien-Soukatchoff V, Dünner C Monitoring of natural thermal strains using hollow cylinder strain cells: The case of a large rock slope prone to rockfalls. In: Chen Z, Zhang J, Li Z, Wu F, Ho K (eds) Landslides and Engineered slopes, From the past to the future, Proc. 10th Int. Symp. Landslides (ISL), Xi'an (China), 30 June-4 July 2008 2008. Taylor and Francis Group (London), pp 1143–1149 BlackwelderEThe insolation hyphothesis of rock weatheringAm J Sci1933s5–261529711310.2475/ajs.s5-26.152.97 BreytenbachIJSeasonal bedrock temperature oscillations and inversions as a function of depth and the implications for thermal fatiguePhys Geogr202243440141810.1080/02723646.2020.1847242 GruberSHoelzleMHaeberliWRock-wall temperatures in the Alps: modelling their topographic distribution and regional differencesPermafrost Periglac Process200415329930710.1002/ppp.501 Clément C (2008) Auscultation d’un versant rocheux soumis aux sollicitations thermiques naturelles. Cas des Rochers de Valabres (Alpes-Maritimes). PhD, INPL, Ecole des Mines de Nancy, Nancy RichterDSimmonsGThermal expansion behavior of igneous rocksInt J Rock Mech Min Sci Geomech Abstr1974111040341110.1016/0148-9062(74)91111-5 Vargas EdAJ, Castro JT, Amaral C, Figueiredo RP On mechanisms for failure of some rock slopes in Rio de Janeiro, Brazil: Thermal fatigue? In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization, Proceedings of the Ninth International Symposium on Landslides, Rio de Janeiro, une 28 -July 2, 2004 2004. Taylor & Francis Group, pp 1007–1011 BièvreGFranzMLaroseECarrièreSJongmansDJaboyedoffMInfluence of environmental parameters on the seismic velocity changes in a clayey mudflow (Pont-Bourquin Landslide, Switzerland)Eng Geol201824524825710.1016/j.enggeo.2018.08.013 Vargas EdAJ, Chavez E, Gusmão L, Amaral C Is thermal fatigue a possible mechanism for failures of some rock slopes in Rio de Janeiro, Brazil? In: 43rd U.S. Rock Mechanics Symposium and 4th U.S.-Canada Rock Mechanics Symposium, Asheville, NC, 2009. EppesMCMagiBScheffJWarrenKChingSFengTWarmer, wetter climates accelerate mechanical weathering in field data, independent of stress-loadingGeophys Res Lett202047242020GL8906210.1029/2020GL089062 Gasc-Barbier M, Merrien-Soukatchoff V, Berest P (2017) Manuel de mécanique des roches Tome V Thermomécanique des roches. Sciences de la Terre et de l'environnement. MeredithPGAtkinsonBKStress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocksGeophys J Roy Astron Soc198375112110.1111/j.1365-246X.1983.tb01911.x VillarragaCVaunatJVirelyDGascMEffect of thermal cycles on rock cliff deformation. Monitoring and interpretationIOP Conf Ser Earth Environ Sci2021833101215210.1088/1755-1315/833/1/012152 EppesM-CShroderJF3.03—mechanical weathering: a conceptual overviewTreatise on Geomorphology20222OxfordAcademic Press304510.1016/B978-0-12-818234-5.00200-5 Gasc-BarbierMMerrien-SoukatchoffVVirelyDThe role of natural thermal cycles on a limestone cliff mechanical behaviourEng Geol2021293106293810.1016/j.enggeo.2021.106293 OllierCDInsolation weathering; examples from central AustraliaAm J Sci1963261437638110.2475/ajs.261.4.376 Vlcko J, Jezny M, Pagacova Z (2005a) Influence of Thermal Expansion on Slope Displacements in Landslides. Paper presented at the Landslides, Risk Analysis and Sustainable Disaster Management. Proceedings of the First General Assembly if the International Consortium on Landslides Carslaw HS, Jaeger JC (1986) Conduction of heat in solids. Oxford science publications, 2nd edition edn. #0, Clarendon press, Oxford University Press, Oxford, New York HenryJ-PParsyFCours d'élasticité1982Dunod, ParisDunod université ClémentCMerrien-SoukatchoffVDünnerCGunzburgerYStress measurement by overcoring at shallow depths in a rock slope: The scattering of input data and resultsRock Mech Rock Eng200942458560910.1007/s00603-008-0019-8 GriggsDTThe factor of fatigue in rock exfoliationJ Geol193644778379610.1086/624483 EppesM-CKeaniniRMechanical weathering and rock erosion by climate-dependent subcritical crackingRev Geophys201755247050810.1002/2017rg000557 HallKRock temperatures and implications for cold region weathering. I: New data from Viking Valley, Alexander Island, AntarcticaPermafrost Periglacial Processes199781699010.1002/(SICI)1099-1530(199701)8:1<69::AID-PPP236>3.0.CO;2-Q VargasEdAJVellosoRQChávezLEGusmãoLPalmeiro do Amaral C,On the effect of thermally induced stresses in failures of some rock slopes in Rio de Janeiro, BrazilRock Mech Rock Eng201346112313410.1007/s00603-012-0247-9 McKayCPMolaroJLMarinovaMMHigh-frequency rock temperature data from hyper-arid desert environments in the Atacama and the Antarctic Dry Valleys and implications for rock weatheringGeomorphology20091103–418218710.1016/j.geomorph.2009.04.005 Leith K, Perras M, Siren T, Rantanen T, Wolter A, Heinonen S, Loew S (2017) Development of a new thermally-induced fracture in a 12,000 year old bedrock surface. Paper presented at the Progressive Rock Failure 2017, Ascona, Switzerland MessenzehlKDikauRStructural and thermal controls of rockfall frequency and magnitude within rockwall–talus systems (Swiss Alps)Earth Surf Proc Land201742131963198110.1002/esp.4155 GreifVSassaKFukuokaHFailure mechanism in an extremely slow rock slide at Bitchu-Matsuyama castle site (Japan)Landslides200631223810.1007/s10346-005-0013-0 MufundirwaAFujiiYKodamaNKodamaJ-iAnalysis of natural rock slope deformations under temperature variation: a case from a cool temperate region in JapanCold Reg Sci Technol201165348850010.1016/j.coldregions.2010.11.003 