A controllable SERS biosensor for ultrasensitive detection of miRNAs based on porous MOFs and subject-object recognition ability
In this work, a simple and sensitive SERS biosensor was constructed for detection of miRNA 21. Here, the porosity of Zr-MOF can pack lots of Raman probe NR which would produce a strong Raman signal. Second, the subject-object recognition ability of CB[7] and NR can provide more accurate Raman signal...
Saved in:
Published in | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 289; p. 122134 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
15.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, a simple and sensitive SERS biosensor was constructed for detection of miRNA 21. Here, the porosity of Zr-MOF can pack lots of Raman probe NR which would produce a strong Raman signal. Second, the subject-object recognition ability of CB[7] and NR can provide more accurate Raman signal and stronger Raman intensity. At last, AuNS possess lots of tips which can obviously enhance the Raman intensity for provide sensitivity of SERS biosensor.
[Display omitted]
•Porosity of Zr-MOF can as a container to pack lots of Raman probe NR to produce a strong Raman signal.•The subject-object recognition ability of CB[7] and NR can provide more accurate Raman signal and stronger Raman intensity.•AuNS possess lots of tips to obviously enhance the Raman intensity for improving sensitivity of SERS biosensor.
In this work, a simple and sensitive SERS-based miRNA biosensor was constructed based on porous MOFs nanoparticles and efficient subject-object recognition ability. MOFs as a container can package lots of signal probe neutral red (NR) for the advantages of three dimensional structure and porosity. The partially complementary duplex DNA can as a “lock” to lock up the hole for obtaining a weak Raman signal. In the present of miRNA, miRNA just like a “key” to open the duplex structure with the results of releasing NR. At this time, the released NR can be captured by SERS substrate AuNS@CB[7] for the subject-object recognition ability to produce a strong Raman signal which was positive correlation to target miRNA. By this way, the proposed SERS biosensor can achieve sensitively and selectively detect miRNA with a detection limit of 0.562 fM. This MOF-based SERS biosensor also be hopeful application for clinical diagnostics. |
---|---|
AbstractList | In this work, a simple and sensitive SERS-based miRNA biosensor was constructed based on porous MOFs nanoparticles and efficient subject-object recognition ability. MOFs as a container can package lots of signal probe neutral red (NR) for the advantages of three dimensional structure and porosity. The partially complementary duplex DNA can as a "lock" to lock up the hole for obtaining a weak Raman signal. In the present of miRNA, miRNA just like a "key" to open the duplex structure with the results of releasing NR. At this time, the released NR can be captured by SERS substrate AuNS@CB[7] for the subject-object recognition ability to produce a strong Raman signal which was positive correlation to target miRNA. By this way, the proposed SERS biosensor can achieve sensitively and selectively detect miRNA with a detection limit of 0.562 fM. This MOF-based SERS biosensor also be hopeful application for clinical diagnostics. In this work, a simple and sensitive SERS biosensor was constructed for detection of miRNA 21. Here, the porosity of Zr-MOF can pack lots of Raman probe NR which would produce a strong Raman signal. Second, the subject-object recognition ability of CB[7] and NR can provide more accurate Raman signal and stronger Raman intensity. At last, AuNS possess lots of tips which can obviously enhance the Raman intensity for provide sensitivity of SERS biosensor. [Display omitted] •Porosity of Zr-MOF can as a container to pack lots of Raman probe NR to produce a strong Raman signal.