Improving the Technological Scheme of Isolation of Butane–Butylene Fraction by Chemisorption Using Tubular Turbulent Apparatus

The butadiene and butane–butylene fraction are products of separation of the butylene–butadiene fraction (BBF) by chemisorption. Butadiene is a diene monomer for the production of elastomers and plastics. The butane–butylene fraction is used as a feedstock for various petrochemical processes, in par...

Full description

Saved in:
Bibliographic Details
Published inTheoretical foundations of chemical engineering Vol. 53; no. 5; pp. 741 - 746
Main Authors Shevlyakov, F. B., Umergalin, T. G., Shurupov, O. K., Zakharov, V. P., Nasyrov, I. Sh
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.09.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The butadiene and butane–butylene fraction are products of separation of the butylene–butadiene fraction (BBF) by chemisorption. Butadiene is a diene monomer for the production of elastomers and plastics. The butane–butylene fraction is used as a feedstock for various petrochemical processes, in particular, for the preparation of C 4 oligomeric products and methyl tert-butyl ether. A residual content of butadiene in the butane–butylene fraction of more than 0.5 wt % has a negative effect when it is used as a raw material for petrochemical processes; it also reduces the yield of butadiene. The article describes the method of purification of the butane–butylene fraction from butadiene by returning the part of butane–butylene fraction mixed with a stream of absorption ammonium–copper solution in the form of reflux in the chemisorption column. Mixing of flows is carried out in a tubular turbulent apparatus mounted in a reflux line. The organization of an additional contact of part of butane–butylene fraction with copper ammonia solution will increase the sorption efficiency of the column.
AbstractList The butadiene and butane–butylene fraction are products of separation of the butylene–butadiene fraction (BBF) by chemisorption. Butadiene is a diene monomer for the production of elastomers and plastics. The butane–butylene fraction is used as a feedstock for various petrochemical processes, in particular, for the preparation of C 4 oligomeric products and methyl tert-butyl ether. A residual content of butadiene in the butane–butylene fraction of more than 0.5 wt % has a negative effect when it is used as a raw material for petrochemical processes; it also reduces the yield of butadiene. The article describes the method of purification of the butane–butylene fraction from butadiene by returning the part of butane–butylene fraction mixed with a stream of absorption ammonium–copper solution in the form of reflux in the chemisorption column. Mixing of flows is carried out in a tubular turbulent apparatus mounted in a reflux line. The organization of an additional contact of part of butane–butylene fraction with copper ammonia solution will increase the sorption efficiency of the column.
The butadiene and butane–butylene fraction are products of separation of the butylene–butadiene fraction (BBF) by chemisorption. Butadiene is a diene monomer for the production of elastomers and plastics. The butane–butylene fraction is used as a feedstock for various petrochemical processes, in particular, for the preparation of C4 oligomeric products and methyl tert-butyl ether. A residual content of butadiene in the butane–butylene fraction of more than 0.5 wt % has a negative effect when it is used as a raw material for petrochemical processes; it also reduces the yield of butadiene. The article describes the method of purification of the butane–butylene fraction from butadiene by returning the part of butane–butylene fraction mixed with a stream of absorption ammonium–copper solution in the form of reflux in the chemisorption column. Mixing of flows is carried out in a tubular turbulent apparatus mounted in a reflux line. The organization of an additional contact of part of butane–butylene fraction with copper ammonia solution will increase the sorption efficiency of the column.
Author Shevlyakov, F. B.
Shurupov, O. K.
Umergalin, T. G.
Zakharov, V. P.
Nasyrov, I. Sh
Author_xml – sequence: 1
  givenname: F. B.
  surname: Shevlyakov
  fullname: Shevlyakov, F. B.
  email: sfb1980@mail.ru
  organization: Ufa State Petroleum Technological University
– sequence: 2
  givenname: T. G.
  surname: Umergalin
  fullname: Umergalin, T. G.
  organization: Ufa State Petroleum Technological University
– sequence: 3
  givenname: O. K.
  surname: Shurupov
  fullname: Shurupov, O. K.
  organization: Ufa State Petroleum Technological University
– sequence: 4
  givenname: V. P.
  surname: Zakharov
  fullname: Zakharov, V. P.
  organization: Bashkir State University
– sequence: 5
  givenname: I. Sh
  surname: Nasyrov
  fullname: Nasyrov, I. Sh
  organization: OOO TAU NefteKhim Management Company
BookMark eNp1UEtOwzAQtVCRaAsHYGeJdcCOYydelopPJSQWbdeR40zaVKkd7ASpu96BG3ISHIrEArGaz_uM5k3QyFgDCF1TckspS-6WhCSEp5JTSThhgp6hMRUki1jC6AiNBzga8As08X5HCJFCyDE6Lvats--12eBuC3gFemtsYze1Vg1e6i3sAdsKL7xtVFdbMwz3facMfB4_QnNowAB-dEp_o8UBz4Om9ta134u1H6xXfdE3yoXqQgOmw7O2VU51vb9E55VqPFz91ClaPz6s5s_Ry-vTYj57iTTjrIt0olNWSp2oOBGsLChwwaHSXBItRSkrnlKmK6YKUSRUVQWwMoshzlJGS5VVbIpuTr7h3bcefJfvbO9MOJnHjMY8zTLOAoueWNpZ7x1UeevqvXKHnJJ8CDr_E3TQxCeND1yzAffr_L_oC70DhNs
CitedBy_id crossref_primary_10_1134_S0040579522040261
Cites_doi 10.1134/S0965544118100134
10.1134/S0040579518010190
10.1134/S0040579511050307
10.1007/s11167-005-0168-4
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Pleiades Publishing, Ltd. 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1134/S0040579519050361
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1608-3431
EndPage 746
ExternalDocumentID 10_1134_S0040579519050361
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFFNX
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
ML-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9N
PF0
PT4
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
XU3
YLTOR
Z5O
Z7S
Z7V
Z7X
Z7Y
Z7Z
ZMTXR
~8M
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c353t-c4c73d9c4a2463db1e565efc590c96d9f5713cf3ab6b41afbe3d82e28731da8f3
IEDL.DBID U2A
ISSN 0040-5795
IngestDate Thu Oct 10 19:37:12 EDT 2024
Thu Sep 12 17:14:09 EDT 2024
Sat Dec 16 12:02:33 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords butadiene
chemisorption
butylene–butadiene fraction
butadiene production
butane–butylene fraction
tubular turbulent apparatus
water–ammonia solution of copper(I) acetate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-c4c73d9c4a2463db1e565efc590c96d9f5713cf3ab6b41afbe3d82e28731da8f3
PQID 2312578853
PQPubID 2043540
PageCount 6
ParticipantIDs proquest_journals_2312578853
crossref_primary_10_1134_S0040579519050361
springer_journals_10_1134_S0040579519050361
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Theoretical foundations of chemical engineering
PublicationTitleAbbrev Theor Found Chem Eng
PublicationYear 2019
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Zakharov, V.P., Shevlyakov, F.B., Bulatova, O.F., Putilov, E.Yu., Bakytov, N.B., Shurupov, O.K., and Nasyrov, I.Sh., RF Patent 2658417, 2018.
Kas’yanova, L.Z., Karimov, E.Kh., and Karimov, O.Kh., Hydrogenation of butadiene-containing fractions on the surface of a palladium catalyst, Privolzh. Nauchn. Vestn., 2012, no. 6 (10), p. 6.
Danilov, Yu.M., Mukhametzyanova, A.G., and D’yakonov, G.S., Intensification of mixing in small-size tubular turbulent apparatuses, Khim. Prom-st. Segodnya, 2010, no. 9, p. 50.
Lamberov, A.A., Il’yasov, I.R., Egorova, S.R., Nazarov, M.V., Gil’manov, Kh.Kh., and Shatilov, V.M., The trial tests of aluminum–palladium catalysts for selective hydrogenation of vinylacetylene, Katal. Prom-sti., 2008, no. 5, p. 49.
NasyrovI.Sh.ShurupovO.K.SheludchenkoV.A.ZakharovV.P.UmergalinT.G.ShevlyakovF.B.Evaluation of the effect of the composition of raw materials and the technological parameters of the individual stages of recovery of 1,3-butadiene from the butylene–butadiene fraction by chemisorption on the discharge coefficient of butadieneBashk. Khim. Zh.201724551:CAS:528:DC%2BC1cXhs1Cru77N
Shevlyakov, F.B., Umergalin, T.G., and Zakharov, V.P., Ispol’zovanie trubchatogo turbulentnogo apparata v neftegazovykh i khimicheskikh protsessakh (The Use of Tubular Turbulent Apparatuses in Oil-And-Gas and Chemical Processes), Ufa: Bashk. Gos. Univ., 2018.
Tararykin, A.G., Nev’yantseva, L.N., Bazhenov, Yu.P., Galieva, F.A., and Kas’yanova, L.Z., Development and industrial application of RK220 catalysts for selective hydrogenation of the impurities of acetylene hydrocarbons in the purification of the butylene–butadiene fraction in the production of 1,3-butadiene, Katal. Prom-sti., 2009, no. 5, p. 51.
KaeemD.Kh.UmergalinT.G.ShevlyakovF.B.ZakharovV.P.On a decrease in the loss of the hydrocarbon components of associated petroleum gas, Izv. Vyssh. Uchebn. Zaved.Khim. Khim. Tekhnol.2009521291:CAS:528:DC%2BC3cXhvFyrtr0%3D
Akhmadiev, A.L. and Ponikarov, S.I., An installation for vacuum dehydrogenation of hydrocarbons, Vestn. Kazan. Tekhnol. Univ., 2010, no. 7, p. 171.
Kirpichnikov, P.A., Beresnev, V.V., and Popova, L.M., Al’bom tekhnologicheskikh skhem osnovnykh proizvodstv promyshlennosti sinteticheskogo kauchuka (An Album of Flow Diagrams for Basic Production Processes in the Synthetic Rubber Industry), Leningrad: Khimiya, 1986.
NasyrovI.Sh.ShurupovO.K.ZakharovV.P.ShevlyakovF.B.BakytovN.B.Evaluation of the effect of the throughput capacity of distribution nozzles for hydrogen on the efficiency of the hydrogenation of acetylene hydrocarbons in the butylene–butadiene fraction in the production of 1,3-butadieneVestn. Tekhnol. Univ.20172078821:CAS:528:DC%2BC1cXhsFKgtbvO
Nasyrov, I.Sh., Shurupov, O.K., Sheludchenko, V.A., Shevlyakov, F.B., and Zakharov, V.P., Study of the effect of the oxidation–reduction potential of a cuprammonium solution on its stability in the recovery of butadiene from the C4 fraction of hydrocarbon pyrolysis by chemisorption, Khim. Prom-st. Segodnya, 2017, no. 6, p. 16.
Kuttubaev, S.N., Rakhimov, M.N., Pavlov, M.L., Basimova, R.A., and Kutepov, B.I., Study of the efficiency of purifying the ethane–ethylene fraction of pyrolysis from acetylides over various catalysts, Neftegazov. Delo, 2012, no. 4, p. 165.
TsadkinM.A.BadikovaA.D.Industrial trials of a new-generation contactor for the process of the sulfuric-acid alkylation of isobutane with olefinsTheor. Found. Chem. Eng.2018522462571:CAS:528:DC%2BC1cXot1yhsLg%3D10.1134/S0040579518010190
ZakharovV.P.MinskerK.S.ShevlyakovF.B.BerlinA.A.AleksanyanG.G.RytovB.L.KonoplevA.A.Intensification of gas-liquid processes in tubular turbulent apparatusRuss. J. Appl. Chem.200477182218251:CAS:528:DC%2BD2MXhsVWlurc%3D10.1007/s11167-005-0168-4
Plate, N.A. and Slivinskii, E.V., Osnovy khimii i tekhnologii monomerov. Uchebnoe posobie (Fundamentals of the Chemistry and Technology of Monomers: A Textbook), Moscow: Nauka–MAIK “Nauka/Interperiodika”, 2002.
PavlovO.S.KarsakovS.A.PavlovS.Yu.Development of processes for C4 hydrocarbons separation and 1,3-butadiene purificationTheor. Found. Chem. Eng.2011458588671:CAS:528:DC%2BC3MXhsF2jsbfL10.1134/S0040579511050307
NasyrovI.Sh.ShurupovO.K.ZakharovV.P.ShevlyakovF.B.BakytovN.B.Enhancement of the efficiency of selective hydrogenation of acetylene hydrocarbons in the butylene-butadiene fraction during butadiene-1,3 productionPet. Chem.2018589051:CAS:528:DC%2BC1cXhvVGntbfE10.1134/S0965544118100134
I.Sh. Nasyrov (8098_CR5) 2017; 24
O.S. Pavlov (8098_CR2) 2011; 45
M.A. Tsadkin (8098_CR17) 2018; 52
8098_CR18
8098_CR13
8098_CR12
8098_CR15
I.Sh. Nasyrov (8098_CR10) 2018; 58
8098_CR1
I.Sh. Nasyrov (8098_CR11) 2017; 20
D.Kh. Kaeem (8098_CR14) 2009; 52
8098_CR6
8098_CR3
8098_CR4
8098_CR9
8098_CR7
8098_CR8
V.P. Zakharov (8098_CR16) 2004; 77
References_xml – volume: 58
  start-page: 905
  year: 2018
  ident: 8098_CR10
  publication-title: Pet. Chem.
  doi: 10.1134/S0965544118100134
  contributor:
    fullname: I.Sh. Nasyrov
– ident: 8098_CR12
– ident: 8098_CR13
– volume: 52
  start-page: 246
  year: 2018
  ident: 8098_CR17
  publication-title: Theor. Found. Chem. Eng.
  doi: 10.1134/S0040579518010190
  contributor:
    fullname: M.A. Tsadkin
– volume: 45
  start-page: 858
  year: 2011
  ident: 8098_CR2
  publication-title: Theor. Found. Chem. Eng.
  doi: 10.1134/S0040579511050307
  contributor:
    fullname: O.S. Pavlov
– ident: 8098_CR3
– ident: 8098_CR15
– ident: 8098_CR4
– ident: 8098_CR1
– volume: 20
  start-page: 78
  year: 2017
  ident: 8098_CR11
  publication-title: Vestn. Tekhnol. Univ.
  contributor:
    fullname: I.Sh. Nasyrov
– volume: 24
  start-page: 55
  year: 2017
  ident: 8098_CR5
  publication-title: Bashk. Khim. Zh.
  contributor:
    fullname: I.Sh. Nasyrov
– volume: 77
  start-page: 1822
  year: 2004
  ident: 8098_CR16
  publication-title: Russ. J. Appl. Chem.
  doi: 10.1007/s11167-005-0168-4
  contributor:
    fullname: V.P. Zakharov
– ident: 8098_CR18
– ident: 8098_CR6
– ident: 8098_CR7
– ident: 8098_CR8
– ident: 8098_CR9
– volume: 52
  start-page: 129
  year: 2009
  ident: 8098_CR14
  publication-title: Khim. Khim. Tekhnol.
  contributor:
    fullname: D.Kh. Kaeem
SSID ssj0009669
Score 2.1827312
Snippet The butadiene and butane–butylene fraction are products of separation of the butylene–butadiene fraction (BBF) by chemisorption. Butadiene is a diene monomer...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 741
SubjectTerms Ammonia
Butadiene
Chemical industry
Chemisorption
Chemistry
Chemistry and Materials Science
Copper
Elastomers
Fluid dynamics
Industrial Chemistry/Chemical Engineering
Organic chemistry
Polymers
Refineries
Title Improving the Technological Scheme of Isolation of Butane–Butylene Fraction by Chemisorption Using Tubular Turbulent Apparatus
URI https://link.springer.com/article/10.1134/S0040579519050361
https://www.proquest.com/docview/2312578853
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5V7QAMCAqIQqk8MIGC2thx47GtGl6iC61Upih27AWRoj6Gbv0P_EN-Cec8Wp4DkxPZciR_l7vv7PMdwDk1MpbCCq-S6KC4beFIrZsOM8YzjLWZScv5PAz4zYjdjb1xCdz11kXyfFWcSKaKOis7wuyVXsstkBAIm8LEejwVyx2swzVyO5tEu5yLIlLODs9PMn-d4qst2hDMb2eiqakJ9mA354ikk4G6DyWdVGGrV5Rmq8LOpyyCB7BabwwQZHNkvVlul588IigvmkwMuUUpS2GwL90FkkL9vnrDhyUaHk2CaXbFgcglyT41mabqhKRRBWS4kDZiFVvEwZoqggTW5g1fzA5hFPSHvRsnL6zgKOrRuaOYatNYKBa5jNNYtjTSOm2UJ5pK8FgYD11XZWgkuWStyEhNY9_V6FzRVhz5hh5BOZkk-hiIoVK4WvlUcsEivykFZUYwT7k2tZzhNbgoljh8zfJnhKnfQVn4A48a1AsQwvxXmoVIQK1aQVpRg8sCmE33n5Od_Gv0KWwjFcqjx-pQnk8X-gzpxlw2oNIJut2Bba-f7vuNVN4-APui0Io
link.rule.ids 315,786,790,27955,27956,41114,41556,42183,42625,52144,52267
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hMhQG3ohCAQ9MoFRt7KTxCBWlQNuFVCpTFDv2gmhRmwxl6n_gH_JLOOdBeQ6dkijvfBffd_b5O4AzqkUkuDFeKTBAsZvcEkrVLaa1oxlrMp2W8-n13c6A3Q2dYT6Pe1pkuxdDkmlLndUdYWZOryEXyAi40TAxIc8qMw6-BKuXN4_31wutXdflRbKcOSEfzPzzIt_d0YJj_hgWTb1NexP84jmzJJOnWhKLmnz9IeG45ItswUbOPsllZi7bsKJGO1BuFUXfdmD9iz7hLsw_uxwI8kTy2Q1vgCUPCPezImNNbtF-U4DNxlWCdFO9z99wZYYuTZH2JJs8QcSMZLcaT9KGiqT5CsRPhMmFxSUibJwgQWpsFMmT6R4M2td-q2PlJRssSR0aW5LJJo24ZKHNXBqJhkLCqLR0eF1yN-LawaBYahoKV7BGqIWikWcrDNtoIwo9TfehNBqP1AEQTQW3lfSocDkLvbrglGnOHGkb0TrtVuC8QC54yZQ5gjSioSz49YkrUC2wDfKfdBogtTUNFhKWClwUUC12_3uxw6WOPoVyx-91g-5t__4I1pBw5TlqVSjFk0QdI6mJxUluxB8puO2N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2hVmI5sBQQhQI-cAIF2thJ42MplL1CAiQ4hdixL4i2apNDOfUf-EO-hHGWlvWAOCVREmeZseeNZ_wGYIdqEQpulFcKdFDsOreEUlWLae1oxupMJ-V8rtru6R07v3fuszqngzzbPQ9JpmsaDEtTJzrohTqrQcLM-l4DNBAdcMNnYtyfIsNeywpQbJw8XBxPeHddl-eJc-aGLLD5YyOfTdMEb34JkSaWp7UAj_k7pwknT_txJPblyxc6x3981CLMZ6iUNFI1WoIp1SnBTDMvBleCuQ-8hcswGk9FEMSPZDw9bwROblANnhXpanKGep0I3hwcxghD1dvoFXeGaOoUafXTRRVEDEn6qG4_GcBIksdAbmNhcmRxi5I3xpEgZDZM5fFgBe5ax7fNUysr5WBJ6tDIkkzWacglC2zm0lDUFAJJpaXDq5K7IdcOOstS00C4gtUCLRQNPVuhO0drYeBpugqFTrej1oBoKritpEeFy1ngVQWnTHPmSNuQ2Wm3DLu5FP1eytjhJ54OZf63X1yGSi5nP-u8Ax8hrxnIEMiUYS8X2-T0r42t_-nqbZi-Pmr5l2ftiw2YRRyWpa5VoBD1Y7WJWCcSW5k-vwOMwvZo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Technological+Scheme+of+Isolation+of+Butane%E2%80%93Butylene+Fraction+by+Chemisorption+Using+Tubular+Turbulent+Apparatus&rft.jtitle=Theoretical+foundations+of+chemical+engineering&rft.au=Shevlyakov%2C+F.+B.&rft.au=Umergalin%2C+T.+G.&rft.au=Shurupov%2C+O.+K.&rft.au=Zakharov%2C+V.+P.&rft.date=2019-09-01&rft.pub=Pleiades+Publishing&rft.issn=0040-5795&rft.eissn=1608-3431&rft.volume=53&rft.issue=5&rft.spage=741&rft.epage=746&rft_id=info:doi/10.1134%2FS0040579519050361&rft.externalDocID=10_1134_S0040579519050361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5795&client=summon