ColomberoCJongmansDFiolleauSValentinJBailletLBièvreGSeismic noise parameters as indicators of reversible modifications in slope stability: a reviewSurv Geophys202142233937510.1007/s10712-021-09632-w Engerand J-L (1990) Mécanique de la rupture. Techniques de l'ingénieur Comportement en service des systèmes et composants mécaniques base documentaire : TIB180DUO (ref. article : b5060):13 GuenziDGodoneDAllasiaPFazioNLPerrottiMLollinoPBrief communication: monitoring a soft-rock coastal cliff using webcams and strain sensorsNat Hazards Earth Syst Sci202222120721210.5194/nhess-22-207-2022 FiorucciMMarmoniGMMartinoSMazzantiPThermal response of jointed rock masses inferred from infrared thermographic surveying (Acuto Test-Site, Italy)Sensors2018187222110.3390/s18072221 Gunzburger Y, Merrien-Soukatchoff V, Senfaute G, Guglielmi Y, Piguet J-P Field investigations, monitoring and modeling in the identification of rock fall causes. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization, Proceedings of the Ninth International Symposium on Landslides, Rio de Janeiro, June 28 -July 2, 2004 2004. Taylor & Francis Group, pp 557–563 CollinsBDStockGMRockfall triggering by cyclic thermal stressing of exfoliation fracturesNat Geosci201610.1038/ngeo2686 Berest P, Weber P (1998) La thermomécanique des roches, vol Volume 16. Edition du BRGM, Orléans SchmidtRARossmanithHPRossmanithHPBasics of rock fracture mechanicsRock fracture mechanics1983ViennaSpringer Vienna12910.1007/978-3-7091-2750-6_1 YatsuEThe nature of weathering: an introduction1988SozoshaOverseas distributor Maruzen Co. Suhett-Helmer G, Sulem J, Ghabezloo S, Rohmer J, Hild F Experimental Evaluation of the Fracture Toughness on a Limestone. In: ISRM Regional Symposium - EUROCK 2014, 2014. ISRM-EUROCK-2014–031 GuerinAJaboyedoffMCollinsBDStockGMDerronM-HAbellánAMatasciBRemote thermal detection of exfoliation sheet deformationLandslides202010.1007/s10346-02 3420_CR1 3420_CR2 M-C Eppes (3420_CR26) 2022 O Racek (3420_CR77) 2021; 10 V Gischig (3420_CR38) 2011; 118 3420_CR4 3420_CR7 J Safanda (3420_CR80) 1999; 306 3420_CR8 3420_CR82 MC Eppes (3420_CR30) 2020; 47 M Gasc-Barbier (3420_CR36) 2021; 293 VS Gischig (3420_CR41) 2011; 116 3420_CR85 3420_CR88 3420_CR87 J Vlcko (3420_CR95) 2009; 58 E Blackwelder (3420_CR10) 1933; s5–26 R Krähenbühl (3420_CR61) 2004; 9 J-B Leblond (3420_CR64) 2003 D Bakun-Mazor (3420_CR6) 2020; 53 A Mufundirwa (3420_CR73) 2011; 65 F Homand-Etienne (3420_CR55) 1989; 26 3420_CR13 D Guenzi (3420_CR46) 2022; 22 3420_CR15 3420_CR14 3420_CR19 JL Molaro (3420_CR72) 2010; 35 O Racek (3420_CR78) 2023; 23 3420_CR18 3420_CR93 G Nigrelli (3420_CR74) 2022; 19 3420_CR94 3420_CR97 BD Collins (3420_CR20) 2016 3420_CR96 N Langet (3420_CR63) 2022; 2022 VS Gischig (3420_CR40) 2011 N Matsuoka (3420_CR68) 2008; 19 G Grøneng (3420_CR44) 2011; 8 G Bièvre (3420_CR9) 2018; 245 IJ Breytenbach (3420_CR12) 2022; 43 M Gasc-Barbier (3420_CR35) 2020; 163 3420_CR25 JT Fredrich (3420_CR32) 1986; 91 GM Marmoni (3420_CR66) 2020; 134 BK Atkinson (3420_CR3) 1982; 4 L Borgatti (3420_CR11) 2010; 120 RA Schmidt (3420_CR81) 1983 C Putot (3420_CR76) 2001; 56 A Delonca (3420_CR24) 2014; 14 K Hall (3420_CR51) 1997; 8 3420_CR34 3420_CR37 J-P Henry (3420_CR54) 1982 M Gasc-Barbier (3420_CR33) 2019 D Bakun-Mazor (3420_CR5) 2013; 61 C Cloutier (3420_CR17) 2015; 195 JL Lamp (3420_CR62) 2017; 122 CP McKay (3420_CR69) 2009; 110 KA Jenkins (3420_CR59) 1990; 17 M-C Eppes (3420_CR27) 2017; 55 3420_CR49 V Greif (3420_CR42) 2006; 3 P Humbert (3420_CR56) 2005; 4573 GM Stock (3420_CR84) 2012; 37 EdAJ Vargas (3420_CR89) 2013; 46 M Soldati (3420_CR83) 2004; 55 S Gruber (3420_CR45) 2004; 15 A Guerin (3420_CR47) 2020 K Hall (3420_CR52) 1999; 31 YH Hatzor (3420_CR53) 2003; 129 N Matsuoka (3420_CR67) 2001; 26 M Fiorucci (3420_CR31) 2018; 18 C Villarraga (3420_CR91) 2021; 833 M Ishikawa (3420_CR58) 2004; 29 K Messenzehl (3420_CR71) 2017; 42 A Taboada (3420_CR86) 2017; 140 D Richter (3420_CR79) 1974; 11 MC Eppes (3420_CR29) 2016; 128 3420_CR65 Y Gunzburger (3420_CR50) 2005; 42 C Colombero (3420_CR22) 2021; 42 A Kerr (3420_CR60) 1984; 12 MC Eppes (3420_CR28) 2010; 123 VS Gischig (3420_CR39) 2011; 116 B Vásárhelyi (3420_CR90) 1997; 30 C Clément (3420_CR16) 2009; 42 D Virely (3420_CR92) 2021; 39 Y Gunzburger (3420_CR48) 2011; 36 PG Meredith (3420_CR70) 1983; 75 E Yatsu (3420_CR99) 1988 WB Whalley (3420_CR98) 1983; 7 DT Griggs (3420_CR43) 1936; 44 JP Coutard (3420_CR23) 1989; 21 Y Zhao (3420_CR100) 2021 BD Collins (3420_CR21) 2018; 9 CD Ollier (3420_CR75) 1963; 261 |
References_xml | – reference: Bakun-MazorDKeissarYFeldheimADetournayCHatzorYHThermally-induced wedging-ratcheting failure mechanism in rock slopesRock Mech Rock Eng20205362521253810.1007/s00603-020-02075-6 – reference: RacekOBlahůtJHartvichFObservation of the rock slope thermal regime, coupled with crackmeter stability monitoring: initial results from three different sites in Czechia (central Europe)Geosci Instrum Method Data Syst202110220321810.5194/gi-10-203-2021 – reference: Gasc-BarbierMMerrien-SoukatchoffVda FontouraSABRoccaRJMendozaJEffect of natural thermal cycles on rock slopes stability- study of 2 French sitesRock mechanics for natural resources and infrastructure development2019LondonCRC Press10.1201/9780367823177 – reference: HumbertPDubouchetAFezansGRemaudDCESAR-LCPC, un progiciel de calcul dédié au génie civilBulletin Des Laboratoires Des Ponts Et Chaussées Réf20054573737 – reference: Gunzburger Y, Merrien-Soukatchoff V, Senfaute G, Guglielmi Y, Piguet J-P Field investigations, monitoring and modeling in the identification of rock fall causes. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization, Proceedings of the Ninth International Symposium on Landslides, Rio de Janeiro, June 28 -July 2, 2004 2004. Taylor & Francis Group, pp 557–563 – reference: BlackwelderEThe insolation hyphothesis of rock weatheringAm J Sci1933s5–261529711310.2475/ajs.s5-26.152.97 – reference: GrønengGChristiansenHHNilsenBBlikraLHMeteorological effects on seasonal displacements of the Åknes rockslide, western NorwayLandslides20118111510.1007/s10346-010-0224-x – reference: EppesMCMcFaddenLDWegmannKWScuderiLACracks in desert pavement rocks: further insights into mechanical weathering by directional insolationGeomorphology20101231–29710810.1016/j.geomorph.2010.07.003 – reference: Berest P, Weber P (1998) La thermomécanique des roches, vol Volume 16. Edition du BRGM, Orléans – reference: Engerand J-L (1990) Mécanique de la rupture. Techniques de l'ingénieur Comportement en service des systèmes et composants mécaniques base documentaire : TIB180DUO (ref. article : b5060):13 – reference: KerrASmithBJBrian WhalleyWMcGreevyJPRock temperatures from southeast Morocco and their significance for experimental rock-weathering studiesGeology198412530630910.1130/0091-7613(1984)12<306:Rtfsma>2.0.Co;2 – reference: GischigVAmannFMooreJRLoewSEisenbeissHStempfhuberWComposite rock slope kinematics at the current Randa instability, Switzerland, based on remote sensing and numerical modelingEng Geol20111181375310.1016/j.enggeo.2010.11.006 – reference: GunzburgerYMerrien-SoukatchoffVGuglielmiYInfluence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France)Int J Rock Mech Min Sci200542333134910.1016/j.ijrmms.2004.11.003 – reference: BorgattiLSoldatiMLandslides as a geomorphological proxy for climate change: a record from the Dolomites (northern Italy)Geomorphology20101201–2566410.1016/j.geomorph.2009.09.015 – reference: MufundirwaAFujiiYKodamaNKodamaJ-iAnalysis of natural rock slope deformations under temperature variation: a case from a cool temperate region in JapanCold Reg Sci Technol201165348850010.1016/j.coldregions.2010.11.003 – reference: MatsuokaNMurtonJFrost weathering: Recent advances and future directionsPermafrost Periglac Process200819219521010.1002/ppp.620 – reference: JenkinsKASmithBJDaytime rock surface temperature variability and its implications for mechanical rock weathering: Tenerife, Canary IslandsCATENA1990174–544945910.1016/0341-8162(90)90045-F – reference: CollinsBDStockGMRockfall triggering by cyclic thermal stressing of exfoliation fracturesNat Geosci201610.1038/ngeo2686 – reference: OllierCDInsolation weathering; examples from central AustraliaAm J Sci1963261437638110.2475/ajs.261.4.376 – reference: MessenzehlKDikauRStructural and thermal controls of rockfall frequency and magnitude within rockwall–talus systems (Swiss Alps)Earth Surf Proc Land201742131963198110.1002/esp.4155 – reference: Bakun-Mazor D, Hatzor YH, Glaser SD, Santamarina JC (2011) Climatic Effects On Key-block Motion: Evidence From the Rock Slopes of Masada World Heritage Site. Paper presented at the 45th U.S. Rock Mechanics / Geomechanics Symposium San Francisco, California, June 26 - 29, 2011 – reference: GruberSHoelzleMHaeberliWRock-wall temperatures in the Alps: modelling their topographic distribution and regional differencesPermafrost Periglac Process200415329930710.1002/ppp.501 – reference: LangetNSilverbergFMJAutomated classification of seismic signals recorded on the Åknes rockslope, Western Norway, using a Convolutional Neural NetworkEarth Surf Dynam Discuss2022202215010.5194/esurf-2022-15 – reference: ZhaoYNorouziHAzarderakhshMAghaKouchakAGlobal patterns of hottest, coldest and extreme diurnal variability on earthBull Am Meteorol Soc202110.1175/bams-d-20-0325.1 – reference: Vargas EdAJ, Chavez E, Gusmão L, Amaral C Is thermal fatigue a possible mechanism for failures of some rock slopes in Rio de Janeiro, Brazil? In: 43rd U.S. Rock Mechanics Symposium and 4th U.S.-Canada Rock Mechanics Symposium, Asheville, NC, 2009. – reference: Gasc-Barbier M, Merrien-Soukatchoff V, Genois J-L, Mougins C, Azémard P (2023) 10 years of thermo-mechanical monitoring of rock columns - les chandelles de l’Escalette, France. Paper presented at the 15th ISRM Congress 2023 & 72nd Geomechanics Colloquium, Salzburg, – reference: VlckoJGreifVGrofVJeznyMPetroLBrcekMRock displacement and thermal expansion study at historic heritage sites in SlovakiaEnviron Geol20095881727174010.1007/s00254-008-1672-7 – reference: GuerinAJaboyedoffMCollinsBDStockGMDerronM-HAbellánAMatasciBRemote thermal detection of exfoliation sheet deformationLandslides202010.1007/s10346-020-01524-1 – reference: DeloncaAGunzburgerYVerdelTStatistical correlation between meteorological and rockfall databasesNat Hazards Earth Syst Sci20141481953196410.5194/nhess-14-1953-2014 – reference: VirelyDGasc-BarbierMMerrien-SoukatchoffVMore than eleven years of temperature and displacements recorded on and in a limestone cliff: datasetData Brief20213910756810.1016/j.dib.2021.107568 – reference: MarmoniGMFiorucciMGrechiGMartinoSModelling of thermo-mechanical effects in a rock quarry wall induced by near-surface temperature fluctuationsInt J Rock Mech Min Sci202013410444010.1016/j.ijrmms.2020.104440 – reference: RichterDSimmonsGThermal expansion behavior of igneous rocksInt J Rock Mech Min Sci Geomech Abstr1974111040341110.1016/0148-9062(74)91111-5 – reference: CollinsBDStockGMEppesM-CLewisSWCorbettSCSmithJBThermal influences on spontaneous rock dome exfoliationNat Commun20189176210.1038/s41467-017-02728-1 – reference: ColomberoCJongmansDFiolleauSValentinJBailletLBièvreGSeismic noise parameters as indicators of reversible modifications in slope stability: a reviewSurv Geophys202142233937510.1007/s10712-021-09632-w – reference: LeblondJ-BMécanique de la rupture fragile et ductile. Études en mécanique des matériaux et des structures2003ParisHermes science publications Lavoisier – reference: Carslaw HS, Jaeger JC (1986) Conduction of heat in solids. Oxford science publications, 2nd edition edn. #0, Clarendon press, Oxford University Press, Oxford, New York – reference: GischigVSMooreJREvansKFAmannFLoewSThermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instabilityJ Geophys Res Earth Surf2011116F4F0401110.1029/2011jf002007 – reference: Homand-EtienneFHoupertRThermally induced microcracking in granites: characterization and analysisInt J Rock Mech Min Sci Geomech Abstr198926212513410.1016/0148-9062(89)90001-6 – reference: Clément C, Gunzburger Y, Merrien-Soukatchoff V, Dünner C Monitoring of natural thermal strains using hollow cylinder strain cells: The case of a large rock slope prone to rockfalls. In: Chen Z, Zhang J, Li Z, Wu F, Ho K (eds) Landslides and Engineered slopes, From the past to the future, Proc. 10th Int. Symp. Landslides (ISL), Xi'an (China), 30 June-4 July 2008 2008. Taylor and Francis Group (London), pp 1143–1149 – reference: GriggsDTThe factor of fatigue in rock exfoliationJ Geol193644778379610.1086/624483 – reference: VargasEdAJVellosoRQChávezLEGusmãoLPalmeiro do Amaral C,On the effect of thermally induced stresses in failures of some rock slopes in Rio de Janeiro, BrazilRock Mech Rock Eng201346112313410.1007/s00603-012-0247-9 – reference: Leith K, Perras M, Siren T, Rantanen T, Wolter A, Heinonen S, Loew S (2017) Development of a new thermally-induced fracture in a 12,000 year old bedrock surface. Paper presented at the Progressive Rock Failure 2017, Ascona, Switzerland, – reference: BièvreGFranzMLaroseECarrièreSJongmansDJaboyedoffMInfluence of environmental parameters on the seismic velocity changes in a clayey mudflow (Pont-Bourquin Landslide, Switzerland)Eng Geol201824524825710.1016/j.enggeo.2018.08.013 – reference: KrähenbühlRTemperatur Und Kluftwasser Als Ursachen Von Felssturz20049193510.5169/seals-224989 – reference: AtkinsonBKSubcritical crack propagation in rocks: theory, experimental results and applicationsJ Struct Geol198241415610.1016/0191-8141(82)90005-0 – reference: GuenziDGodoneDAllasiaPFazioNLPerrottiMLollinoPBrief communication: monitoring a soft-rock coastal cliff using webcams and strain sensorsNat Hazards Earth Syst Sci202222120721210.5194/nhess-22-207-2022 – reference: HallKRock temperatures and implications for cold region weathering. I: New data from Viking Valley, Alexander Island, AntarcticaPermafrost Periglacial Processes199781699010.1002/(SICI)1099-1530(199701)8:1<69::AID-PPP236>3.0.CO;2-Q – reference: StockGMMartelSJCollinsBDHarpELProgressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USAEarth Surf Proc Land201237554656110.1002/esp.3192 – reference: CoutardJPFrancouBRock temperature measurements in two alpine environments: implications for frost shatteringArct Alp Res198921439941610.2307/1551649 – reference: Suhett-Helmer G, Sulem J, Ghabezloo S, Rohmer J, Hild F Experimental Evaluation of the Fracture Toughness on a Limestone. In: ISRM Regional Symposium - EUROCK 2014, 2014. ISRM-EUROCK-2014–031, – reference: Amadei B, Stephansson O (1997) Rock stress and its measurement. Kluwer Academic Publishers, Alphen aan den Rijn – reference: TaboadaAGinouvezHRenoufMAzemardPLandsliding generated by thermomechanical interactions between rock columns and wedging blocks: study case from the Larzac Plateau (Southern France)EPJ Web Conf20171401401210.1051/epjconf/201714014012 – reference: Watson AD, Moore DP, Stewart TW Temperature influence on rock slope movements at Checkerboard Creek. In: W. L, M E, S.A.B F, A.S.F S (eds) Landslides: evaluation and stabilization, Proceedings of the Ninth International Symposium on Landslides, Rio de Janeiro, June 28 -July 2, 2004 2004. Taylor & Francis Group, pp 557–563 – reference: EppesMCMagiBScheffJWarrenKChingSFengTWarmer, wetter climates accelerate mechanical weathering in field data, independent of stress-loadingGeophys Res Lett202047242020GL8906210.1029/2020GL089062 – reference: Senfaute G, Merrien-Soukatchoff V, Clément C, Laouafa F, Dünner C, Pfeifle G, Guglielmi Y, Lancon H, Mudry J, Darve F, Donze F, Duriez J, Pouya A, Bemani P, Gasc M, Wassermarm J (2007) Impact of climate change on rock slope stability: Monitoring and modelling. In: McInnes R, Jakeways J, Fairbank H, Mathie E (eds) International Conference on Landslides and Climate Change, Ventnor, England, May 2007. Proceedings and Monographs in Engineering, Water and Earth Sciences. pp 237-245. doi:https://doi.org/10.1201/NOE0415443180.ch29 – reference: HenryJ-PParsyFCours d'élasticité1982Dunod, ParisDunod université – reference: SafandaJGround surface temperature as a function of slope angle and slope orientation and its effect on the subsurface temperature fieldTectonophysics19993063–436737510.1016/S0040-1951(99)00066-9 – reference: HallKThe role of thermal stress fatigue in the breakdown of rock in cold regionsGeomorphology1999311–4476310.1016/S0169-555X(99)00072-0 – reference: Vlcko J, Jezny M, Pagacova Z (2005a) Influence of Thermal Expansion on Slope Displacements in Landslides. Paper presented at the Landslides, Risk Analysis and Sustainable Disaster Management. Proceedings of the First General Assembly if the International Consortium on Landslides, – reference: McKayCPMolaroJLMarinovaMMHigh-frequency rock temperature data from hyper-arid desert environments in the Atacama and the Antarctic Dry Valleys and implications for rock weatheringGeomorphology20091103–418218710.1016/j.geomorph.2009.04.005 – reference: Bakun-MazorDHatzorYHGlaserSDCarlos SantamarinaJThermally vs. seismically induced block displacements in Masada rock slopesInt J Rock Mech Min Sci20136119621110.1016/j.ijrmms.2013.03.005 – reference: LampJLMarchantDRMackaySLHeadJWThermal stress weathering and the spalling of Antarctic rocksJ Geophys Res Earth Surf2017122132410.1002/2016JF003992 – reference: Bertolus G (1998) Approche en site naturel des couplages thermo-hydro-mécaniques d’un massif carbonaté fracturé. Institut National Polytechnique de Lorraine, Nancy – reference: MatsuokaNDirect observation of frost wedging in alpine bedrockEarth Surf Proc Land200126660161410.1002/esp.208 – reference: Gasc-Barbier M, Merrien-Soukatchoff V, Berest P (2017) Manuel de mécanique des roches Tome V Thermomécanique des roches. Sciences de la Terre et de l'environnement. – reference: Gasc-BarbierMMerrien-SoukatchoffVVillarraga-DiazCEffet de cycles thermiques sur un massif rocheux: observations et mesures au laboratoire et in situRevue Française De Geotechnique202016341210.1051/geotech/2020013 – reference: NigrelliGChiarleMMerloneACoppaGMusacchioCRock temperature variability in high-altitude rockfall-prone areasJ Mt Sci202219379881110.1007/s11629-021-7073-z – reference: Collins BD, Stock GM (2010b) Quantifying thermally induced rock flexure as a potential rock-fall trigger. Geological Society of America Abstracts with Programs 42 – reference: GunzburgerYMerrien-SoukatchoffVNear-surface temperatures and heat balance of bare outcrops exposed to solar radiationEarth Surf Proc Land201136121577158910.1002/esp.2167 – reference: YatsuEThe nature of weathering: an introduction1988SozoshaOverseas distributor Maruzen Co. – reference: MeredithPGAtkinsonBKStress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocksGeophys J Roy Astron Soc198375112110.1111/j.1365-246X.1983.tb01911.x – reference: Vargas EdAJ, Castro JT, Amaral C, Figueiredo RP On mechanisms for failure of some rock slopes in Rio de Janeiro, Brazil: Thermal fatigue? In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization, Proceedings of the Ninth International Symposium on Landslides, Rio de Janeiro, une 28 -July 2, 2004 2004. Taylor & Francis Group, pp 1007–1011 – reference: Alcaino-Olivares R, Leith K, Ziegler M, Perras M (2021) Thermo-mechanical fatigue cracking of the bedrock on an island in the Baltic Sea. Paper presented at the GEONIAGARA, Niagara Falls, Canada, September 26–29, 2021 – reference: PutotCChastanetJCacasMCDanielJPFracturation naturelle d'un massif rocheux. Diaclases et couloirs de fracturationOil Gas Sci Technol Rev IFP200156543144910.2516/ogst:2001036 – reference: Walton RJ, Worotnicki GA A comparison of three borehole instruments for monitoring the change of rock stress with time. In: Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, 1–3 September 1986 1986. – reference: EppesM-CShroderJF3.03—mechanical weathering: a conceptual overviewTreatise on Geomorphology20222OxfordAcademic Press304510.1016/B978-0-12-818234-5.00200-5 – reference: FiorucciMMarmoniGMMartinoSMazzantiPThermal response of jointed rock masses inferred from infrared thermographic surveying (Acuto Test-Site, Italy)Sensors2018187222110.3390/s18072221 – reference: FredrichJTWongT-fMicromechanics of thermally induced cracking in three crustal rocksJ Geophys Res198691B12127431276410.1029/JB091iB12p12743 – reference: EppesMCMagiBHalletBDelmelleEMackenzie-HelnweinPWarrenKSwamiSDeciphering the role of solar-induced thermal stresses in rock weatheringGSA Bull20161289–101315133810.1130/B31422.1 – reference: GischigVSMooreJREvansKFAmannFLoewSThermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slopeJ Geophys Res Earth Surf2011116F4F0401010.1029/2011jf002006 – reference: RacekOBalekJLocheMVíchDBlahůtJRock surface strain in situ monitoring affected by temperature changes at the Požáry field lab (Czechia)Sensors2023234223710.3390/s23042237 – reference: ClémentCMerrien-SoukatchoffVDünnerCGunzburgerYStress measurement by overcoring at shallow depths in a rock slope: The scattering of input data and resultsRock Mech Rock Eng200942458560910.1007/s00603-008-0019-8 – reference: Clément C (2008) Auscultation d’un versant rocheux soumis aux sollicitations thermiques naturelles. Cas des Rochers de Valabres (Alpes-Maritimes). PhD, INPL, Ecole des Mines de Nancy, Nancy – reference: VillarragaCVaunatJVirelyDGascMEffect of thermal cycles on rock cliff deformation. Monitoring and interpretationIOP Conf Ser Earth Environ Sci2021833101215210.1088/1755-1315/833/1/012152 – reference: CloutierCLocatJCharbonneauFCoutureRUnderstanding the kinematic behavior of the active Gascons rockslide from in-situ and satellite monitoring dataEng Geol201519511510.1016/j.enggeo.2015.05.017 – reference: SoldatiMCorsiniAPasutoALandslides and climate change in the Italian Dolomites since the Late glacialCATENA200455214116110.1016/s0341-8162(03)00113-9 – reference: GischigVSMooreJREvansKFAmannFLoewSThermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slopeJ Geophys Res Earth Surf201110.1029/2011JF002006 – reference: IshikawaMKurashigeYHirakawaKAnalysis of crack movements observed in an alpine bedrock cliffEarth Surf Proc Land200429788389110.1002/esp.1076 – reference: WhalleyWBMcGreevyJPWeatheringProgress Phys Geogr Earth Environ19837455958610.1177/030913338300700404 – reference: BreytenbachIJSeasonal bedrock temperature oscillations and inversions as a function of depth and the implications for thermal fatiguePhys Geogr202243440141810.1080/02723646.2020.1847242 – reference: MolaroJLMcKayCPProcesses controlling rapid temperature variations on rock surfacesEarth Surf Proc Land2010355501507 – reference: EppesM-CKeaniniRMechanical weathering and rock erosion by climate-dependent subcritical crackingRev Geophys201755247050810.1002/2017rg000557 – reference: GreifVSassaKFukuokaHFailure mechanism in an extremely slow rock slide at Bitchu-Matsuyama castle site (Japan)Landslides200631223810.1007/s10346-005-0013-0 – reference: HatzorYHKeyblock stability in seismically active rock slopes—snake path cliff, MasadaJ Geotech Geoenviron Eng2003129869771010.1061/(ASCE)1090-0241(2003)129:8(697) – reference: Gasc-BarbierMMerrien-SoukatchoffVVirelyDThe role of natural thermal cycles on a limestone cliff mechanical behaviourEng Geol2021293106293810.1016/j.enggeo.2021.106293 – reference: Vlcko J, Jezny M, Pagacova Z Thermal expansion effect on slope deformation recordings at Spis Castle. In: Proceeding. of 15th Conference on Engineering Geology (Tagung Ingenieurgeologie), Erlangen, Germany, 6–9 April 2005b 2005b. – reference: VásárhelyiBInfluence of pressure on the crack propagation under mode I loading in anisotropic gneiss. Technical noteRock Mech Rock Eng1997301596410.1007/BF01020113 – reference: Collins B, Stock G (2010a) Correlation between thermal gradient and flexure-type deformation as a potential trigger for exfoliation-related rock falls (Invited). AGU Fall Meeting Abstracts:0742 – reference: SchmidtRARossmanithHPRossmanithHPBasics of rock fracture mechanicsRock fracture mechanics1983ViennaSpringer Vienna12910.1007/978-3-7091-2750-6_1 – volume: 42 start-page: 1963 issue: 13 year: 2017 ident: 3420_CR71 publication-title: Earth Surf Proc Land doi: 10.1002/esp.4155 – volume: 42 start-page: 331 issue: 3 year: 2005 ident: 3420_CR50 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2004.11.003 – volume: 91 start-page: 12743 issue: B12 year: 1986 ident: 3420_CR32 publication-title: J Geophys Res doi: 10.1029/JB091iB12p12743 – volume: 9 start-page: 19 year: 2004 ident: 3420_CR61 publication-title: Temperatur Und Kluftwasser Als Ursachen Von Felssturz doi: 10.5169/seals-224989 – ident: 3420_CR2 doi: 10.1007/978-94-011-5346-1 – volume: 55 start-page: 470 issue: 2 year: 2017 ident: 3420_CR27 publication-title: Rev Geophys doi: 10.1002/2017rg000557 – volume: 23 start-page: 2237 issue: 4 year: 2023 ident: 3420_CR78 publication-title: Sensors doi: 10.3390/s23042237 – ident: 3420_CR94 – ident: 3420_CR1 – volume-title: The nature of weathering: an introduction year: 1988 ident: 3420_CR99 – volume: 7 start-page: 559 issue: 4 year: 1983 ident: 3420_CR98 publication-title: Progress Phys Geogr Earth Environ doi: 10.1177/030913338300700404 – volume: 18 start-page: 2221 issue: 7 year: 2018 ident: 3420_CR31 publication-title: Sensors doi: 10.3390/s18072221 – volume: 26 start-page: 601 issue: 6 year: 2001 ident: 3420_CR67 publication-title: Earth Surf Proc Land doi: 10.1002/esp.208 – volume: 21 start-page: 399 issue: 4 year: 1989 ident: 3420_CR23 publication-title: Arct Alp Res doi: 10.2307/1551649 – volume: 110 start-page: 182 issue: 3–4 year: 2009 ident: 3420_CR69 publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.04.005 – volume: 44 start-page: 783 issue: 7 year: 1936 ident: 3420_CR43 publication-title: J Geol doi: 10.1086/624483 – volume: 293 start-page: 8 issue: 106293 year: 2021 ident: 3420_CR36 publication-title: Eng Geol doi: 10.1016/j.enggeo.2021.106293 – volume: 55 start-page: 141 issue: 2 year: 2004 ident: 3420_CR83 publication-title: CATENA doi: 10.1016/s0341-8162(03)00113-9 – ident: 3420_CR13 – volume: 140 start-page: 14012 year: 2017 ident: 3420_CR86 publication-title: EPJ Web Conf doi: 10.1051/epjconf/201714014012 – volume: 833 start-page: 012152 issue: 1 year: 2021 ident: 3420_CR91 publication-title: IOP Conf Ser Earth Environ Sci doi: 10.1088/1755-1315/833/1/012152 – volume: 37 start-page: 546 issue: 5 year: 2012 ident: 3420_CR84 publication-title: Earth Surf Proc Land doi: 10.1002/esp.3192 – volume: 4 start-page: 41 issue: 1 year: 1982 ident: 3420_CR3 publication-title: J Struct Geol doi: 10.1016/0191-8141(82)90005-0 – ident: 3420_CR65 – volume: 9 start-page: 762 issue: 1 year: 2018 ident: 3420_CR21 publication-title: Nat Commun doi: 10.1038/s41467-017-02728-1 – volume: 42 start-page: 339 issue: 2 year: 2021 ident: 3420_CR22 publication-title: Surv Geophys doi: 10.1007/s10712-021-09632-w – year: 2011 ident: 3420_CR40 publication-title: J Geophys Res Earth Surf doi: 10.1029/2011JF002006 – volume: 15 start-page: 299 issue: 3 year: 2004 ident: 3420_CR45 publication-title: Permafrost Periglac Process doi: 10.1002/ppp.501 – volume: 4573 start-page: 7 year: 2005 ident: 3420_CR56 publication-title: Bulletin Des Laboratoires Des Ponts Et Chaussées Réf – volume: 3 start-page: 22 issue: 1 year: 2006 ident: 3420_CR42 publication-title: Landslides doi: 10.1007/s10346-005-0013-0 – ident: 3420_CR19 – volume: 56 start-page: 431 issue: 5 year: 2001 ident: 3420_CR76 publication-title: Oil Gas Sci Technol Rev IFP doi: 10.2516/ogst:2001036 – volume: 19 start-page: 195 issue: 2 year: 2008 ident: 3420_CR68 publication-title: Permafrost Periglac Process doi: 10.1002/ppp.620 – volume: 120 start-page: 56 issue: 1–2 year: 2010 ident: 3420_CR11 publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.015 – volume: 31 start-page: 47 issue: 1–4 year: 1999 ident: 3420_CR52 publication-title: Geomorphology doi: 10.1016/S0169-555X(99)00072-0 – volume: 306 start-page: 367 issue: 3–4 year: 1999 ident: 3420_CR80 publication-title: Tectonophysics doi: 10.1016/S0040-1951(99)00066-9 – ident: 3420_CR7 – volume: 14 start-page: 1953 issue: 8 year: 2014 ident: 3420_CR24 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-14-1953-2014 – ident: 3420_CR82 doi: 10.1201/NOE0415443180.ch29 – volume: 163 start-page: 4 year: 2020 ident: 3420_CR35 publication-title: Revue Française De Geotechnique doi: 10.1051/geotech/2020013 – volume: 2022 start-page: 1 year: 2022 ident: 3420_CR63 publication-title: Earth Surf Dynam Discuss doi: 10.5194/esurf-2022-15 – volume: 30 start-page: 59 issue: 1 year: 1997 ident: 3420_CR90 publication-title: Rock Mech Rock Eng doi: 10.1007/BF01020113 – ident: 3420_CR49 doi: 10.1201/b16816-80 – ident: 3420_CR4 – volume: 65 start-page: 488 issue: 3 year: 2011 ident: 3420_CR73 publication-title: Cold Reg Sci Technol doi: 10.1016/j.coldregions.2010.11.003 – volume: 35 start-page: 501 issue: 5 year: 2010 ident: 3420_CR72 publication-title: Earth Surf Proc Land doi: 10.1002/esp.1957 – volume: 53 start-page: 2521 issue: 6 year: 2020 ident: 3420_CR6 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02075-6 – volume: 61 start-page: 196 year: 2013 ident: 3420_CR5 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2013.03.005 – volume: 26 start-page: 125 issue: 2 year: 1989 ident: 3420_CR55 publication-title: Int J Rock Mech Min Sci Geomech Abstr doi: 10.1016/0148-9062(89)90001-6 – volume: 134 start-page: 104440 year: 2020 ident: 3420_CR66 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2020.104440 – volume: 75 start-page: 1 issue: 1 year: 1983 ident: 3420_CR70 publication-title: Geophys J Roy Astron Soc doi: 10.1111/j.1365-246X.1983.tb01911.x – volume: 29 start-page: 883 issue: 7 year: 2004 ident: 3420_CR58 publication-title: Earth Surf Proc Land doi: 10.1002/esp.1076 – volume: 261 start-page: 376 issue: 4 year: 1963 ident: 3420_CR75 publication-title: Am J Sci doi: 10.2475/ajs.261.4.376 – ident: 3420_CR14 – start-page: 30 volume-title: Treatise on Geomorphology year: 2022 ident: 3420_CR26 doi: 10.1016/B978-0-12-818234-5.00200-5 – ident: 3420_CR25 doi: 10.51257/a-v1-b5060 – ident: 3420_CR37 – volume: 195 start-page: 1 year: 2015 ident: 3420_CR17 publication-title: Eng Geol doi: 10.1016/j.enggeo.2015.05.017 – volume-title: Mécanique de la rupture fragile et ductile. Études en mécanique des matériaux et des structures year: 2003 ident: 3420_CR64 – volume: 47 start-page: 2020GL89062 issue: 24 year: 2020 ident: 3420_CR30 publication-title: Geophys Res Lett doi: 10.1029/2020GL089062 – volume: 122 start-page: 3 issue: 1 year: 2017 ident: 3420_CR62 publication-title: J Geophys Res Earth Surf doi: 10.1002/2016JF003992 – volume: 39 start-page: 107568 year: 2021 ident: 3420_CR92 publication-title: Data Brief doi: 10.1016/j.dib.2021.107568 – volume-title: Rock mechanics for natural resources and infrastructure development year: 2019 ident: 3420_CR33 doi: 10.1201/9780367823177 – volume: 129 start-page: 697 issue: 8 year: 2003 ident: 3420_CR53 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2003)129:8(697) – ident: 3420_CR34 – volume: 8 start-page: 1 issue: 1 year: 2011 ident: 3420_CR44 publication-title: Landslides doi: 10.1007/s10346-010-0224-x – volume: 19 start-page: 798 issue: 3 year: 2022 ident: 3420_CR74 publication-title: J Mt Sci doi: 10.1007/s11629-021-7073-z – ident: 3420_CR93 – volume: 46 start-page: 123 issue: 1 year: 2013 ident: 3420_CR89 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-012-0247-9 – volume: 17 start-page: 449 issue: 4–5 year: 1990 ident: 3420_CR59 publication-title: CATENA doi: 10.1016/0341-8162(90)90045-F – volume: 245 start-page: 248 year: 2018 ident: 3420_CR9 publication-title: Eng Geol doi: 10.1016/j.enggeo.2018.08.013 – volume: s5–26 start-page: 97 issue: 152 year: 1933 ident: 3420_CR10 publication-title: Am J Sci doi: 10.2475/ajs.s5-26.152.97 – ident: 3420_CR85 doi: 10.1201/b16955-34 – volume: 22 start-page: 207 issue: 1 year: 2022 ident: 3420_CR46 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-22-207-2022 – volume: 118 start-page: 37 issue: 1 year: 2011 ident: 3420_CR38 publication-title: Eng Geol doi: 10.1016/j.enggeo.2010.11.006 – ident: 3420_CR96 – volume-title: Cours d'élasticité year: 1982 ident: 3420_CR54 – volume: 43 start-page: 401 issue: 4 year: 2022 ident: 3420_CR12 publication-title: Phys Geogr doi: 10.1080/02723646.2020.1847242 – volume: 10 start-page: 203 issue: 2 year: 2021 ident: 3420_CR77 publication-title: Geosci Instrum Method Data Syst doi: 10.5194/gi-10-203-2021 – start-page: 1 volume-title: Rock fracture mechanics year: 1983 ident: 3420_CR81 doi: 10.1007/978-3-7091-2750-6_1 – volume: 128 start-page: 1315 issue: 9–10 year: 2016 ident: 3420_CR29 publication-title: GSA Bull doi: 10.1130/B31422.1 – volume: 36 start-page: 1577 issue: 12 year: 2011 ident: 3420_CR48 publication-title: Earth Surf Proc Land doi: 10.1002/esp.2167 – volume: 116 start-page: F04011 issue: F4 year: 2011 ident: 3420_CR41 publication-title: J Geophys Res Earth Surf doi: 10.1029/2011jf002007 – ident: 3420_CR97 doi: 10.1201/b16816-187 – volume: 116 start-page: F04010 issue: F4 year: 2011 ident: 3420_CR39 publication-title: J Geophys Res Earth Surf doi: 10.1029/2011jf002006 – year: 2021 ident: 3420_CR100 publication-title: Bull Am Meteorol Soc doi: 10.1175/bams-d-20-0325.1 – year: 2020 ident: 3420_CR47 publication-title: Landslides doi: 10.1007/s10346-020-01524-1 – volume: 12 start-page: 306 issue: 5 year: 1984 ident: 3420_CR60 publication-title: Geology doi: 10.1130/0091-7613(1984)12<306:Rtfsma>2.0.Co;2 – ident: 3420_CR18 – volume: 8 start-page: 69 issue: 1 year: 1997 ident: 3420_CR51 publication-title: Permafrost Periglacial Processes doi: 10.1002/(SICI)1099-1530(199701)8:1<69::AID-PPP236>3.0.CO;2-Q – volume: 42 start-page: 585 issue: 4 year: 2009 ident: 3420_CR16 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-008-0019-8 – volume: 123 start-page: 97 issue: 1–2 year: 2010 ident: 3420_CR28 publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.07.003 – volume: 58 start-page: 1727 issue: 8 year: 2009 ident: 3420_CR95 publication-title: Environ Geol doi: 10.1007/s00254-008-1672-7 – ident: 3420_CR88 – year: 2016 ident: 3420_CR20 publication-title: Nat Geosci doi: 10.1038/ngeo2686 – ident: 3420_CR8 – volume: 11 start-page: 403 issue: 10 year: 1974 ident: 3420_CR79 publication-title: Int J Rock Mech Min Sci Geomech Abstr doi: 10.1016/0148-9062(74)91111-5 – ident: 3420_CR15 doi: 10.1201/9780203885284-c150 – ident: 3420_CR87 doi: 10.1201/b16816-148 |
SSID | ssj0014378 |
Score | 2.3814192 |
Snippet | In recent years, interest in the effect of positive temperatures on rock faces has increased, as evidenced by the extensive literature on the subject. The... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6797 |
SubjectTerms | Civil Engineering Computation Deformation Depth measurement Earth and Environmental Science Earth Sciences Elastic analysis Engineering Sciences Fatigue failure Fracture mechanics Freeze-thaw Freezing Geophysics/Geodesy Mechanical analysis Mechanics Original Paper Outcrops Rock Rock masses Rockfall Rocks Sciences of the Universe Slope stability Strain analysis Temperature Temperature effects Temperature measurement Thawing Thermoelasticity |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8QwFA6OIuhBXHHcCOJNg83W1JOojA4u4zA4MLeSpikehtZlFPz3vqTpuIAeeknTFt5LX7635HsIHTCAxTnXkmS20ETYE0NOYhURqrSKi8ha4QlM73pxdyiuR3IUAm6voayysYneUOeVcTHyY5ZIJRLAM-L06Zm4rlEuuxpaaLTQHJjgBJyvufNOrz-Y5hEEr22xYpw4ZvJwbMYfnnNUJC6HCRcX4ETRH1tT69EVRn5Dnb8SpX7_uVxGSwE44rNa0ytoxparaPEbneAqmr_ybXo_1tAdaB_XxMS4KnBPe3YNDKNgh8f44sPVwuGqxAMwh_j-zZljEAy-aSJsWJc57r9U_iDmOhpedh4uuiQ0TiCGSz4hJknAT4jy3IEZG6kshq0KJE8jC-hN09gqZaTUEvCJoozmhaVJnjFFtWEmtnwDzZZVaTcRlpIZYyjTMdMizqTOMsYzDV5eLhJT2DaijcxSE1jFXXOLcTrlQ_ZyTkHOqZdzStvocPrMU82p8e_sfVDFdKKjw-6e3aZuLBKerou_w6SdRlNp-Alf068l00ZHjfa-bv_9ya3_37aNFphfNq7SbAfNTl7e7C5Ak0m2F9bfJ-bX2vw priority: 102 providerName: ProQuest |
Title | The Effect of Natural Thermal Cycles on Rock Outcrops: Knowledge and Prospect |
URI | https://link.springer.com/article/10.1007/s00603-023-03420-1 https://www.proquest.com/docview/2857480994 https://hal.science/hal-04140973 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_UIeiD-InzYwTxTQtNmjTd4yb7QN0UcaBPJU1TfJBO3Cbsv_eStfUDFXwogfbawl16-V3v7heAU4awOA2U8BKTKY-bpvaaofQ9KpUMM98Y7ghMB8OwP-KXD-KhaAqblNXuZUrSeeqq2c1Sh9icIx4Bx6AHY56asLE7zuIRa1W5Ax4s_K9ESctGXrTK_PyML8vR8pMthvyENL8lR92a092EjQIsktbCuluwZPJtWP9EIbgNqz23Ne98BwZocbIgIybjjAyVY9QgeBZ97zO5mNv6NzLOyR26QHIzsy4YlUGuyr9qROUpuX0du-bLXRh1O_cXfa_YLMHTgQimno4ijA38NLUAxvgyCXF5Qm1T3yBiUzQ0UmohlEBMIimjaWZolCZMUqWZDk2wByv5ODf7QIRgWmvKVMgUDxOhkoQFicLILuWRzkwdaKmzWBdM4nZDi-e44kB2eo5Rz7HTc0zrcFbd87Lg0fhT-gRNUQlaCux-6zq253zuKLqCNxQ6Ki0VFx_eJGaRkDxC2MvrcF5a7-Py7688-J_4IawxN41stdkRrExfZ-YY4ck0acBy1O01oNbqtttDO_Yerzo4tjvD27uGm6vvnG7byw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxUxEJ8AxqgHAyjxKWJj9KQN26_tvoMxBH08eB8YAwm30u1244HsIjw075_yb3Ta3X2Aidw47KXb_cjMdGbamfkNwDuObnEhrKK5Ly2Vvu9oP9UJZdrqtEy8lxHAdDJNh8fy4ESdLMGfrhYmpFV2OjEq6qJ24Yx8m2dKywz9Gfn5_CcNXaNCdLVrodGIxcjPf-OW7fLT_hfk73vOB1-Pdoe07SpAnVBiRl2WoROdFEWw9D7ReYp6HH-LJR5dG8tSr7VTyio03ppxVpSeZUXONbOOu9QLfO8yPJBC9MOKygZ7i6iFFI3m11zQgIPeFunEUr0AfBIipngJiVs2dssQLv8IaZg3fNx_wrLR2g1W4WnrppKdRq7WYMlX6_DkBnjhOjzci02B589ggrJGGhhkUpdkaiOWB8FR1PpnZHceMu9IXZHvqHzJ4VVQ_sgGMurO84itCvLtoo5ln8_h-F4IugErVV35F0CU4s45xm3KrUxzZfOci9zinrKQmSt9D1hHM-NaDPPQSuPMLNCXI50N0tlEOhvWgw-LZ84bBI87Z79FViwmBvDt4c7YhLFERnAw8QsnbXacMu2SvzTXAtqDjx33rm___5Mv737bG3g0PJqMzXh_OnoFj3kUoZDjtgkrs4sr_xqdolm-FSWRwOl9i_5fCPgUpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61W4HKAUEBdaEFC8EJrMavOD0g1NeyZdtlVVGpN-M4jnqokj62oP1r_DrGTrItSPTWQy6O89DMaB6emW8A3nF0iwthFc19aan0m45upjqhTFudlon3MgKYHo7T4bH8eqJOFuB31wsTyio7nRgVdVG7cEa-wTOlZYb-jNwo27KIye7g8_kFDROkQqa1G6fRiMjIz35h-Hb1aX8Xef2e88He950hbScMUCeUmFKXZehQJ0URrL5PdJ6iTsdfZIlHN8ey1GvtlLIKDblmnBWlZ1mRc82s4y71At-7CEsao6KkB0vbe-PJ0TyHIUVjBzQXNKCity07sXEvwKCE_CleQmIAx_4yi4unoSjzlsf7T5I22r7BE3jcOq1kq5Gyp7DgqxV4dAvKcAUefIkjgmfP4BAljzSgyKQuydhGZA-Cq2gDzsjOLNThkboiR6iKybfrYAqQKWTUne4RWxVkclnHJtDncHwvJH0Bvaqu_CoQpbhzjnGbcivTXNk85yK3GGEWMnOl7wPraGZci2geBmucmTkWc6SzQTqbSGfD-vBh_sx5g-dx5-63yIr5xgDFPdw6MGEtkREqTPzETWsdp0yrAK7Mjbj24WPHvZvb___ky7vf9gYeotibg_3x6BUs8yhBoeBtDXrTy2u_jh7SNH_diiKBH_ct_X8AB7YaNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Natural+Thermal+Cycles+on+Rock+Outcrops%3A+Knowledge+and+Prospect&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Merrien-Soukatchoff%2C+V%C3%A9ronique&rft.au=Gasc-Barbier%2C+Muriel&rft.date=2023-09-01&rft.pub=Springer+Vienna&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=56&rft.issue=9&rft.spage=6797&rft.epage=6822&rft_id=info:doi/10.1007%2Fs00603-023-03420-1&rft.externalDocID=10_1007_s00603_023_03420_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon |