A controllable SERS biosensor for ultrasensitive detection of miRNAs based on porous MOFs and subject-object recognition ability

In this work, a simple and sensitive SERS biosensor was constructed for detection of miRNA 21. Here, the porosity of Zr-MOF can pack lots of Raman probe NR which would produce a strong Raman signal. Second, the subject-object recognition ability of CB[7] and NR can provide more accurate Raman signal...

Full description

Saved in:
Bibliographic Details
Published inSpectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 289; p. 122134
Main Authors He, Yi, Liao, Xiangjian, Wu, Haonan, Huang, Jialiang, Zhang, Yi, Peng, Yanyu, Wang, Zhen, Cao, Xin, Wu, Caijun, Luo, Xiaojun
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 15.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, a simple and sensitive SERS biosensor was constructed for detection of miRNA 21. Here, the porosity of Zr-MOF can pack lots of Raman probe NR which would produce a strong Raman signal. Second, the subject-object recognition ability of CB[7] and NR can provide more accurate Raman signal and stronger Raman intensity. At last, AuNS possess lots of tips which can obviously enhance the Raman intensity for provide sensitivity of SERS biosensor. [Display omitted] •Porosity of Zr-MOF can as a container to pack lots of Raman probe NR to produce a strong Raman signal.•The subject-object recognition ability of CB[7] and NR can provide more accurate Raman signal and stronger Raman intensity.•AuNS possess lots of tips to obviously enhance the Raman intensity for improving sensitivity of SERS biosensor. In this work, a simple and sensitive SERS-based miRNA biosensor was constructed based on porous MOFs nanoparticles and efficient subject-object recognition ability. MOFs as a container can package lots of signal probe neutral red (NR) for the advantages of three dimensional structure and porosity. The partially complementary duplex DNA can as a “lock” to lock up the hole for obtaining a weak Raman signal. In the present of miRNA, miRNA just like a “key” to open the duplex structure with the results of releasing NR. At this time, the released NR can be captured by SERS substrate AuNS@CB[7] for the subject-object recognition ability to produce a strong Raman signal which was positive correlation to target miRNA. By this way, the proposed SERS biosensor can achieve sensitively and selectively detect miRNA with a detection limit of 0.562 fM. This MOF-based SERS biosensor also be hopeful application for clinical diagnostics.
AbstractList In this work, a simple and sensitive SERS-based miRNA biosensor was constructed based on porous MOFs nanoparticles and efficient subject-object recognition ability. MOFs as a container can package lots of signal probe neutral red (NR) for the advantages of three dimensional structure and porosity. The partially complementary duplex DNA can as a "lock" to lock up the hole for obtaining a weak Raman signal. In the present of miRNA, miRNA just like a "key" to open the duplex structure with the results of releasing NR. At this time, the released NR can be captured by SERS substrate AuNS@CB[7] for the subject-object recognition ability to produce a strong Raman signal which was positive correlation to target miRNA. By this way, the proposed SERS biosensor can achieve sensitively and selectively detect miRNA with a detection limit of 0.562 fM. This MOF-based SERS biosensor also be hopeful application for clinical diagnostics.
In this work, a simple and sensitive SERS biosensor was constructed for detection of miRNA 21. Here, the porosity of Zr-MOF can pack lots of Raman probe NR which would produce a strong Raman signal. Second, the subject-object recognition ability of CB[7] and NR can provide more accurate Raman signal and stronger Raman intensity. At last, AuNS possess lots of tips which can obviously enhance the Raman intensity for provide sensitivity of SERS biosensor. [Display omitted] •Porosity of Zr-MOF can as a container to pack lots of Raman probe NR to produce a strong Raman signal.•The subject-object recognition ability of CB[7] and NR can provide more accurate Raman signal and stronger Raman intensity.•AuNS possess lots of tips to obviously enhance the Raman intensity for improving sensitivity of SERS biosensor. In this work, a simple and sensitive SERS-based miRNA biosensor was constructed based on porous MOFs nanoparticles and efficient subject-object recognition ability. MOFs as a container can package lots of signal probe neutral red (NR) for the advantages of three dimensional structure and porosity. The partially complementary duplex DNA can as a “lock” to lock up the hole for obtaining a weak Raman signal. In the present of miRNA, miRNA just like a “key” to open the duplex structure with the results of releasing NR. At this time, the released NR can be captured by SERS substrate AuNS@CB[7] for the subject-object recognition ability to produce a strong Raman signal which was positive correlation to target miRNA. By this way, the proposed SERS biosensor can achieve sensitively and selectively detect miRNA with a detection limit of 0.562 fM. This MOF-based SERS biosensor also be hopeful application for clinical diagnostics.
