Bound states in the continuum driven by multiple modes for high Q refractive index sensing in metasurfaces
Bound states in the continuum (BICs) have attracted much attention in the field of refractive index sensing. In this paper, we propose multi-mode symmetry-protected BICs (SP-BICs) and the Freidrich–Wintgen BIC (FW-BIC) in terahertz metasurfaces consisted of periodic open split ring resonators. First...
Saved in:
Published in | Journal of physics. D, Applied physics Vol. 56; no. 46; pp. 465101 - 465109 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
16.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bound states in the continuum (BICs) have attracted much attention in the field of refractive index sensing. In this paper, we propose multi-mode symmetry-protected BICs (SP-BICs) and the Freidrich–Wintgen BIC (FW-BIC) in terahertz metasurfaces consisted of periodic open split ring resonators. Firstly, multi-mode SP-BICs are subject to the magnetic dipole, electric dipole (ED), and toroidal dipole (TD) modes. Moreover, we demonstrate the FW-BIC by strongly coupling the electric quadrupole and TD modes. For micron film sensing of the ED mode, simulation results show that the
Q
factor, the sensitivity of sensing (
S
), and the corresponding figure of merit can simultaneously reach 1561, 141 GHz/RIU, and 306, respectively. Our quasi-BICs have potential applications in micro-sensing. |
---|---|
AbstractList | Bound states in the continuum (BICs) have attracted much attention in the field of refractive index sensing. In this paper, we propose multi-mode symmetry-protected BICs (SP-BICs) and the Freidrich–Wintgen BIC (FW-BIC) in terahertz metasurfaces consisted of periodic open split ring resonators. Firstly, multi-mode SP-BICs are subject to the magnetic dipole, electric dipole (ED), and toroidal dipole (TD) modes. Moreover, we demonstrate the FW-BIC by strongly coupling the electric quadrupole and TD modes. For micron film sensing of the ED mode, simulation results show that the
Q
factor, the sensitivity of sensing (
S
), and the corresponding figure of merit can simultaneously reach 1561, 141 GHz/RIU, and 306, respectively. Our quasi-BICs have potential applications in micro-sensing. |
Author | Wang, Zhihui Li, Jiangbin Liu, Haiying |
Author_xml | – sequence: 1 givenname: Jiangbin surname: Li fullname: Li, Jiangbin organization: South China Normal University Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, Guangzhou 510006, People’s Republic of China – sequence: 2 givenname: Zhihui surname: Wang fullname: Wang, Zhihui organization: South China Normal University Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, Guangzhou 510006, People’s Republic of China – sequence: 3 givenname: Haiying orcidid: 0000-0002-5280-1892 surname: Liu fullname: Liu, Haiying organization: South China Normal University Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, Guangzhou 510006, People’s Republic of China |
BookMark | eNp9kM9LwzAUx4NMcJvePebkybqkadP2qMNfMBBh95Dmx5bRJiVJxf33pkw8iAgPHjy-n8d7nwWYWWcVANcY3WFU1ytMKM5oQcmKCyVbcQbmP6MZmCOU5xmp8uoCLEI4IIRKWuM5ODy40UoYIo8qQGNh3CsonI3GjmMPpTcfysL2CPuxi2boFOydTEntPNyb3R6-Q6-05yKmYOKl-oRB2WDsbtrWq8jD6HW6KVyCc827oK6--xJsnx6365ds8_b8ur7fZIKUJGaCNkhXqqAUIVnLukFVRXTOa9QiTHldNFxTjVVLKlzKQguZY15gIquyLElDlgCd1grvQkjHscGbnvsjw4hNqtjkhU1e2ElVQugvRJgkxCQNnpvuP_D2BBo3sIMbvU2P_Re_-SMuWUlZMVWJEWaD1OQLNBGNvw |
CODEN | JPAPBE |
CitedBy_id | crossref_primary_10_1364_OME_522131 crossref_primary_10_1016_j_physb_2024_416679 crossref_primary_10_1103_PhysRevApplied_22_044035 crossref_primary_10_1016_j_optlaseng_2024_108287 crossref_primary_10_1364_OL_533463 |
Cites_doi | 10.1002/adma.201601611 10.1103/PhysRevA.32.3231 10.3978/j.issn.2223-4292.2012.01.04 10.1515/nanoph-2022-0394 10.1038/s42005-020-00453-8 10.1103/PhysRevA.100.063803 10.1063/1.4978672 10.1515/nanoph-2013-0009 10.1038/nphoton.2017.42 10.1088/1555-6611/ac46cf 10.1515/nanoph-2020-0582 10.1021/acsphotonics.0c00003 10.1103/PhysRevB.100.195306 10.1103/PhysRevLett.125.147202 10.1364/OL.432117 10.1016/j.bios.2018.11.014 10.1021/acsphotonics.0c00723 10.1063/1.4905478 10.1016/j.optlastec.2023.109173 10.1038/nature20799 10.1364/OE.25.026704 10.1109/JLT.2021.3132727 10.1016/j.optcom.2023.129398 10.1631/FITEE.2000079 10.1364/OE.394416 10.1515/nanoph-2023-0166 10.1364/OE.18.013044 10.1109/MNET.2019.1800430 10.1002/adma.202003804 10.1364/OL.410791 10.1103/RevModPhys.91.025005 10.1021/acsphotonics.7b01520 10.1063/1.5116149 10.1002/adom.202001895 10.1038/s41928-020-00497-2 10.1002/lpor.202000411 10.1002/advs.201802119 10.1002/lpor.202200564 10.1002/inf2.12174 10.1515/nanoph-2019-0341 10.1515/nanoph-2021-0823 10.1103/PhysRevB.89.205112 10.1002/adom.201900383 10.1103/PhysRevLett.113.037401 10.1063/1.5110383 10.1103/PhysRevLett.100.183902 10.3788/COL202321.031202 10.1103/PhysRevLett.123.253901 10.1088/1367-2630/ab97e9 |
ContentType | Journal Article |
Copyright | 2023 IOP Publishing Ltd |
Copyright_xml | – notice: 2023 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6463/acedbc |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-6463 |
ExternalDocumentID | 10_1088_1361_6463_acedbc dacedbc |
GrantInformation_xml | – fundername: Science and Technology Program of Guangzhou grantid: 2019050001 – fundername: Natural Science Foundation of Guangdong Province grantid: 2018A030313854 funderid: http://dx.doi.org/10.13039/501100003453 |
GroupedDBID | -ET -~X 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 6TJ 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ACNCT AEFHF AFFNX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE RIN RKQ RNS RO9 ROL RPA SY9 TAE TN5 UCJ W28 WH7 XPP XSW YQT ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c353t-c690f7e46600d8d890773f2a80b016a849af6f1eb3715d4fcd21a413d7555393 |
IEDL.DBID | IOP |
ISSN | 0022-3727 |
IngestDate | Thu Apr 24 22:59:41 EDT 2025 Tue Jul 01 04:33:30 EDT 2025 Wed Aug 21 03:29:58 EDT 2024 Wed Aug 23 00:57:59 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-c690f7e46600d8d890773f2a80b016a849af6f1eb3715d4fcd21a413d7555393 |
Notes | JPhysD-134352.R1 |
ORCID | 0000-0002-5280-1892 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-6463/acedbc/pdf |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1088_1361_6463_acedbc iop_journals_10_1088_1361_6463_acedbc crossref_citationtrail_10_1088_1361_6463_acedbc |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231116 2023-11-16 |
PublicationDateYYYYMMDD | 2023-11-16 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231116 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physics. D, Applied physics |
PublicationTitleAbbrev | JPhysD |
PublicationTitleAlternate | J. Phys. D: Appl. Phys |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | You (dacedbcbib26) 2023; 12 Gupta (dacedbcbib16) 2016; 28 Kikkawa (dacedbcbib47) 2020; 22 Tian (dacedbcbib19) 2020; 7 Yang (dacedbcbib46) 2020; 125 He (dacedbcbib29) 2022; 11 Chen (dacedbcbib20) 2020; 28 Niu (dacedbcbib45) 2021; 46 Joseph (dacedbcbib7) 2021; 9 Yang (dacedbcbib36) 2021; 3 Chen (dacedbcbib23) 2022; 40 Murai (dacedbcbib35) 2020; 7 Ma (dacedbcbib24) 2023; 536 Zhou (dacedbcbib27) 2023; 17 Khanikaev (dacedbcbib5) 2013; 2 Xiang (dacedbcbib40) 2020; 9 Cai (dacedbcbib18) 2021; 46 Xiong (dacedbcbib17) 2021; 22 Kivshar (dacedbcbib33) 2017; 11 Forn-Díaz (dacedbcbib43) 2019; 91 Ako (dacedbcbib50) 2019; 4 Chen (dacedbcbib32) 2022; 11 Odit (dacedbcbib44) 2021; 33 Sakoda (dacedbcbib39) 2005 Cong (dacedbcbib48) 2019; 7 Yan (dacedbcbib51) 2019; 126 Srivastava (dacedbcbib3) 2019; 115 Friedrich (dacedbcbib9) 1985; 32 Wang (dacedbcbib6) 2021; 10 Xu (dacedbcbib10) 2019; 6 Li (dacedbcbib34) 2023; 161 Feng (dacedbcbib28) 2023; 21 Song (dacedbcbib30) 2022; 32 Babicheva (dacedbcbib41) 2018; 5 Singh (dacedbcbib42) 2010; 18 Huq (dacedbcbib13) 2019; 33 Al-Naib (dacedbcbib14) 2015; 106 Marinica (dacedbcbib2) 2008; 100 Li (dacedbcbib22) 2019; 100 Gupta (dacedbcbib49) 2017; 110 Kyaw (dacedbcbib21) 2020; 3 Liu (dacedbcbib25) 2019; 123 Savinov (dacedbcbib38) 2014; 89 Zhou (dacedbcbib37) 2019; 100 Azzam (dacedbcbib11) 2021; 15 Zhang (dacedbcbib31) 2017; 25 Yu (dacedbcbib12) 2012; 2 Yang (dacedbcbib8) 2014; 113 Kodigala (dacedbcbib4) 2017; 541 von Neumann (dacedbcbib1) 1929; 30 Venkatesh (dacedbcbib15) 2020; 3 |
References_xml | – volume: 28 start-page: 8206 year: 2016 ident: dacedbcbib16 publication-title: Adv. Mater. doi: 10.1002/adma.201601611 – volume: 32 start-page: 3231 year: 1985 ident: dacedbcbib9 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.32.3231 – volume: 2 start-page: 33 year: 2012 ident: dacedbcbib12 publication-title: Quant. Imaging Med. Surg. doi: 10.3978/j.issn.2223-4292.2012.01.04 – volume: 11 start-page: 4537 year: 2022 ident: dacedbcbib32 publication-title: Nanophotonics doi: 10.1515/nanoph-2022-0394 – volume: 3 start-page: 1 year: 2020 ident: dacedbcbib21 publication-title: Commun. Phys. doi: 10.1038/s42005-020-00453-8 – volume: 100 year: 2019 ident: dacedbcbib22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.063803 – volume: 110 year: 2017 ident: dacedbcbib49 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4978672 – volume: 2 start-page: 247 year: 2013 ident: dacedbcbib5 publication-title: Nanophotonics doi: 10.1515/nanoph-2013-0009 – volume: 11 start-page: 212 year: 2017 ident: dacedbcbib33 publication-title: Nat. Photon. doi: 10.1038/nphoton.2017.42 – volume: 32 year: 2022 ident: dacedbcbib30 publication-title: Laser Phys. doi: 10.1088/1555-6611/ac46cf – volume: 10 start-page: 1295 year: 2021 ident: dacedbcbib6 publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0582 – volume: 7 start-page: 1436 year: 2020 ident: dacedbcbib19 publication-title: ACS Photonics doi: 10.1021/acsphotonics.0c00003 – volume: 100 year: 2019 ident: dacedbcbib37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.195306 – volume: 125 year: 2020 ident: dacedbcbib46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.147202 – volume: 46 start-page: 4049 year: 2021 ident: dacedbcbib18 publication-title: Opt. Lett. doi: 10.1364/OL.432117 – volume: 126 start-page: 485 year: 2019 ident: dacedbcbib51 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.11.014 – volume: 7 start-page: 2204 year: 2020 ident: dacedbcbib35 publication-title: ACS Photonics doi: 10.1021/acsphotonics.0c00723 – volume: 106 year: 2015 ident: dacedbcbib14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4905478 – volume: 161 year: 2023 ident: dacedbcbib34 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2023.109173 – volume: 541 start-page: 196 year: 2017 ident: dacedbcbib4 publication-title: Nature doi: 10.1038/nature20799 – volume: 25 year: 2017 ident: dacedbcbib31 publication-title: Opt. Express doi: 10.1364/OE.25.026704 – volume: 40 start-page: 2181 year: 2022 ident: dacedbcbib23 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3132727 – volume: 536 year: 2023 ident: dacedbcbib24 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2023.129398 – volume: 22 start-page: 334 year: 2021 ident: dacedbcbib17 publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.2000079 – volume: 28 year: 2020 ident: dacedbcbib20 publication-title: Opt. Express doi: 10.1364/OE.394416 – volume: 12 start-page: 2051 year: 2023 ident: dacedbcbib26 publication-title: Nanophotonics doi: 10.1515/nanoph-2023-0166 – volume: 18 year: 2010 ident: dacedbcbib42 publication-title: Opt. Express doi: 10.1364/OE.18.013044 – volume: 33 start-page: 89 year: 2019 ident: dacedbcbib13 publication-title: IEEE Netw. doi: 10.1109/MNET.2019.1800430 – volume: 33 year: 2021 ident: dacedbcbib44 publication-title: Adv. Mater. doi: 10.1002/adma.202003804 – volume: 46 start-page: 162 year: 2021 ident: dacedbcbib45 publication-title: Opt. Lett. doi: 10.1364/OL.410791 – volume: 30 start-page: 465 year: 1929 ident: dacedbcbib1 publication-title: Phys. Z. – volume: 91 year: 2019 ident: dacedbcbib43 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.025005 – volume: 5 start-page: 2022 year: 2018 ident: dacedbcbib41 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01520 – volume: 4 year: 2019 ident: dacedbcbib50 publication-title: APL Photonics doi: 10.1063/1.5116149 – volume: 9 year: 2021 ident: dacedbcbib7 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202001895 – volume: 3 start-page: 785 year: 2020 ident: dacedbcbib15 publication-title: Nat. Electron. doi: 10.1038/s41928-020-00497-2 – volume: 15 year: 2021 ident: dacedbcbib11 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.202000411 – volume: 6 year: 2019 ident: dacedbcbib10 publication-title: Adv. Sci. doi: 10.1002/advs.201802119 – volume: 17 year: 2023 ident: dacedbcbib27 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.202200564 – volume: 3 start-page: 577 year: 2021 ident: dacedbcbib36 publication-title: InfoMat doi: 10.1002/inf2.12174 – volume: 9 start-page: 133 year: 2020 ident: dacedbcbib40 publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0341 – volume: 11 start-page: 1083 year: 2022 ident: dacedbcbib29 publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0823 – volume: 89 year: 2014 ident: dacedbcbib38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.205112 – volume: 7 year: 2019 ident: dacedbcbib48 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900383 – volume: 113 year: 2014 ident: dacedbcbib8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.037401 – volume: 115 year: 2019 ident: dacedbcbib3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5110383 – year: 2005 ident: dacedbcbib39 – volume: 100 year: 2008 ident: dacedbcbib2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.183902 – volume: 21 year: 2023 ident: dacedbcbib28 publication-title: Chin. Opt. Lett. doi: 10.3788/COL202321.031202 – volume: 123 year: 2019 ident: dacedbcbib25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.253901 – volume: 22 year: 2020 ident: dacedbcbib47 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab97e9 |
SSID | ssj0005681 |
Score | 2.4724612 |
Snippet | Bound states in the continuum (BICs) have attracted much attention in the field of refractive index sensing. In this paper, we propose multi-mode... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 465101 |
SubjectTerms | factor figure of merit Freidrich–Wintgen BIC symmetry-protected BIC |
Title | Bound states in the continuum driven by multiple modes for high Q refractive index sensing in metasurfaces |
URI | https://iopscience.iop.org/article/10.1088/1361-6463/acedbc |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_ulIJ9aOtp0drWfWgf-pA795JsNvikUtFCv8DCPRSW_SzXajxMUtC_3pkkd2opIkIe8jDZbGY3O7_ZnfkNwLvgMu1MbiKRoW-C_oaNDKLsyHEq1-248w3t4ucv4uhH8mmSTnqwu8iFOZ91S_8Qb1ui4FaFXUCcHPFY8EgkIh5p652xfViOpRBUvuD467eb-A4h-YIqHK10d0b5vxbu2KQ-vveWiTl8Dj_nnWsjS_4M68oM7dU_vI2P7P0LeNZBT7bXiq5CzxcDeHqLkHAAT5qAUFuuwe99qrfEmnyjkk0LhkCRUVz7tKjrM-YuaJVk5pLNIxIZ1dQpGWJgRhTI7DvD72xSsP561nAyspKC5Ytf1NqZr2hvMlBA2DqcHH48OTiKuroMkY3TuIosetQh84lAsOSkk-hfZ3EYa0mbqkLLJNdBBI5uesZTlwTrxlyjsXRZmqZxHr-EpeK88BvAdPDj3DgrCLchUNIOZwt5fDtBG5GGTRjNB0bZjrOcSmecqubsXEpF6lSkTtWqcxM-LJ6YtXwd98i-x1FS3U9b3iO3fUfOqVSohC5a0NTMhVcPbGkLVqhcPeUycvEalqqL2r9BUFOZt83kvQaYS_Gn |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEFU5lJa26rYFfGgPPWQXr2Mne-xrBX0AlajEzfhZ0Zaw2mSRyq9nJsluF4QQElIOOUyceOx4ZuxvvgF4E31mvB3YRGUYm2C84RKLXnbiOZXr9tyHmnbx-57a-Zl-OZJHbZ3TOhfmbNQu_V28bYiCGxW2gLi8x4XiiUqV6BkXvHW9kY-LsCyFEkSev7t_8B_joXI-owtHS92eU97UyhW7tIjvnjMzwzU4nn5ggy75051UtusurnE33qMHj-FR64Ky9434E1gIxTqszhETrsNKDQx15VP4_YHqLrE676hkJwVDh5ERvv2kmExOmR_TasnsPzZFJjKqrVMy9IUZUSGzHwz7WqdinQdWczOykkDzxS9q7TRUtEcZCRj2DA6Hnw8_7iRtfYbECSmqxGFkHbOQKnSafO5zjLMzEfsmp81VZfJ0YKKKHMP1jEufRuf73KDR9JmUUgzEc1gqzorwApiJoT-w3iny39BhMh5nDUV-29FYJWMHetPB0a7lLqcSGn91fYae55pUqkmlulFpB97Nnhg1vB23yL7FkdLtz1veIrd1Rc5rqXRKFy1sGgfx5R1b2oIHB5-G-tvu3tdX8JAq2FN6I1evYakaT8IG-jmV3azn8iXijvcL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bound+states+in+the+continuum+driven+by+multiple+modes+for+high+Q+refractive+index+sensing+in+metasurfaces&rft.jtitle=Journal+of+physics.+D%2C+Applied+physics&rft.au=Li%2C+Jiangbin&rft.au=Wang%2C+Zhihui&rft.au=Liu%2C+Haiying&rft.date=2023-11-16&rft.pub=IOP+Publishing&rft.issn=0022-3727&rft.eissn=1361-6463&rft.volume=56&rft.issue=46&rft_id=info:doi/10.1088%2F1361-6463%2Facedbc&rft.externalDocID=dacedbc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3727&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3727&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3727&client=summon |