•The subject-object recognition ability of CB[7] and NR can provide more accurate Raman signal and stronger Raman intensity.•AuNS possess lots of tips to obviously enhance the Raman intensity for improving sensitivity of SERS biosensor. In this work, a simple and sensitive SERS-based miRNA biosensor was constructed based on porous MOFs nanoparticles and efficient subject-object recognition ability. MOFs as a container can package lots of signal probe neutral red (NR) for the advantages of three dimensional structure and porosity. The partially complementary duplex DNA can as a “lock” to lock up the hole for obtaining a weak Raman signal. In the present of miRNA, miRNA just like a “key” to open the duplex structure with the results of releasing NR. At this time, the released NR can be captured by SERS substrate AuNS@CB[7] for the subject-object recognition ability to produce a strong Raman signal which was positive correlation to target miRNA. By this way, the proposed SERS biosensor can achieve sensitively and selectively detect miRNA with a detection limit of 0.562 fM. This MOF-based SERS biosensor also be hopeful application for clinical diagnostics. |
ArticleNumber | 122134 |
Author | He, Yi Huang, Jialiang Liao, Xiangjian Peng, Yanyu Luo, Xiaojun Wang, Zhen Wu, Haonan Cao, Xin Zhang, Yi Wu, Caijun |
Author_xml | – sequence: 1 givenname: Yi surname: He fullname: He, Yi email: heyi01491@163.com organization: School of Science, Xihua University, Chengdu 610039, PR China – sequence: 2 givenname: Xiangjian surname: Liao fullname: Liao, Xiangjian organization: Chengdu BOE optoelectronics technology Co., Ltd, PR China – sequence: 3 givenname: Haonan surname: Wu fullname: Wu, Haonan organization: School of Science, Xihua University, Chengdu 610039, PR China – sequence: 4 givenname: Jialiang surname: Huang fullname: Huang, Jialiang organization: School of Science, Xihua University, Chengdu 610039, PR China – sequence: 5 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: School of Science, Xihua University, Chengdu 610039, PR China – sequence: 6 givenname: Yanyu surname: Peng fullname: Peng, Yanyu organization: School of Science, Xihua University, Chengdu 610039, PR China – sequence: 7 givenname: Zhen surname: Wang fullname: Wang, Zhen organization: School of Science, Xihua University, Chengdu 610039, PR China – sequence: 8 givenname: Xin surname: Cao fullname: Cao, Xin organization: School of Science, Xihua University, Chengdu 610039, PR China – sequence: 9 givenname: Caijun surname: Wu fullname: Wu, Caijun email: wcj452947@163.com organization: School of Science, Xihua University, Chengdu 610039, PR China – sequence: 10 givenname: Xiaojun orcidid: 0000-0002-3899-0105 surname: Luo fullname: Luo, Xiaojun email: xajunluo@hotmail.com organization: School of Science, Xihua University, Chengdu 610039, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36512966$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKAzEUhoMoatUHcCN5gam5NJkZXJXiDbyAl3XI5YykTCclSQvufHRTazcuXISTy_8dcr4R2h_CAAidUzKmhMrL-ThpPWaEsTFljPLJHjqmTc0rLkS9X_a8kRWdMHGERinNCSG0YeQQHXEpKGulPEZfU2zDkGPoe216wK_XL6_Y-JBgSCHirqxVn6PenH32a8AOMtjsw4BDhxf-5WmasCnvDperZYhhlfDj803CenA4rcy8pKvwU3AEGz4G_0Nr43ufP0_RQaf7BGe_9QS931y_ze6qh-fb-9n0obJc8FxZKYjRjmgjtesoTCg03LXcgOWuk6YB1rRt3bVMEN52TrfGcmmcE6KpW8P5CbrY9l2uzAKcWka_0PFT7VSUQL0N2BhSitAp67PefLWM73tFidpIV3NVpKuNdLWVXkj6h9w1_4-52jJQZl57iCpZD4MF54ukrFzw_9DfErub9Q |