ArticleNumber 122134
Author He, Yi
Huang, Jialiang
Liao, Xiangjian
Peng, Yanyu
Luo, Xiaojun
Wang, Zhen
Wu, Haonan
Cao, Xin
Zhang, Yi
Wu, Caijun
Author_xml – sequence: 1
  givenname: Yi
  surname: He
  fullname: He, Yi
  email: heyi01491@163.com
  organization: School of Science, Xihua University, Chengdu 610039, PR China
– sequence: 2
  givenname: Xiangjian
  surname: Liao
  fullname: Liao, Xiangjian
  organization: Chengdu BOE optoelectronics technology Co., Ltd, PR China
– sequence: 3
  givenname: Haonan
  surname: Wu
  fullname: Wu, Haonan
  organization: School of Science, Xihua University, Chengdu 610039, PR China
– sequence: 4
  givenname: Jialiang
  surname: Huang
  fullname: Huang, Jialiang
  organization: School of Science, Xihua University, Chengdu 610039, PR China
– sequence: 5
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: School of Science, Xihua University, Chengdu 610039, PR China
– sequence: 6
  givenname: Yanyu
  surname: Peng
  fullname: Peng, Yanyu
  organization: School of Science, Xihua University, Chengdu 610039, PR China
– sequence: 7
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  organization: School of Science, Xihua University, Chengdu 610039, PR China
– sequence: 8
  givenname: Xin
  surname: Cao
  fullname: Cao, Xin
  organization: School of Science, Xihua University, Chengdu 610039, PR China
– sequence: 9
  givenname: Caijun
  surname: Wu
  fullname: Wu, Caijun
  email: wcj452947@163.com
  organization: School of Science, Xihua University, Chengdu 610039, PR China
– sequence: 10
  givenname: Xiaojun
  orcidid: 0000-0002-3899-0105
  surname: Luo
  fullname: Luo, Xiaojun
  email: xajunluo@hotmail.com
  organization: School of Science, Xihua University, Chengdu 610039, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36512966$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKAzEUhoMoatUHcCN5gam5NJkZXJXiDbyAl3XI5YykTCclSQvufHRTazcuXISTy_8dcr4R2h_CAAidUzKmhMrL-ThpPWaEsTFljPLJHjqmTc0rLkS9X_a8kRWdMHGERinNCSG0YeQQHXEpKGulPEZfU2zDkGPoe216wK_XL6_Y-JBgSCHirqxVn6PenH32a8AOMtjsw4BDhxf-5WmasCnvDperZYhhlfDj803CenA4rcy8pKvwU3AEGz4G_0Nr43ufP0_RQaf7BGe_9QS931y_ze6qh-fb-9n0obJc8FxZKYjRjmgjtesoTCg03LXcgOWuk6YB1rRt3bVMEN52TrfGcmmcE6KpW8P5CbrY9l2uzAKcWka_0PFT7VSUQL0N2BhSitAp67PefLWM73tFidpIV3NVpKuNdLWVXkj6h9w1_4-52jJQZl57iCpZD4MF54ukrFzw_9DfErub9Q
CitedBy_id crossref_primary_10_3390_molecules28114357
crossref_primary_10_1016_j_microc_2024_111441
crossref_primary_10_1016_j_saa_2023_122762
crossref_primary_10_1002_asia_202300264
crossref_primary_10_1016_j_saa_2023_122701
crossref_primary_10_1016_j_snb_2023_134962
crossref_primary_10_1016_j_aca_2023_341957
crossref_primary_10_1002_smll_202412267
Cites_doi 10.1021/acs.analchem.1c03460
10.1016/j.bios.2019.111917
10.1021/acs.analchem.0c03335
10.1021/acssensors.9b02039
10.1002/smll.201802670
10.1002/jcp.20869
10.1021/acs.analchem.1c02336
10.1016/j.snb.2021.129581
10.1039/C6RA00450D
10.1002/adfm.202104629
10.1351/pac197645020105
10.1111/jcmm.13700
10.1016/j.snb.2022.132245
10.1002/biof.1555
10.1039/C5CC05136C
10.1371/journal.pone.0009685
10.1002/smll.202004518
10.1021/acs.analchem.8b02127
10.1016/j.aca.2019.05.059
10.1002/biot.201900424
10.1021/acsami.1c01089
10.1016/j.jcis.2021.01.078
10.1021/acsanm.0c03208
10.1021/ac00259a060
10.1016/j.bios.2020.112947
10.1021/acs.analchem.8b00002
10.1021/acsami.8b01175
10.1093/bib/bbt085
10.1021/acs.analchem.1c03183
10.1039/C6AN00188B
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1016/j.saa.2022.122134
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3557
ExternalDocumentID 36512966
10_1016_j_saa_2022_122134
S1386142522012823
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABMAC
ACDAQ
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
ZMT
~G-
1RT
53G
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
M36
R2-
RIG
SEW
SSH
UHS
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c353t-c650bad0ab6adf1e41e83d93bec3df6b8e28997f925039fda9bc36bdd55879b33
IEDL.DBID .~1
ISSN 1386-1425
IngestDate Thu Jan 02 22:52:47 EST 2025
Tue Jul 01 03:32:31 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Tue Dec 03 03:44:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Subject-object recognition ability
miRNA
SERS biosensor
MOFs
Language English
License Copyright © 2022. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-c650bad0ab6adf1e41e83d93bec3df6b8e28997f925039fda9bc36bdd55879b33
ORCID 0000-0002-3899-0105
PMID 36512966
ParticipantIDs pubmed_primary_36512966
crossref_citationtrail_10_1016_j_saa_2022_122134
crossref_primary_10_1016_j_saa_2022_122134
elsevier_sciencedirect_doi_10_1016_j_saa_2022_122134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-15
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
PublicationTitleAlternate Spectrochim Acta A Mol Biomol Spectrosc
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sun, Li, Lei, Li (b0025) 2018; 22
Niu, Lu, Su, Wang, Tan, Qu (b0055) 2021; 93
Iupac (b0135) 1976; 45
Pang, Wan, Shi, Wang, Sun, Xiao, Wang (b0070) 2019; 1077
Wu, Ge, Yang, Hou, Liu (b0105) 2015; 51
Roh, Sim, Cho, Choi, Bong (b0030) 2016; 141
Wang, Liu, Yan, Liu, Gao, Ge, Yu (b0050) 2021; 93
Wang, Ruan, Lei, Lin, Zhu, Zhou, Yang (b0060) 2018; 90
Xin, Zhang, Qu, Lu, Wang, Huang, Wang, Jin, Xu (b0130) 2021; 31
Wu, Huang, Wang, Chai, Yuan, Yang (b0150) 2021; 93
Wang, Fu, Huang, Li, Wang, Ge, Yu (b0035) 2020; 150
Feng, Hu, Wang, Du, Zhong, Zhang, Jiang, Jia, Cui (b0095) 2021; 590
Zhao, Wang, Zhang, Zhang (b0010) 2019; 45
Long, Winefordner (b0140) 1983; 55
Saverot, Geng, Leng, Vikesland, Grove, Bickford (b0120) 2016; 6
Zhang, Wang, Pan (b0015) 2007; 210
Wang, Liu, Yu, Asif, Xu, Xiao, Liu (b0080) 2018; 14
Du, Chen, Zhu, Tian, Chen, Wu (b0085) 2021; 16
Zhang, Kuang, Xiong, Gao, Liu, Guo (b0020) 2015; 16
Du, Wu, Huang, Sun (b0155) 2021; 4
Liu, Jiang, Yu, Jing, Liang, Wang, Yang, Lu, Zhou, Jin (b0075) 2021; 333
M. S. Stark, S. Tyagi, D. J. Nancarrow, G. M. Boyle, A. L. Cook, D. C. Whiteman, P. G. Parsons, C. Schmidt, R. A. Sturm, N. K. Hayward, Characterization of the Melanoma miRNAome by Deep Sequencing, Plos One. 5 (2010), e9685.
Wu, Li, Shi, Huang, Li (b0125) 2018; 90
Xie, Liu, Ma, Duan, Yao, Cai (b0090) 2018; 10
Li, Xia, Zhou, Wang, Chen, Gao, Li (b0040) 2020; 92
Lawson, Walton, Chan (b0100) 2021; 13
Zhang, Rong, Guo, Duan, He, Wang, Zhang, Kang, Du (b0115) 2021; 439
Guo, Li, Arabi, Wang, Wang, Chen (b0065) 2020; 5
Lv, Zhou, Tavakoli, Bautista, Xia, Wang, Li (b0110) 2021; 176
Miao, Tang (b0045) 2020; 16
Zhai, Li, Zhang, Pan, Peng, Gan, Su, Hui, Y. wen, C. Y. Song (b0145) 2022; 368
Iupac (10.1016/j.saa.2022.122134_b0135) 1976; 45
Guo (10.1016/j.saa.2022.122134_b0065) 2020; 5
Miao (10.1016/j.saa.2022.122134_b0045) 2020; 16
Wu (10.1016/j.saa.2022.122134_b0150) 2021; 93
Saverot (10.1016/j.saa.2022.122134_b0120) 2016; 6
Wang (10.1016/j.saa.2022.122134_b0035) 2020; 150
Wang (10.1016/j.saa.2022.122134_b0080) 2018; 14
Lawson (10.1016/j.saa.2022.122134_b0100) 2021; 13
Du (10.1016/j.saa.2022.122134_b0155) 2021; 4
Wu (10.1016/j.saa.2022.122134_b0125) 2018; 90
Feng (10.1016/j.saa.2022.122134_b0095) 2021; 590
Wu (10.1016/j.saa.2022.122134_b0105) 2015; 51
Zhang (10.1016/j.saa.2022.122134_b0115) 2021; 439
Liu (10.1016/j.saa.2022.122134_b0075) 2021; 333
10.1016/j.saa.2022.122134_b0005
Pang (10.1016/j.saa.2022.122134_b0070) 2019; 1077
Zhai (10.1016/j.saa.2022.122134_b0145) 2022; 368
Wang (10.1016/j.saa.2022.122134_b0050) 2021; 93
Zhang (10.1016/j.saa.2022.122134_b0020) 2015; 16
Li (10.1016/j.saa.2022.122134_b0040) 2020; 92
Xie (10.1016/j.saa.2022.122134_b0090) 2018; 10
Zhao (10.1016/j.saa.2022.122134_b0010) 2019; 45
Sun (10.1016/j.saa.2022.122134_b0025) 2018; 22
Roh (10.1016/j.saa.2022.122134_b0030) 2016; 141
Long (10.1016/j.saa.2022.122134_b0140) 1983; 55
Lv (10.1016/j.saa.2022.122134_b0110) 2021; 176
Wang (10.1016/j.saa.2022.122134_b0060) 2018; 90
Zhang (10.1016/j.saa.2022.122134_b0015) 2007; 210
Du (10.1016/j.saa.2022.122134_b0085) 2021; 16
Niu (10.1016/j.saa.2022.122134_b0055) 2021; 93
Xin (10.1016/j.saa.2022.122134_b0130) 2021; 31
References_xml – volume: 10
  start-page: 13325
  year: 2018
  end-page: 13332
  ident: b0090
  article-title: Small Titanium-Based MOFs Prepared with the Introduction of Tetraethyl Orthosilicate and Their Potential for Use in Drug Delivery
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 210
  start-page: 279
  year: 2007
  end-page: 289
  ident: b0015
  article-title: MicroRNAs and Their Regulatory Roles in Animals and Plants
  publication-title: J CELL PHYSIOL.
– volume: 6
  start-page: 29669
  year: 2016
  end-page: 29673
  ident: b0120
  article-title: Facile, tunable, and SERS-enhanced HEPES gold nanostars
  publication-title: RSC Adv.
– volume: 22
  start-page: 4568
  year: 2018
  end-page: 4587
  ident: b0025
  article-title: The regulatory role of microRNAs in angiogenesis-related diseases
  publication-title: J. Cell. Mol. Med.
– volume: 93
  start-page: 13373
  year: 2021
  end-page: 13381
  ident: b0050
  article-title: 3D DNA Walker-Assisted CRISPR/Cas12a Trans-Cleavage for Ultrasensitive Electrochemiluminescence Detection of miRNA-141
  publication-title: Anal. Chem.
– volume: 1077
  start-page: 288
  year: 2019
  end-page: 296
  ident: b0070
  article-title: Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe
  publication-title: Anal. Chim. Acta.
– reference: M. S. Stark, S. Tyagi, D. J. Nancarrow, G. M. Boyle, A. L. Cook, D. C. Whiteman, P. G. Parsons, C. Schmidt, R. A. Sturm, N. K. Hayward, Characterization of the Melanoma miRNAome by Deep Sequencing, Plos One. 5 (2010), e9685.
– volume: 5
  start-page: 601
  year: 2020
  end-page: 619
  ident: b0065
  article-title: Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors
  publication-title: ACS Sens.
– volume: 13
  start-page: 7004
  year: 2021
  end-page: 7020
  ident: b0100
  article-title: Metal−Organic Frameworks for Drug Delivery: A Design Perspective
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 439
  start-page: 213948
  year: 2021
  end-page: 213976
  ident: b0115
  article-title: Metal-organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro, Coordin
  publication-title: Chem. Rev.
– volume: 16
  start-page: 1900424
  year: 2021
  ident: b0085
  article-title: Chunsheng Wu, Applications of Functional Metal-Organic Frameworks in Biosensors
  publication-title: Biotechnol. J.
– volume: 31
  start-page: 2104629
  year: 2021
  end-page: 2104638
  ident: b0130
  article-title: Zr-MOF-Enabled Controllable Ion Sieving and Proton Conductivity in Flow Battery Membrane
  publication-title: Adv. Funct. Mater.
– volume: 90
  start-page: 2792
  year: 2018
  end-page: 2800
  ident: b0125
  article-title: Design of Metal-Organic Framework-Based Nanoprobes for Multicolor Detection of DNA Targets with Improved Sensitivity
  publication-title: Anal. Chem.
– volume: 55
  start-page: 712A
  year: 1983
  end-page: 724A
  ident: b0140
  publication-title: Anal. Chem.
– volume: 51
  start-page: 13408
  year: 2015
  end-page: 13411
  ident: b0105
  article-title: Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environent
  publication-title: Chem. Commun.
– volume: 176
  start-page: 112947
  year: 2021
  end-page: 112963
  ident: b0110
  article-title: Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing
  publication-title: Biosens. Bioelectron.
– volume: 93
  start-page: 13727
  year: 2021
  end-page: 13733
  ident: b0055
  article-title: Construction of a Polarity-Switchable Photoelectrochemical Biosensor for Ultrasensitive Detection of miRNA-141
  publication-title: Anal. Chem.
– volume: 141
  start-page: 4578
  year: 2016
  end-page: 4586
  ident: b0030
  article-title: Vertically encoded tetragonal hydrogel microparticles for multiplexed detection of miRNAs associated with Alzheimer's disease
  publication-title: Analyst.
– volume: 16
  start-page: 2004518
  year: 2020
  end-page: 2004525
  ident: b0045
  article-title: DNA Walking and Rolling Nanomachine for Electrochemical Detection of miRNA
  publication-title: Small.
– volume: 368
  start-page: 132245
  year: 2022
  end-page: 132253
  ident: b0145
  article-title: SERS/electrochemical dual-mode biosensor based on multi-functionalized molybdenum disulfide nanosheet probes and SERS-active Ag nanorods array electrodes for reliable detection of cancer-related miRNA, Sensor
  publication-title: Actuat. B - Chem.
– volume: 45
  start-page: 105
  year: 1976
  end-page: 123
  ident: b0135
  publication-title: Pure Appl. Chem.
– volume: 4
  start-page: 2565
  year: 2021
  end-page: 2574
  ident: b0155
  article-title: Ag Nanocubes Coupled with Heating-Enhanced DSN-Assisted Cycling Amplification for Surface-Enhanced Raman Spectroscopy Detection of MicroRNA-21
  publication-title: ACS Appl. Nano Mater.
– volume: 45
  start-page: 844
  year: 2019
  end-page: 856
  ident: b0010
  article-title: MicroRNAs play an essential role in autophagy regulation in various disease phenotypes
  publication-title: BioFactors.
– volume: 333
  start-page: 129581
  year: 2021
  end-page: 129589
  ident: b0075
  article-title: MXene (Ti
  publication-title: Sensor. Actuat. B - Chem.
– volume: 93
  start-page: 11019
  year: 2021
  end-page: 11024
  ident: b0150
  article-title: DNA structure-stabilized liquid-liquid self-assembled ordered au nanoparticle interface for sensitive detection of miRNA 155
  publication-title: Anal. Chem.
– volume: 16
  start-page: 45
  year: 2015
  end-page: 58
  ident: b0020
  article-title: Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases
  publication-title: Brief. Bioinform.
– volume: 90
  start-page: 5224
  year: 2018
  end-page: 5231
  ident: b0060
  article-title: Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics
  publication-title: Anal. Chem.
– volume: 150
  start-page: 111917
  year: 2020
  end-page: 111923
  ident: b0035
  article-title: Paper-based closed Au-Bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155
  publication-title: Biosens. Bioelectron.
– volume: 590
  start-page: 436
  year: 2021
  end-page: 445
  ident: b0095
  article-title: Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization
  publication-title: J. Colloid Interface Sci.
– volume: 92
  start-page: 12769
  year: 2020
  end-page: 12773
  ident: b0040
  article-title: Label-Free Detection of miRNA Using Surface-Enhanced Raman Spectroscopy
  publication-title: Anal. Chem.
– volume: 14
  start-page: 1802670
  year: 2018
  ident: b0080
  article-title: Coffee Ring-Inspired Approach toward Oriented Self Assembly of Biomimetic Murray MOFs as Sweat Biosensor
  publication-title: Small.
– volume: 93
  start-page: 13727
  issue: 40
  year: 2021
  ident: 10.1016/j.saa.2022.122134_b0055
  article-title: Construction of a Polarity-Switchable Photoelectrochemical Biosensor for Ultrasensitive Detection of miRNA-141
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c03460
– volume: 150
  start-page: 111917
  year: 2020
  ident: 10.1016/j.saa.2022.122134_b0035
  article-title: Paper-based closed Au-Bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111917
– volume: 92
  start-page: 12769
  issue: 19
  year: 2020
  ident: 10.1016/j.saa.2022.122134_b0040
  article-title: Label-Free Detection of miRNA Using Surface-Enhanced Raman Spectroscopy
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c03335
– volume: 5
  start-page: 601
  issue: 3
  year: 2020
  ident: 10.1016/j.saa.2022.122134_b0065
  article-title: Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b02039
– volume: 14
  start-page: 1802670
  issue: 45
  year: 2018
  ident: 10.1016/j.saa.2022.122134_b0080
  article-title: Coffee Ring-Inspired Approach toward Oriented Self Assembly of Biomimetic Murray MOFs as Sweat Biosensor
  publication-title: Small.
  doi: 10.1002/smll.201802670
– volume: 210
  start-page: 279
  issue: 2
  year: 2007
  ident: 10.1016/j.saa.2022.122134_b0015
  article-title: MicroRNAs and Their Regulatory Roles in Animals and Plants
  publication-title: J CELL PHYSIOL.
  doi: 10.1002/jcp.20869
– volume: 93
  start-page: 11019
  year: 2021
  ident: 10.1016/j.saa.2022.122134_b0150
  article-title: DNA structure-stabilized liquid-liquid self-assembled ordered au nanoparticle interface for sensitive detection of miRNA 155
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c02336
– volume: 333
  start-page: 129581
  year: 2021
  ident: 10.1016/j.saa.2022.122134_b0075
  article-title: MXene (Ti3C2Tx)-Ag nanocomplex as efficient and quantitative SERS biosensor platform by in-situ PDDA electrostatic self-assembly synthesis strategy
  publication-title: Sensor. Actuat. B - Chem.
  doi: 10.1016/j.snb.2021.129581
– volume: 6
  start-page: 29669
  issue: 35
  year: 2016
  ident: 10.1016/j.saa.2022.122134_b0120
  article-title: Facile, tunable, and SERS-enhanced HEPES gold nanostars
  publication-title: RSC Adv.
  doi: 10.1039/C6RA00450D
– volume: 31
  start-page: 2104629
  year: 2021
  ident: 10.1016/j.saa.2022.122134_b0130
  article-title: Zr-MOF-Enabled Controllable Ion Sieving and Proton Conductivity in Flow Battery Membrane
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202104629
– volume: 45
  start-page: 105
  year: 1976
  ident: 10.1016/j.saa.2022.122134_b0135
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac197645020105
– volume: 22
  start-page: 4568
  year: 2018
  ident: 10.1016/j.saa.2022.122134_b0025
  article-title: The regulatory role of microRNAs in angiogenesis-related diseases
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.13700
– volume: 368
  start-page: 132245
  year: 2022
  ident: 10.1016/j.saa.2022.122134_b0145
  article-title: SERS/electrochemical dual-mode biosensor based on multi-functionalized molybdenum disulfide nanosheet probes and SERS-active Ag nanorods array electrodes for reliable detection of cancer-related miRNA, Sensor
  publication-title: Actuat. B - Chem.
  doi: 10.1016/j.snb.2022.132245
– volume: 45
  start-page: 844
  issue: 6
  year: 2019
  ident: 10.1016/j.saa.2022.122134_b0010
  article-title: MicroRNAs play an essential role in autophagy regulation in various disease phenotypes
  publication-title: BioFactors.
  doi: 10.1002/biof.1555
– volume: 51
  start-page: 13408
  year: 2015
  ident: 10.1016/j.saa.2022.122134_b0105
  article-title: Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environent
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05136C
– ident: 10.1016/j.saa.2022.122134_b0005
  doi: 10.1371/journal.pone.0009685
– volume: 16
  start-page: 2004518
  year: 2020
  ident: 10.1016/j.saa.2022.122134_b0045
  article-title: DNA Walking and Rolling Nanomachine for Electrochemical Detection of miRNA
  publication-title: Small.
  doi: 10.1002/smll.202004518
– volume: 90
  start-page: 2792
  year: 2018
  ident: 10.1016/j.saa.2022.122134_b0125
  article-title: Design of Metal-Organic Framework-Based Nanoprobes for Multicolor Detection of DNA Targets with Improved Sensitivity
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b02127
– volume: 1077
  start-page: 288
  year: 2019
  ident: 10.1016/j.saa.2022.122134_b0070
  article-title: Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au
  publication-title: Anal. Chim. Acta.
  doi: 10.1016/j.aca.2019.05.059
– volume: 16
  start-page: 1900424
  issue: 2
  year: 2021
  ident: 10.1016/j.saa.2022.122134_b0085
  article-title: Chunsheng Wu, Applications of Functional Metal-Organic Frameworks in Biosensors
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201900424
– volume: 13
  start-page: 7004
  issue: 6
  year: 2021
  ident: 10.1016/j.saa.2022.122134_b0100
  article-title: Metal−Organic Frameworks for Drug Delivery: A Design Perspective
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.1c01089
– volume: 439
  start-page: 213948
  year: 2021
  ident: 10.1016/j.saa.2022.122134_b0115
  article-title: Metal-organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro, Coordin
  publication-title: Chem. Rev.
– volume: 590
  start-page: 436
  year: 2021
  ident: 10.1016/j.saa.2022.122134_b0095
  article-title: Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.01.078
– volume: 4
  start-page: 2565
  issue: 3
  year: 2021
  ident: 10.1016/j.saa.2022.122134_b0155
  article-title: Ag Nanocubes Coupled with Heating-Enhanced DSN-Assisted Cycling Amplification for Surface-Enhanced Raman Spectroscopy Detection of MicroRNA-21
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c03208
– volume: 55
  start-page: 712A
  year: 1983
  ident: 10.1016/j.saa.2022.122134_b0140
  publication-title: Anal. Chem.
  doi: 10.1021/ac00259a060
– volume: 176
  start-page: 112947
  year: 2021
  ident: 10.1016/j.saa.2022.122134_b0110
  article-title: Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112947
– volume: 90
  start-page: 5224
  issue: 8
  year: 2018
  ident: 10.1016/j.saa.2022.122134_b0060
  article-title: Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b00002
– volume: 10
  start-page: 13325
  issue: 16
  year: 2018
  ident: 10.1016/j.saa.2022.122134_b0090
  article-title: Small Titanium-Based MOFs Prepared with the Introduction of Tetraethyl Orthosilicate and Their Potential for Use in Drug Delivery
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.8b01175
– volume: 16
  start-page: 45
  year: 2015
  ident: 10.1016/j.saa.2022.122134_b0020
  article-title: Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbt085
– volume: 93
  start-page: 13373
  issue: 39
  year: 2021
  ident: 10.1016/j.saa.2022.122134_b0050
  article-title: 3D DNA Walker-Assisted CRISPR/Cas12a Trans-Cleavage for Ultrasensitive Electrochemiluminescence Detection of miRNA-141
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c03183
– volume: 141
  start-page: 4578
  issue: 15
  year: 2016
  ident: 10.1016/j.saa.2022.122134_b0030
  article-title: Vertically encoded tetragonal hydrogel microparticles for multiplexed detection of miRNAs associated with Alzheimer's disease
  publication-title: Analyst.
  doi: 10.1039/C6AN00188B
SSID ssj0001820
Score 2.4107933
Snippet In this work, a simple and sensitive SERS biosensor was constructed for detection of miRNA 21. Here, the porosity of Zr-MOF can pack lots of Raman probe NR...
In this work, a simple and sensitive SERS-based miRNA biosensor was constructed based on porous MOFs nanoparticles and efficient subject-object recognition...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 122134
SubjectTerms Biosensing Techniques - methods
Gold - chemistry
Limit of Detection
Metal Nanoparticles - chemistry
MicroRNAs
miRNA
MOFs
Nanoparticles
Porosity
SERS biosensor
Spectrum Analysis, Raman - methods
Subject-object recognition ability
Title A controllable SERS biosensor for ultrasensitive detection of miRNAs based on porous MOFs and subject-object recognition ability
URI https://dx.doi.org/10.1016/j.saa.2022.122134
https://www.ncbi.nlm.nih.gov/pubmed/36512966
Volume 289
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQaIIL2hgwGEM-cEIyTeLEjY9VRdVtaofokLhF_hWpqEuqJj1wQfzpvOckHbuAtFNk69mJ_Kz3vhd_fo-QCwhwnHKBY0LriMWpVCzVUjORQreyeax9OaDJVIzv4h_3yf0WGXZ3YZBW2dr-xqZ7a9329NrV7C3n894s5Cn4lggABBrZCDN-xnEfd_nV01-aByYo90FXKhhKdyebnuNVKUw9FEVXYYSZzd7xTa8cz-gj2W8RIx00H_WJbLnigOwOu0JtB-SDZ3Ga6jN5HtCWer7AG1F0dn07o3peVhCrlisK-JSuF_VKYdtzhqh1tediFbTM6Z_57XRQUXRslkIXQPNyXdHJr1FFVWFptdb414aV_kE33CMQbbJ9Px6Su9H17-GYtSUWmOEJr5kBgKaVDZQWoJjQxaFLuZUcNMttLnTqMCDr5xKQEpe5VVIbLrS1SZL2peb8iGwXZeG-EOryAIIjk8C8Bk8XlXZSKiMDZ2MeGHVCgm5xM9PmH8cyGIusI5o9ZKCPDPWRNfo4IZebIcsm-cZbwnGnseyfHZSBc3hr2HGj3c0buEAQJMTp_034lexhSXrkqYXJGdmuV2v3DYBLrc_9zjwnO4PvP8dTaE1vJi-uMe7M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB4Sh5JeSpsmbfrcQ06BjSWttNEejYlxmtiFOIHcxL4EDq5kLPnQW396Z_Qw7SWFnoSWXUnst8x8o_12BuAMAxyvfeC5NCbicao0T40yXKbYrF0em6Yc0Gwupw_xt8fkcQ_G_VkYklV2tr-16Y217lqG3WwO18vlcBGKFH1LhASCjGwk9uGAslMlAzgYXd9M5zuDTDnKm7grlZwG9Jubjcyr0pR9KIouwoiSm_3DPf3heyav4VVHGtmo_a43sOeLIzgc97XajuBFI-S01Vv4NWKd-nxFh6LY4upuwcyyrDBcLTcMKSrbruqNpvtGNsScrxs5VsHKnP1Y3s1HFSPf5hg2ITsvtxWbfZ9UTBeOVVtDP2542VzYTn6EXduE3z-P4WFydT-e8q7KArciETW3yNGMdoE2ErEJfRz6VDglEFzhcmlSTzHZZa6QLAmVO62MFdI4lyTppTJCnMCgKAv_HpjPA4yPbILPtbTBqI1XSlsVeBeLwOpTCPrJzWyXgpwqYayyXmv2lCEeGeGRtXicwvluyLrNv_Fc57hHLPtrEWXoH54b9q5Fd_cGIYkHSfnh_x74FQ6n97Pb7PZ6fvMRXlKFepKthcknGNSbrf-MPKY2X7p1-htCfvBx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+controllable+SERS+biosensor+for+ultrasensitive+detection+of+miRNAs+based+on+porous+MOFs+and+subject-object+recognition+ability&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=He%2C+Yi&rft.au=Liao%2C+Xiangjian&rft.au=Wu%2C+Haonan&rft.au=Huang%2C+Jialiang&rft.date=2023-03-15&rft.pub=Elsevier+B.V&rft.issn=1386-1425&rft.volume=289&rft_id=info:doi/10.1016%2Fj.saa.2022.122134&rft.externalDocID=S1386142522012823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon