Bound states in the continuum driven by multiple modes for high Q refractive index sensing in metasurfaces

Bound states in the continuum (BICs) have attracted much attention in the field of refractive index sensing. In this paper, we propose multi-mode symmetry-protected BICs (SP-BICs) and the Freidrich–Wintgen BIC (FW-BIC) in terahertz metasurfaces consisted of periodic open split ring resonators. First...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. D, Applied physics Vol. 56; no. 46; pp. 465101 - 465109
Main Authors Li, Jiangbin, Wang, Zhihui, Liu, Haiying
Format Journal Article
LanguageEnglish
Published IOP Publishing 16.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bound states in the continuum (BICs) have attracted much attention in the field of refractive index sensing. In this paper, we propose multi-mode symmetry-protected BICs (SP-BICs) and the Freidrich–Wintgen BIC (FW-BIC) in terahertz metasurfaces consisted of periodic open split ring resonators. Firstly, multi-mode SP-BICs are subject to the magnetic dipole, electric dipole (ED), and toroidal dipole (TD) modes. Moreover, we demonstrate the FW-BIC by strongly coupling the electric quadrupole and TD modes. For micron film sensing of the ED mode, simulation results show that the Q factor, the sensitivity of sensing ( S ), and the corresponding figure of merit can simultaneously reach 1561, 141 GHz/RIU, and 306, respectively. Our quasi-BICs have potential applications in micro-sensing.
AbstractList Bound states in the continuum (BICs) have attracted much attention in the field of refractive index sensing. In this paper, we propose multi-mode symmetry-protected BICs (SP-BICs) and the Freidrich–Wintgen BIC (FW-BIC) in terahertz metasurfaces consisted of periodic open split ring resonators. Firstly, multi-mode SP-BICs are subject to the magnetic dipole, electric dipole (ED), and toroidal dipole (TD) modes. Moreover, we demonstrate the FW-BIC by strongly coupling the electric quadrupole and TD modes. For micron film sensing of the ED mode, simulation results show that the Q factor, the sensitivity of sensing ( S ), and the corresponding figure of merit can simultaneously reach 1561, 141 GHz/RIU, and 306, respectively. Our quasi-BICs have potential applications in micro-sensing.
Author Wang, Zhihui
Li, Jiangbin
Liu, Haiying
Author_xml – sequence: 1
  givenname: Jiangbin
  surname: Li
  fullname: Li, Jiangbin
  organization: South China Normal University Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, Guangzhou 510006, People’s Republic of China
– sequence: 2
  givenname: Zhihui
  surname: Wang
  fullname: Wang, Zhihui
  organization: South China Normal University Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, Guangzhou 510006, People’s Republic of China
– sequence: 3
  givenname: Haiying
  orcidid: 0000-0002-5280-1892
  surname: Liu
  fullname: Liu, Haiying
  organization: South China Normal University Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, Guangzhou 510006, People’s Republic of China
BookMark eNp9kM9LwzAUx4NMcJvePebkybqkadP2qMNfMBBh95Dmx5bRJiVJxf33pkw8iAgPHjy-n8d7nwWYWWcVANcY3WFU1ytMKM5oQcmKCyVbcQbmP6MZmCOU5xmp8uoCLEI4IIRKWuM5ODy40UoYIo8qQGNh3CsonI3GjmMPpTcfysL2CPuxi2boFOydTEntPNyb3R6-Q6-05yKmYOKl-oRB2WDsbtrWq8jD6HW6KVyCc827oK6--xJsnx6365ds8_b8ur7fZIKUJGaCNkhXqqAUIVnLukFVRXTOa9QiTHldNFxTjVVLKlzKQguZY15gIquyLElDlgCd1grvQkjHscGbnvsjw4hNqtjkhU1e2ElVQugvRJgkxCQNnpvuP_D2BBo3sIMbvU2P_Re_-SMuWUlZMVWJEWaD1OQLNBGNvw
CODEN JPAPBE
CitedBy_id crossref_primary_10_1364_OME_522131
crossref_primary_10_1016_j_physb_2024_416679
crossref_primary_10_1103_PhysRevApplied_22_044035
crossref_primary_10_1016_j_optlaseng_2024_108287
crossref_primary_10_1364_OL_533463
Cites_doi 10.1002/adma.201601611
10.1103/PhysRevA.32.3231
10.3978/j.issn.2223-4292.2012.01.04
10.1515/nanoph-2022-0394
10.1038/s42005-020-00453-8
10.1103/PhysRevA.100.063803
10.1063/1.4978672
10.1515/nanoph-2013-0009
10.1038/nphoton.2017.42
10.1088/1555-6611/ac46cf
10.1515/nanoph-2020-0582
10.1021/acsphotonics.0c00003
10.1103/PhysRevB.100.195306
10.1103/PhysRevLett.125.147202
10.1364/OL.432117
10.1016/j.bios.2018.11.014
10.1021/acsphotonics.0c00723
10.1063/1.4905478
10.1016/j.optlastec.2023.109173
10.1038/nature20799
10.1364/OE.25.026704
10.1109/JLT.2021.3132727
10.1016/j.optcom.2023.129398
10.1631/FITEE.2000079
10.1364/OE.394416
10.1515/nanoph-2023-0166
10.1364/OE.18.013044
10.1109/MNET.2019.1800430
10.1002/adma.202003804
10.1364/OL.410791
10.1103/RevModPhys.91.025005
10.1021/acsphotonics.7b01520
10.1063/1.5116149
10.1002/adom.202001895
10.1038/s41928-020-00497-2
10.1002/lpor.202000411
10.1002/advs.201802119
10.1002/lpor.202200564
10.1002/inf2.12174
10.1515/nanoph-2019-0341
10.1515/nanoph-2021-0823
10.1103/PhysRevB.89.205112
10.1002/adom.201900383
10.1103/PhysRevLett.113.037401
10.1063/1.5110383
10.1103/PhysRevLett.100.183902
10.3788/COL202321.031202
10.1103/PhysRevLett.123.253901
10.1088/1367-2630/ab97e9
ContentType Journal Article
Copyright 2023 IOP Publishing Ltd
Copyright_xml – notice: 2023 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-6463/acedbc
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-6463
ExternalDocumentID 10_1088_1361_6463_acedbc
dacedbc
GrantInformation_xml – fundername: Science and Technology Program of Guangzhou
  grantid: 2019050001
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2018A030313854
  funderid: http://dx.doi.org/10.13039/501100003453
GroupedDBID -ET
-~X
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
6TJ
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ACNCT
AEFHF
AFFNX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
RIN
RKQ
RNS
RO9
ROL
RPA
SY9
TAE
TN5
UCJ
W28
WH7
XPP
XSW
YQT
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c353t-c690f7e46600d8d890773f2a80b016a849af6f1eb3715d4fcd21a413d7555393
IEDL.DBID IOP
ISSN 0022-3727
IngestDate Thu Apr 24 22:59:41 EDT 2025
Tue Jul 01 04:33:30 EDT 2025
Wed Aug 21 03:29:58 EDT 2024
Wed Aug 23 00:57:59 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-c690f7e46600d8d890773f2a80b016a849af6f1eb3715d4fcd21a413d7555393
Notes JPhysD-134352.R1
ORCID 0000-0002-5280-1892
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6463/acedbc/pdf
PageCount 9
ParticipantIDs crossref_primary_10_1088_1361_6463_acedbc
iop_journals_10_1088_1361_6463_acedbc
crossref_citationtrail_10_1088_1361_6463_acedbc
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231116
2023-11-16
PublicationDateYYYYMMDD 2023-11-16
PublicationDate_xml – month: 11
  year: 2023
  text: 20231116
  day: 16
PublicationDecade 2020
PublicationTitle Journal of physics. D, Applied physics
PublicationTitleAbbrev JPhysD
PublicationTitleAlternate J. Phys. D: Appl. Phys
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References You (dacedbcbib26) 2023; 12
Gupta (dacedbcbib16) 2016; 28
Kikkawa (dacedbcbib47) 2020; 22
Tian (dacedbcbib19) 2020; 7
Yang (dacedbcbib46) 2020; 125
He (dacedbcbib29) 2022; 11
Chen (dacedbcbib20) 2020; 28
Niu (dacedbcbib45) 2021; 46
Joseph (dacedbcbib7) 2021; 9
Yang (dacedbcbib36) 2021; 3
Chen (dacedbcbib23) 2022; 40
Murai (dacedbcbib35) 2020; 7
Ma (dacedbcbib24) 2023; 536
Zhou (dacedbcbib27) 2023; 17
Khanikaev (dacedbcbib5) 2013; 2
Xiang (dacedbcbib40) 2020; 9
Cai (dacedbcbib18) 2021; 46
Xiong (dacedbcbib17) 2021; 22
Kivshar (dacedbcbib33) 2017; 11
Forn-Díaz (dacedbcbib43) 2019; 91
Ako (dacedbcbib50) 2019; 4
Chen (dacedbcbib32) 2022; 11
Odit (dacedbcbib44) 2021; 33
Sakoda (dacedbcbib39) 2005
Cong (dacedbcbib48) 2019; 7
Yan (dacedbcbib51) 2019; 126
Srivastava (dacedbcbib3) 2019; 115
Friedrich (dacedbcbib9) 1985; 32
Wang (dacedbcbib6) 2021; 10
Xu (dacedbcbib10) 2019; 6
Li (dacedbcbib34) 2023; 161
Feng (dacedbcbib28) 2023; 21
Song (dacedbcbib30) 2022; 32
Babicheva (dacedbcbib41) 2018; 5
Singh (dacedbcbib42) 2010; 18
Huq (dacedbcbib13) 2019; 33
Al-Naib (dacedbcbib14) 2015; 106
Marinica (dacedbcbib2) 2008; 100
Li (dacedbcbib22) 2019; 100
Gupta (dacedbcbib49) 2017; 110
Kyaw (dacedbcbib21) 2020; 3
Liu (dacedbcbib25) 2019; 123
Savinov (dacedbcbib38) 2014; 89
Zhou (dacedbcbib37) 2019; 100
Azzam (dacedbcbib11) 2021; 15
Zhang (dacedbcbib31) 2017; 25
Yu (dacedbcbib12) 2012; 2
Yang (dacedbcbib8) 2014; 113
Kodigala (dacedbcbib4) 2017; 541
von Neumann (dacedbcbib1) 1929; 30
Venkatesh (dacedbcbib15) 2020; 3
References_xml – volume: 28
  start-page: 8206
  year: 2016
  ident: dacedbcbib16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601611
– volume: 32
  start-page: 3231
  year: 1985
  ident: dacedbcbib9
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.32.3231
– volume: 2
  start-page: 33
  year: 2012
  ident: dacedbcbib12
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.3978/j.issn.2223-4292.2012.01.04
– volume: 11
  start-page: 4537
  year: 2022
  ident: dacedbcbib32
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2022-0394
– volume: 3
  start-page: 1
  year: 2020
  ident: dacedbcbib21
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-020-00453-8
– volume: 100
  year: 2019
  ident: dacedbcbib22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.063803
– volume: 110
  year: 2017
  ident: dacedbcbib49
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4978672
– volume: 2
  start-page: 247
  year: 2013
  ident: dacedbcbib5
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2013-0009
– volume: 11
  start-page: 212
  year: 2017
  ident: dacedbcbib33
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2017.42
– volume: 32
  year: 2022
  ident: dacedbcbib30
  publication-title: Laser Phys.
  doi: 10.1088/1555-6611/ac46cf
– volume: 10
  start-page: 1295
  year: 2021
  ident: dacedbcbib6
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0582
– volume: 7
  start-page: 1436
  year: 2020
  ident: dacedbcbib19
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.0c00003
– volume: 100
  year: 2019
  ident: dacedbcbib37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.195306
– volume: 125
  year: 2020
  ident: dacedbcbib46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.147202
– volume: 46
  start-page: 4049
  year: 2021
  ident: dacedbcbib18
  publication-title: Opt. Lett.
  doi: 10.1364/OL.432117
– volume: 126
  start-page: 485
  year: 2019
  ident: dacedbcbib51
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.11.014
– volume: 7
  start-page: 2204
  year: 2020
  ident: dacedbcbib35
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.0c00723
– volume: 106
  year: 2015
  ident: dacedbcbib14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4905478
– volume: 161
  year: 2023
  ident: dacedbcbib34
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2023.109173
– volume: 541
  start-page: 196
  year: 2017
  ident: dacedbcbib4
  publication-title: Nature
  doi: 10.1038/nature20799
– volume: 25
  year: 2017
  ident: dacedbcbib31
  publication-title: Opt. Express
  doi: 10.1364/OE.25.026704
– volume: 40
  start-page: 2181
  year: 2022
  ident: dacedbcbib23
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3132727
– volume: 536
  year: 2023
  ident: dacedbcbib24
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2023.129398
– volume: 22
  start-page: 334
  year: 2021
  ident: dacedbcbib17
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.2000079
– volume: 28
  year: 2020
  ident: dacedbcbib20
  publication-title: Opt. Express
  doi: 10.1364/OE.394416
– volume: 12
  start-page: 2051
  year: 2023
  ident: dacedbcbib26
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2023-0166
– volume: 18
  year: 2010
  ident: dacedbcbib42
  publication-title: Opt. Express
  doi: 10.1364/OE.18.013044
– volume: 33
  start-page: 89
  year: 2019
  ident: dacedbcbib13
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2019.1800430
– volume: 33
  year: 2021
  ident: dacedbcbib44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003804
– volume: 46
  start-page: 162
  year: 2021
  ident: dacedbcbib45
  publication-title: Opt. Lett.
  doi: 10.1364/OL.410791
– volume: 30
  start-page: 465
  year: 1929
  ident: dacedbcbib1
  publication-title: Phys. Z.
– volume: 91
  year: 2019
  ident: dacedbcbib43
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.025005
– volume: 5
  start-page: 2022
  year: 2018
  ident: dacedbcbib41
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01520
– volume: 4
  year: 2019
  ident: dacedbcbib50
  publication-title: APL Photonics
  doi: 10.1063/1.5116149
– volume: 9
  year: 2021
  ident: dacedbcbib7
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202001895
– volume: 3
  start-page: 785
  year: 2020
  ident: dacedbcbib15
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00497-2
– volume: 15
  year: 2021
  ident: dacedbcbib11
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.202000411
– volume: 6
  year: 2019
  ident: dacedbcbib10
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201802119
– volume: 17
  year: 2023
  ident: dacedbcbib27
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.202200564
– volume: 3
  start-page: 577
  year: 2021
  ident: dacedbcbib36
  publication-title: InfoMat
  doi: 10.1002/inf2.12174
– volume: 9
  start-page: 133
  year: 2020
  ident: dacedbcbib40
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0341
– volume: 11
  start-page: 1083
  year: 2022
  ident: dacedbcbib29
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0823
– volume: 89
  year: 2014
  ident: dacedbcbib38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.205112
– volume: 7
  year: 2019
  ident: dacedbcbib48
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900383
– volume: 113
  year: 2014
  ident: dacedbcbib8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.037401
– volume: 115
  year: 2019
  ident: dacedbcbib3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5110383
– year: 2005
  ident: dacedbcbib39
– volume: 100
  year: 2008
  ident: dacedbcbib2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.183902
– volume: 21
  year: 2023
  ident: dacedbcbib28
  publication-title: Chin. Opt. Lett.
  doi: 10.3788/COL202321.031202
– volume: 123
  year: 2019
  ident: dacedbcbib25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.253901
– volume: 22
  year: 2020
  ident: dacedbcbib47
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab97e9
SSID ssj0005681
Score 2.4724612
Snippet Bound states in the continuum (BICs) have attracted much attention in the field of refractive index sensing. In this paper, we propose multi-mode...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 465101
SubjectTerms factor
figure of merit
Freidrich–Wintgen BIC
symmetry-protected BIC
Title Bound states in the continuum driven by multiple modes for high Q refractive index sensing in metasurfaces
URI https://iopscience.iop.org/article/10.1088/1361-6463/acedbc
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_ulIJ9aOtp0drWfWgf-pA795JsNvikUtFCv8DCPRSW_SzXajxMUtC_3pkkd2opIkIe8jDZbGY3O7_ZnfkNwLvgMu1MbiKRoW-C_oaNDKLsyHEq1-248w3t4ucv4uhH8mmSTnqwu8iFOZ91S_8Qb1ui4FaFXUCcHPFY8EgkIh5p652xfViOpRBUvuD467eb-A4h-YIqHK10d0b5vxbu2KQ-vveWiTl8Dj_nnWsjS_4M68oM7dU_vI2P7P0LeNZBT7bXiq5CzxcDeHqLkHAAT5qAUFuuwe99qrfEmnyjkk0LhkCRUVz7tKjrM-YuaJVk5pLNIxIZ1dQpGWJgRhTI7DvD72xSsP561nAyspKC5Ytf1NqZr2hvMlBA2DqcHH48OTiKuroMkY3TuIosetQh84lAsOSkk-hfZ3EYa0mbqkLLJNdBBI5uesZTlwTrxlyjsXRZmqZxHr-EpeK88BvAdPDj3DgrCLchUNIOZwt5fDtBG5GGTRjNB0bZjrOcSmecqubsXEpF6lSkTtWqcxM-LJ6YtXwd98i-x1FS3U9b3iO3fUfOqVSohC5a0NTMhVcPbGkLVqhcPeUycvEalqqL2r9BUFOZt83kvQaYS_Gn
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEFU5lJa26rYFfGgPPWQXr2Mne-xrBX0AlajEzfhZ0Zaw2mSRyq9nJsluF4QQElIOOUyceOx4ZuxvvgF4E31mvB3YRGUYm2C84RKLXnbiOZXr9tyHmnbx-57a-Zl-OZJHbZ3TOhfmbNQu_V28bYiCGxW2gLi8x4XiiUqV6BkXvHW9kY-LsCyFEkSev7t_8B_joXI-owtHS92eU97UyhW7tIjvnjMzwzU4nn5ggy75051UtusurnE33qMHj-FR64Ky9434E1gIxTqszhETrsNKDQx15VP4_YHqLrE676hkJwVDh5ERvv2kmExOmR_TasnsPzZFJjKqrVMy9IUZUSGzHwz7WqdinQdWczOykkDzxS9q7TRUtEcZCRj2DA6Hnw8_7iRtfYbECSmqxGFkHbOQKnSafO5zjLMzEfsmp81VZfJ0YKKKHMP1jEufRuf73KDR9JmUUgzEc1gqzorwApiJoT-w3iny39BhMh5nDUV-29FYJWMHetPB0a7lLqcSGn91fYae55pUqkmlulFpB97Nnhg1vB23yL7FkdLtz1veIrd1Rc5rqXRKFy1sGgfx5R1b2oIHB5-G-tvu3tdX8JAq2FN6I1evYakaT8IG-jmV3azn8iXijvcL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bound+states+in+the+continuum+driven+by+multiple+modes+for+high+Q+refractive+index+sensing+in+metasurfaces&rft.jtitle=Journal+of+physics.+D%2C+Applied+physics&rft.au=Li%2C+Jiangbin&rft.au=Wang%2C+Zhihui&rft.au=Liu%2C+Haiying&rft.date=2023-11-16&rft.pub=IOP+Publishing&rft.issn=0022-3727&rft.eissn=1361-6463&rft.volume=56&rft.issue=46&rft_id=info:doi/10.1088%2F1361-6463%2Facedbc&rft.externalDocID=dacedbc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3727&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3727&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3727&client=summon