CitedBy_id | crossref_primary_10_3390_molecules28114357 crossref_primary_10_1016_j_microc_2024_111441 crossref_primary_10_1016_j_saa_2023_122762 crossref_primary_10_1002_asia_202300264 crossref_primary_10_1016_j_saa_2023_122701 crossref_primary_10_1016_j_snb_2023_134962 crossref_primary_10_1016_j_aca_2023_341957 crossref_primary_10_1002_smll_202412267 |
Cites_doi | 10.1021/acs.analchem.1c03460 10.1016/j.bios.2019.111917 10.1021/acs.analchem.0c03335 10.1021/acssensors.9b02039 10.1002/smll.201802670 10.1002/jcp.20869 10.1021/acs.analchem.1c02336 10.1016/j.snb.2021.129581 10.1039/C6RA00450D 10.1002/adfm.202104629 10.1351/pac197645020105 10.1111/jcmm.13700 10.1016/j.snb.2022.132245 10.1002/biof.1555 10.1039/C5CC05136C 10.1371/journal.pone.0009685 10.1002/smll.202004518 10.1021/acs.analchem.8b02127 10.1016/j.aca.2019.05.059 10.1002/biot.201900424 10.1021/acsami.1c01089 10.1016/j.jcis.2021.01.078 10.1021/acsanm.0c03208 10.1021/ac00259a060 10.1016/j.bios.2020.112947 10.1021/acs.analchem.8b00002 10.1021/acsami.8b01175 10.1093/bib/bbt085 10.1021/acs.analchem.1c03183 10.1039/C6AN00188B |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1016/j.saa.2022.122134 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-3557 |
ExternalDocumentID | 36512966 10_1016_j_saa_2022_122134 S1386142522012823 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABMAC ACDAQ ACRLP ADBBV ADECG ADEZE AEBSH AEKER AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SPC SPCBC SSK SSZ T5K WH7 XPP ZMT ~G- 1RT 53G 6TJ AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ M36 R2- RIG SEW SSH UHS CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c353t-c650bad0ab6adf1e41e83d93bec3df6b8e28997f925039fda9bc36bdd55879b33 |
IEDL.DBID | .~1 |
ISSN | 1386-1425 |
IngestDate | Thu Jan 02 22:52:47 EST 2025 Tue Jul 01 03:32:31 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Tue Dec 03 03:44:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Subject-object recognition ability miRNA SERS biosensor MOFs |
Language | English |
License | Copyright © 2022. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-c650bad0ab6adf1e41e83d93bec3df6b8e28997f925039fda9bc36bdd55879b33 |
ORCID | 0000-0002-3899-0105 |
PMID | 36512966 |
ParticipantIDs | pubmed_primary_36512966 crossref_citationtrail_10_1016_j_saa_2022_122134 crossref_primary_10_1016_j_saa_2022_122134 elsevier_sciencedirect_doi_10_1016_j_saa_2022_122134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-15 |
PublicationDateYYYYMMDD | 2023-03-15 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy |
PublicationTitleAlternate | Spectrochim Acta A Mol Biomol Spectrosc |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sun, Li, Lei, Li (b0025) 2018; 22 Niu, Lu, Su, Wang, Tan, Qu (b0055) 2021; 93 Iupac (b0135) 1976; 45 Pang, Wan, Shi, Wang, Sun, Xiao, Wang (b0070) 2019; 1077 Wu, Ge, Yang, Hou, Liu (b0105) 2015; 51 Roh, Sim, Cho, Choi, Bong (b0030) 2016; 141 Wang, Liu, Yan, Liu, Gao, Ge, Yu (b0050) 2021; 93 Wang, Ruan, Lei, Lin, Zhu, Zhou, Yang (b0060) 2018; 90 Xin, Zhang, Qu, Lu, Wang, Huang, Wang, Jin, Xu (b0130) 2021; 31 Wu, Huang, Wang, Chai, Yuan, Yang (b0150) 2021; 93 Wang, Fu, Huang, Li, Wang, Ge, Yu (b0035) 2020; 150 Feng, Hu, Wang, Du, Zhong, Zhang, Jiang, Jia, Cui (b0095) 2021; 590 Zhao, Wang, Zhang, Zhang (b0010) 2019; 45 Long, Winefordner (b0140) 1983; 55 Saverot, Geng, Leng, Vikesland, Grove, Bickford (b0120) 2016; 6 Zhang, Wang, Pan (b0015) 2007; 210 Wang, Liu, Yu, Asif, Xu, Xiao, Liu (b0080) 2018; 14 Du, Chen, Zhu, Tian, Chen, Wu (b0085) 2021; 16 Zhang, Kuang, Xiong, Gao, Liu, Guo (b0020) 2015; 16 Du, Wu, Huang, Sun (b0155) 2021; 4 Liu, Jiang, Yu, Jing, Liang, Wang, Yang, Lu, Zhou, Jin (b0075) 2021; 333 M. S. Stark, S. Tyagi, D. J. Nancarrow, G. M. Boyle, A. L. Cook, D. C. Whiteman, P. G. Parsons, C. Schmidt, R. A. Sturm, N. K. Hayward, Characterization of the Melanoma miRNAome by Deep Sequencing, Plos One. 5 (2010), e9685. Wu, Li, Shi, Huang, Li (b0125) 2018; 90 Xie, Liu, Ma, Duan, Yao, Cai (b0090) 2018; 10 Li, Xia, Zhou, Wang, Chen, Gao, Li (b0040) 2020; 92 Lawson, Walton, Chan (b0100) 2021; 13 Zhang, Rong, Guo, Duan, He, Wang, Zhang, Kang, Du (b0115) 2021; 439 Guo, Li, Arabi, Wang, Wang, Chen (b0065) 2020; 5 Lv, Zhou, Tavakoli, Bautista, Xia, Wang, Li (b0110) 2021; 176 Miao, Tang (b0045) 2020; 16 Zhai, Li, Zhang, Pan, Peng, Gan, Su, Hui, Y. wen, C. Y. Song (b0145) 2022; 368 Iupac (10.1016/j.saa.2022.122134_b0135) 1976; 45 Guo (10.1016/j.saa.2022.122134_b0065) 2020; 5 Miao (10.1016/j.saa.2022.122134_b0045) 2020; 16 Wu (10.1016/j.saa.2022.122134_b0150) 2021; 93 Saverot (10.1016/j.saa.2022.122134_b0120) 2016; 6 Wang (10.1016/j.saa.2022.122134_b0035) 2020; 150 Wang (10.1016/j.saa.2022.122134_b0080) 2018; 14 Lawson (10.1016/j.saa.2022.122134_b0100) 2021; 13 Du (10.1016/j.saa.2022.122134_b0155) 2021; 4 Wu (10.1016/j.saa.2022.122134_b0125) 2018; 90 Feng (10.1016/j.saa.2022.122134_b0095) 2021; 590 Wu (10.1016/j.saa.2022.122134_b0105) 2015; 51 Zhang (10.1016/j.saa.2022.122134_b0115) 2021; 439 Liu (10.1016/j.saa.2022.122134_b0075) 2021; 333 10.1016/j.saa.2022.122134_b0005 Pang (10.1016/j.saa.2022.122134_b0070) 2019; 1077 Zhai (10.1016/j.saa.2022.122134_b0145) 2022; 368 Wang (10.1016/j.saa.2022.122134_b0050) 2021; 93 Zhang (10.1016/j.saa.2022.122134_b0020) 2015; 16 Li (10.1016/j.saa.2022.122134_b0040) 2020; 92 Xie (10.1016/j.saa.2022.122134_b0090) 2018; 10 Zhao (10.1016/j.saa.2022.122134_b0010) 2019; 45 Sun (10.1016/j.saa.2022.122134_b0025) 2018; 22 Roh (10.1016/j.saa.2022.122134_b0030) 2016; 141 Long (10.1016/j.saa.2022.122134_b0140) 1983; 55 Lv (10.1016/j.saa.2022.122134_b0110) 2021; 176 Wang (10.1016/j.saa.2022.122134_b0060) 2018; 90 Zhang (10.1016/j.saa.2022.122134_b0015) 2007; 210 Du (10.1016/j.saa.2022.122134_b0085) 2021; 16 Niu (10.1016/j.saa.2022.122134_b0055) 2021; 93 Xin (10.1016/j.saa.2022.122134_b0130) 2021; 31 |
References_xml | – volume: 10 start-page: 13325 year: 2018 end-page: 13332 ident: b0090 article-title: Small Titanium-Based MOFs Prepared with the Introduction of Tetraethyl Orthosilicate and Their Potential for Use in Drug Delivery publication-title: ACS Appl. Mater. Interfaces. – volume: 210 start-page: 279 year: 2007 end-page: 289 ident: b0015 article-title: MicroRNAs and Their Regulatory Roles in Animals and Plants publication-title: J CELL PHYSIOL. – volume: 6 start-page: 29669 year: 2016 end-page: 29673 ident: b0120 article-title: Facile, tunable, and SERS-enhanced HEPES gold nanostars publication-title: RSC Adv. – volume: 22 start-page: 4568 year: 2018 end-page: 4587 ident: b0025 article-title: The regulatory role of microRNAs in angiogenesis-related diseases publication-title: J. Cell. Mol. Med. – volume: 93 start-page: 13373 year: 2021 end-page: 13381 ident: b0050 article-title: 3D DNA Walker-Assisted CRISPR/Cas12a Trans-Cleavage for Ultrasensitive Electrochemiluminescence Detection of miRNA-141 publication-title: Anal. Chem. – volume: 1077 start-page: 288 year: 2019 end-page: 296 ident: b0070 article-title: Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe publication-title: Anal. Chim. Acta. – reference: M. S. Stark, S. Tyagi, D. J. Nancarrow, G. M. Boyle, A. L. Cook, D. C. Whiteman, P. G. Parsons, C. Schmidt, R. A. Sturm, N. K. Hayward, Characterization of the Melanoma miRNAome by Deep Sequencing, Plos One. 5 (2010), e9685. – volume: 5 start-page: 601 year: 2020 end-page: 619 ident: b0065 article-title: Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors publication-title: ACS Sens. – volume: 13 start-page: 7004 year: 2021 end-page: 7020 ident: b0100 article-title: Metal−Organic Frameworks for Drug Delivery: A Design Perspective publication-title: ACS Appl. Mater. Interfaces. – volume: 439 start-page: 213948 year: 2021 end-page: 213976 ident: b0115 article-title: Metal-organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro, Coordin publication-title: Chem. Rev. – volume: 16 start-page: 1900424 year: 2021 ident: b0085 article-title: Chunsheng Wu, Applications of Functional Metal-Organic Frameworks in Biosensors publication-title: Biotechnol. J. – volume: 31 start-page: 2104629 year: 2021 end-page: 2104638 ident: b0130 article-title: Zr-MOF-Enabled Controllable Ion Sieving and Proton Conductivity in Flow Battery Membrane publication-title: Adv. Funct. Mater. – volume: 90 start-page: 2792 year: 2018 end-page: 2800 ident: b0125 article-title: Design of Metal-Organic Framework-Based Nanoprobes for Multicolor Detection of DNA Targets with Improved Sensitivity publication-title: Anal. Chem. – volume: 55 start-page: 712A year: 1983 end-page: 724A ident: b0140 publication-title: Anal. Chem. – volume: 51 start-page: 13408 year: 2015 end-page: 13411 ident: b0105 article-title: Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environent publication-title: Chem. Commun. – volume: 176 start-page: 112947 year: 2021 end-page: 112963 ident: b0110 article-title: Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing publication-title: Biosens. Bioelectron. – volume: 93 start-page: 13727 year: 2021 end-page: 13733 ident: b0055 article-title: Construction of a Polarity-Switchable Photoelectrochemical Biosensor for Ultrasensitive Detection of miRNA-141 publication-title: Anal. Chem. – volume: 141 start-page: 4578 year: 2016 end-page: 4586 ident: b0030 article-title: Vertically encoded tetragonal hydrogel microparticles for multiplexed detection of miRNAs associated with Alzheimer's disease publication-title: Analyst. – volume: 16 start-page: 2004518 year: 2020 end-page: 2004525 ident: b0045 article-title: DNA Walking and Rolling Nanomachine for Electrochemical Detection of miRNA publication-title: Small. – volume: 368 start-page: 132245 year: 2022 end-page: 132253 ident: b0145 article-title: SERS/electrochemical dual-mode biosensor based on multi-functionalized molybdenum disulfide nanosheet probes and SERS-active Ag nanorods array electrodes for reliable detection of cancer-related miRNA, Sensor publication-title: Actuat. B - Chem. – volume: 45 start-page: 105 year: 1976 end-page: 123 ident: b0135 publication-title: Pure Appl. Chem. – volume: 4 start-page: 2565 year: 2021 end-page: 2574 ident: b0155 article-title: Ag Nanocubes Coupled with Heating-Enhanced DSN-Assisted Cycling Amplification for Surface-Enhanced Raman Spectroscopy Detection of MicroRNA-21 publication-title: ACS Appl. Nano Mater. – volume: 45 start-page: 844 year: 2019 end-page: 856 ident: b0010 article-title: MicroRNAs play an essential role in autophagy regulation in various disease phenotypes publication-title: BioFactors. – volume: 333 start-page: 129581 year: 2021 end-page: 129589 ident: b0075 article-title: MXene (Ti publication-title: Sensor. Actuat. B - Chem. – volume: 93 start-page: 11019 year: 2021 end-page: 11024 ident: b0150 article-title: DNA structure-stabilized liquid-liquid self-assembled ordered au nanoparticle interface for sensitive detection of miRNA 155 publication-title: Anal. Chem. – volume: 16 start-page: 45 year: 2015 end-page: 58 ident: b0020 article-title: Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases publication-title: Brief. Bioinform. – volume: 90 start-page: 5224 year: 2018 end-page: 5231 ident: b0060 article-title: Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics publication-title: Anal. Chem. – volume: 150 start-page: 111917 year: 2020 end-page: 111923 ident: b0035 article-title: Paper-based closed Au-Bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155 publication-title: Biosens. Bioelectron. – volume: 590 start-page: 436 year: 2021 end-page: 445 ident: b0095 article-title: Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization publication-title: J. Colloid Interface Sci. – volume: 92 start-page: 12769 year: 2020 end-page: 12773 ident: b0040 article-title: Label-Free Detection of miRNA Using Surface-Enhanced Raman Spectroscopy publication-title: Anal. Chem. – volume: 14 start-page: 1802670 year: 2018 ident: b0080 article-title: Coffee Ring-Inspired Approach toward Oriented Self Assembly of Biomimetic Murray MOFs as Sweat Biosensor publication-title: Small. – volume: 93 start-page: 13727 issue: 40 year: 2021 ident: 10.1016/j.saa.2022.122134_b0055 article-title: Construction of a Polarity-Switchable Photoelectrochemical Biosensor for Ultrasensitive Detection of miRNA-141 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c03460 – volume: 150 start-page: 111917 year: 2020 ident: 10.1016/j.saa.2022.122134_b0035 article-title: Paper-based closed Au-Bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111917 – volume: 92 start-page: 12769 issue: 19 year: 2020 ident: 10.1016/j.saa.2022.122134_b0040 article-title: Label-Free Detection of miRNA Using Surface-Enhanced Raman Spectroscopy publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c03335 – volume: 5 start-page: 601 issue: 3 year: 2020 ident: 10.1016/j.saa.2022.122134_b0065 article-title: Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors publication-title: ACS Sens. doi: 10.1021/acssensors.9b02039 – volume: 14 start-page: 1802670 issue: 45 year: 2018 ident: 10.1016/j.saa.2022.122134_b0080 article-title: Coffee Ring-Inspired Approach toward Oriented Self Assembly of Biomimetic Murray MOFs as Sweat Biosensor publication-title: Small. doi: 10.1002/smll.201802670 – volume: 210 start-page: 279 issue: 2 year: 2007 ident: 10.1016/j.saa.2022.122134_b0015 article-title: MicroRNAs and Their Regulatory Roles in Animals and Plants publication-title: J CELL PHYSIOL. doi: 10.1002/jcp.20869 – volume: 93 start-page: 11019 year: 2021 ident: 10.1016/j.saa.2022.122134_b0150 article-title: DNA structure-stabilized liquid-liquid self-assembled ordered au nanoparticle interface for sensitive detection of miRNA 155 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c02336 – volume: 333 start-page: 129581 year: 2021 ident: 10.1016/j.saa.2022.122134_b0075 article-title: MXene (Ti3C2Tx)-Ag nanocomplex as efficient and quantitative SERS biosensor platform by in-situ PDDA electrostatic self-assembly synthesis strategy publication-title: Sensor. Actuat. B - Chem. doi: 10.1016/j.snb.2021.129581 – volume: 6 start-page: 29669 issue: 35 year: 2016 ident: 10.1016/j.saa.2022.122134_b0120 article-title: Facile, tunable, and SERS-enhanced HEPES gold nanostars publication-title: RSC Adv. doi: 10.1039/C6RA00450D – volume: 31 start-page: 2104629 year: 2021 ident: 10.1016/j.saa.2022.122134_b0130 article-title: Zr-MOF-Enabled Controllable Ion Sieving and Proton Conductivity in Flow Battery Membrane publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104629 – volume: 45 start-page: 105 year: 1976 ident: 10.1016/j.saa.2022.122134_b0135 publication-title: Pure Appl. Chem. doi: 10.1351/pac197645020105 – volume: 22 start-page: 4568 year: 2018 ident: 10.1016/j.saa.2022.122134_b0025 article-title: The regulatory role of microRNAs in angiogenesis-related diseases publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.13700 – volume: 368 start-page: 132245 year: 2022 ident: 10.1016/j.saa.2022.122134_b0145 article-title: SERS/electrochemical dual-mode biosensor based on multi-functionalized molybdenum disulfide nanosheet probes and SERS-active Ag nanorods array electrodes for reliable detection of cancer-related miRNA, Sensor publication-title: Actuat. B - Chem. doi: 10.1016/j.snb.2022.132245 – volume: 45 start-page: 844 issue: 6 year: 2019 ident: 10.1016/j.saa.2022.122134_b0010 article-title: MicroRNAs play an essential role in autophagy regulation in various disease phenotypes publication-title: BioFactors. doi: 10.1002/biof.1555 – volume: 51 start-page: 13408 year: 2015 ident: 10.1016/j.saa.2022.122134_b0105 article-title: Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environent publication-title: Chem. Commun. doi: 10.1039/C5CC05136C – ident: 10.1016/j.saa.2022.122134_b0005 doi: 10.1371/journal.pone.0009685 – volume: 16 start-page: 2004518 year: 2020 ident: 10.1016/j.saa.2022.122134_b0045 article-title: DNA Walking and Rolling Nanomachine for Electrochemical Detection of miRNA publication-title: Small. doi: 10.1002/smll.202004518 – volume: 90 start-page: 2792 year: 2018 ident: 10.1016/j.saa.2022.122134_b0125 article-title: Design of Metal-Organic Framework-Based Nanoprobes for Multicolor Detection of DNA Targets with Improved Sensitivity publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b02127 – volume: 1077 start-page: 288 year: 2019 ident: 10.1016/j.saa.2022.122134_b0070 article-title: Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au publication-title: Anal. Chim. Acta. doi: 10.1016/j.aca.2019.05.059 – volume: 16 start-page: 1900424 issue: 2 year: 2021 ident: 10.1016/j.saa.2022.122134_b0085 article-title: Chunsheng Wu, Applications of Functional Metal-Organic Frameworks in Biosensors publication-title: Biotechnol. J. doi: 10.1002/biot.201900424 – volume: 13 start-page: 7004 issue: 6 year: 2021 ident: 10.1016/j.saa.2022.122134_b0100 article-title: Metal−Organic Frameworks for Drug Delivery: A Design Perspective publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.1c01089 – volume: 439 start-page: 213948 year: 2021 ident: 10.1016/j.saa.2022.122134_b0115 article-title: Metal-organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro, Coordin publication-title: Chem. Rev. – volume: 590 start-page: 436 year: 2021 ident: 10.1016/j.saa.2022.122134_b0095 article-title: Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.01.078 – volume: 4 start-page: 2565 issue: 3 year: 2021 ident: 10.1016/j.saa.2022.122134_b0155 article-title: Ag Nanocubes Coupled with Heating-Enhanced DSN-Assisted Cycling Amplification for Surface-Enhanced Raman Spectroscopy Detection of MicroRNA-21 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c03208 – volume: 55 start-page: 712A year: 1983 ident: 10.1016/j.saa.2022.122134_b0140 publication-title: Anal. Chem. doi: 10.1021/ac00259a060 – volume: 176 start-page: 112947 year: 2021 ident: 10.1016/j.saa.2022.122134_b0110 article-title: Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112947 – volume: 90 start-page: 5224 issue: 8 year: 2018 ident: 10.1016/j.saa.2022.122134_b0060 article-title: Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00002 – volume: 10 start-page: 13325 issue: 16 year: 2018 ident: 10.1016/j.saa.2022.122134_b0090 article-title: Small Titanium-Based MOFs Prepared with the Introduction of Tetraethyl Orthosilicate and Their Potential for Use in Drug Delivery publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.8b01175 – volume: 16 start-page: 45 year: 2015 ident: 10.1016/j.saa.2022.122134_b0020 article-title: Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases publication-title: Brief. Bioinform. doi: 10.1093/bib/bbt085 – volume: 93 start-page: 13373 issue: 39 year: 2021 ident: 10.1016/j.saa.2022.122134_b0050 article-title: 3D DNA Walker-Assisted CRISPR/Cas12a Trans-Cleavage for Ultrasensitive Electrochemiluminescence Detection of miRNA-141 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c03183 – volume: 141 start-page: 4578 issue: 15 year: 2016 ident: 10.1016/j.saa.2022.122134_b0030 article-title: Vertically encoded tetragonal hydrogel microparticles for multiplexed detection of miRNAs associated with Alzheimer's disease publication-title: Analyst. doi: 10.1039/C6AN00188B |
SSID | ssj0001820 |
Score | 2.4107933 |
Snippet | In this work, a simple and sensitive SERS biosensor was constructed for detection of miRNA 21. Here, the porosity of Zr-MOF can pack lots of Raman probe NR... In this work, a simple and sensitive SERS-based miRNA biosensor was constructed based on porous MOFs nanoparticles and efficient subject-object recognition... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 122134 |
SubjectTerms | Biosensing Techniques - methods Gold - chemistry Limit of Detection Metal Nanoparticles - chemistry MicroRNAs miRNA MOFs Nanoparticles Porosity SERS biosensor Spectrum Analysis, Raman - methods Subject-object recognition ability |
Title | A controllable SERS biosensor for ultrasensitive detection of miRNAs based on porous MOFs and subject-object recognition ability |
URI | https://dx.doi.org/10.1016/j.saa.2022.122134 https://www.ncbi.nlm.nih.gov/pubmed/36512966 |
Volume | 289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQaIIL2hgwGEM-cEIyTeLEjY9VRdVtaofokLhF_hWpqEuqJj1wQfzpvOckHbuAtFNk69mJ_Kz3vhd_fo-QCwhwnHKBY0LriMWpVCzVUjORQreyeax9OaDJVIzv4h_3yf0WGXZ3YZBW2dr-xqZ7a9329NrV7C3n894s5Cn4lggABBrZCDN-xnEfd_nV01-aByYo90FXKhhKdyebnuNVKUw9FEVXYYSZzd7xTa8cz-gj2W8RIx00H_WJbLnigOwOu0JtB-SDZ3Ga6jN5HtCWer7AG1F0dn07o3peVhCrlisK-JSuF_VKYdtzhqh1tediFbTM6Z_57XRQUXRslkIXQPNyXdHJr1FFVWFptdb414aV_kE33CMQbbJ9Px6Su9H17-GYtSUWmOEJr5kBgKaVDZQWoJjQxaFLuZUcNMttLnTqMCDr5xKQEpe5VVIbLrS1SZL2peb8iGwXZeG-EOryAIIjk8C8Bk8XlXZSKiMDZ2MeGHVCgm5xM9PmH8cyGIusI5o9ZKCPDPWRNfo4IZebIcsm-cZbwnGnseyfHZSBc3hr2HGj3c0buEAQJMTp_034lexhSXrkqYXJGdmuV2v3DYBLrc_9zjwnO4PvP8dTaE1vJi-uMe7M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB4Sh5JeSpsmbfrcQ06BjSWttNEejYlxmtiFOIHcxL4EDq5kLPnQW396Z_Qw7SWFnoSWXUnst8x8o_12BuAMAxyvfeC5NCbicao0T40yXKbYrF0em6Yc0Gwupw_xt8fkcQ_G_VkYklV2tr-16Y217lqG3WwO18vlcBGKFH1LhASCjGwk9uGAslMlAzgYXd9M5zuDTDnKm7grlZwG9Jubjcyr0pR9KIouwoiSm_3DPf3heyav4VVHGtmo_a43sOeLIzgc97XajuBFI-S01Vv4NWKd-nxFh6LY4upuwcyyrDBcLTcMKSrbruqNpvtGNsScrxs5VsHKnP1Y3s1HFSPf5hg2ITsvtxWbfZ9UTBeOVVtDP2542VzYTn6EXduE3z-P4WFydT-e8q7KArciETW3yNGMdoE2ErEJfRz6VDglEFzhcmlSTzHZZa6QLAmVO62MFdI4lyTppTJCnMCgKAv_HpjPA4yPbILPtbTBqI1XSlsVeBeLwOpTCPrJzWyXgpwqYayyXmv2lCEeGeGRtXicwvluyLrNv_Fc57hHLPtrEWXoH54b9q5Fd_cGIYkHSfnh_x74FQ6n97Pb7PZ6fvMRXlKFepKthcknGNSbrf-MPKY2X7p1-htCfvBx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+controllable+SERS+biosensor+for+ultrasensitive+detection+of+miRNAs+based+on+porous+MOFs+and+subject-object+recognition+ability&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=He%2C+Yi&rft.au=Liao%2C+Xiangjian&rft.au=Wu%2C+Haonan&rft.au=Huang%2C+Jialiang&rft.date=2023-03-15&rft.pub=Elsevier+B.V&rft.issn=1386-1425&rft.volume=289&rft_id=info:doi/10.1016%2Fj.saa.2022.122134&rft.externalDocID=S1386142522012823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon |