Hadamard Encoding Based Frequent Itemset Mining under Local Differential Privacy

Local differential privacy (LDP) approaches to collecting sensitive information for frequent itemset mining (FIM) can reliably guarantee privacy. Most current approaches to FIM under LDP add “padding and sampling” steps to obtain frequent itemsets and their frequencies because each user transaction...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 38; no. 6; pp. 1403 - 1422
Main Authors Zhao, Dan, Zhao, Su-Yun, Chen, Hong, Liu, Rui-Xuan, Li, Cui-Ping, Zhang, Xiao-Ying
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Local differential privacy (LDP) approaches to collecting sensitive information for frequent itemset mining (FIM) can reliably guarantee privacy. Most current approaches to FIM under LDP add “padding and sampling” steps to obtain frequent itemsets and their frequencies because each user transaction represents a set of items. The current state-of-the-art approach, namely set-value itemset mining (SVSM), must balance variance and bias to achieve accurate results. Thus, an unbiased FIM approach with lower variance is highly promising. To narrow this gap, we propose an Item-Level LDP frequency oracle approach, named the Integrated-with-Hadamard-Transform-Based Frequency Oracle (IHFO). For the first time, Hadamard encoding is introduced to a set of values to encode all items into a fixed vector, and perturbation can be subsequently applied to the vector. An FIM approach, called optimized united itemset mining (O-UISM), is proposed to combine the padding-and-sampling-based frequency oracle (PSFO) and the IHFO into a framework for acquiring accurate frequent itemsets with their frequencies. Finally, we theoretically and experimentally demonstrate that O-UISM significantly outperforms the extant approaches in finding frequent itemsets and estimating their frequencies under the same privacy guarantee.
AbstractList Local differential privacy (LDP) approaches to collecting sensitive information for frequent itemset mining (FIM) can reliably guarantee privacy. Most current approaches to FIM under LDP add “padding and sampling” steps to obtain frequent itemsets and their frequencies because each user transaction represents a set of items. The current state-of-the-art approach, namely set-value itemset mining (SVSM), must balance variance and bias to achieve accurate results. Thus, an unbiased FIM approach with lower variance is highly promising. To narrow this gap, we propose an Item-Level LDP frequency oracle approach, named the Integrated-with-Hadamard-Transform-Based Frequency Oracle (IHFO). For the first time, Hadamard encoding is introduced to a set of values to encode all items into a fixed vector, and perturbation can be subsequently applied to the vector. An FIM approach, called optimized united itemset mining (O-UISM), is proposed to combine the padding-and-sampling-based frequency oracle (PSFO) and the IHFO into a framework for acquiring accurate frequent itemsets with their frequencies. Finally, we theoretically and experimentally demonstrate that O-UISM significantly outperforms the extant approaches in finding frequent itemsets and estimating their frequencies under the same privacy guarantee.
Local differential privacy(LDP)approaches to collecting sensitive information for frequent itemset mining(FIM)can reliably guarantee privacy.Most current approaches to FIM under LDP add"padding and sampling"steps to obtain frequent itemsets and their frequencies because each user transaction represents a set of items.The current state-of-the-art approach,namely set-value itemset mining(SVSM),must balance variance and bias to achieve accurate results.Thus,an unbiased FIM approach with lower variance is highly promising.To narrow this gap,we propose an Item-Level LDP frequency oracle approach,named the Integrated-with-Hadamard-Transform-Based Frequency Oracle(IHFO).For the first time,Hadamard encoding is introduced to a set of values to encode all items into a fixed vector,and perturbation can be subsequently applied to the vector.An FIM approach,called optimized united itemset mining(O-UISM),is pro-posed to combine the padding-and-sampling-based frequency oracle(PSFO)and the IHFO into a framework for acquiring accurate frequent itemsets with their frequencies.Finally,we theoretically and experimentally demonstrate that O-UISM significantly outperforms the extant approaches in finding frequent itemsets and estimating their frequencies under the same privacy guarantee.
Author Liu, Rui-Xuan
Zhao, Dan
Zhang, Xiao-Ying
Li, Cui-Ping
Chen, Hong
Zhao, Su-Yun
Author_xml – sequence: 1
  givenname: Dan
  surname: Zhao
  fullname: Zhao, Dan
  organization: Institute of Scientific and Technical Information of China, Key Laboratory of Data Engineering and Knowledge Engineering (Ministry of Education), School of Information, Renmin University of China
– sequence: 2
  givenname: Su-Yun
  surname: Zhao
  fullname: Zhao, Su-Yun
  organization: Key Laboratory of Data Engineering and Knowledge Engineering (Ministry of Education), School of Information, Renmin University of China
– sequence: 3
  givenname: Hong
  surname: Chen
  fullname: Chen, Hong
  email: chong@ruc.edu.cn
  organization: Key Laboratory of Data Engineering and Knowledge Engineering (Ministry of Education), School of Information, Renmin University of China
– sequence: 4
  givenname: Rui-Xuan
  surname: Liu
  fullname: Liu, Rui-Xuan
  organization: Key Laboratory of Data Engineering and Knowledge Engineering (Ministry of Education), School of Information, Renmin University of China
– sequence: 5
  givenname: Cui-Ping
  surname: Li
  fullname: Li, Cui-Ping
  organization: Key Laboratory of Data Engineering and Knowledge Engineering (Ministry of Education), School of Information, Renmin University of China
– sequence: 6
  givenname: Xiao-Ying
  surname: Zhang
  fullname: Zhang, Xiao-Ying
  organization: Key Laboratory of Data Engineering and Knowledge Engineering (Ministry of Education), School of Information, Renmin University of China
BookMark eNp9kE1LxDAQhoMo-PkDvBW8Wp1pus3m6LfCih70HKbNdEldU026fvx7s1QQBL1MEvK8M8mzLdZ971mIfYQjBFDHEVFqyKGQOcqyytWa2MJpBXmpSr2e9gCQ61Q2xXaMHYBUUJZb4v6aLD1TsNmFb3rr_Dw7pcg2uwz8umQ_ZDcDP0ceslvnV7dLbzlks76hRXbu2pZDglw63Af3Rs3nrthoaRF573vdEY-XFw9n1_ns7urm7GSWN3Iih1QlTMu2IsbGakbFulANA6uqspaIdMs1ySnVVCNiXRUKWVdW6VoVVLZyRxyOfd_Jt-TnpuuXwaeJpovd00cXP2rDRfIBFaBM-MGIv4Q-_SsOP3yhC0RdwmSSKBypJvQxBm7NS3DJzqdBMCvPZvRsUl-z8mxUyqhfmcYNNLjeD4Hc4t9kMSZjmuLnHH7e9HfoC5_ok7I
CitedBy_id crossref_primary_10_1145_3706584
crossref_primary_10_1155_2024_2408270
crossref_primary_10_32604_cmes_2023_045400
Cites_doi 10.5555/2999611.2999782
10.5555/2969033.2969148
10.5555/645920.672836
10.1109/TKDE.2015.2399310
10.5555/3241189.3241247
10.5555/3361338.3361468
10.1145/3196959.3196981
10.5555/3489212.3489267
10.1137/1.9781611975482.151
10.1109/ICDE.2019.00063
10.1109/TDSC.2019.2949041
10.1109/SP.2018.00035
10.1080/01621459.2017.1389735
10.14778/2350229.2350251
10.1145/773153.773174
10.1109/ICDE.2016.7498248
10.1007/978-3-319-57048-8_7
10.1609/aaai.v35i10.17053
10.1145/2746539.2746632
10.1109/ICDE48307.2020.00050
10.1007/978-3-540-79228-4_1
10.5555/3294771.3294989
10.1145/2390021.2390027
10.14778/2428536.2428539
10.1109/TDSC.2019.2927695
10.1007/978-3-031-02350-7
10.1145/2976749.2978409
10.1007/11681878_14
10.1145/253260.253327
10.1109/INFOCOM.2018.8486234
10.1109/SP.2019.00018
10.1145/1242572.1242595
10.1109/ACCESS.2018.2839752
10.1145/3183713.3197390
ContentType Journal Article
Copyright Institute of Computing Technology, Chinese Academy of Sciences 2024
Institute of Computing Technology, Chinese Academy of Sciences 2024.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Institute of Computing Technology, Chinese Academy of Sciences 2024
– notice: Institute of Computing Technology, Chinese Academy of Sciences 2024.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-023-1346-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-4749
EndPage 1422
ExternalDocumentID jsjkxjsxb_e202306013
10_1007_s11390_023_1346_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-SI
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
5XA
5XJ
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CAJEI
CCEZO
CCPQU
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q--
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
TGMPQ
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
4A8
PMFND
PSX
ID FETCH-LOGICAL-c353t-c33084f6ae1cd9e17e927ce0e766ddaaa9feba38abab111b6271e96d79b72a4f3
IEDL.DBID U2A
ISSN 1000-9000
IngestDate Thu May 29 04:00:16 EDT 2025
Fri Jul 25 18:53:37 EDT 2025
Tue Jul 01 01:48:59 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Fri Feb 21 02:40:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords local differential privacy
frequency oracle
frequent itemset mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-c33084f6ae1cd9e17e927ce0e766ddaaa9feba38abab111b6271e96d79b72a4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2921194055
PQPubID 326258
PageCount 20
ParticipantIDs wanfang_journals_jsjkxjsxb_e202306013
proquest_journals_2921194055
crossref_primary_10_1007_s11390_023_1346_7
crossref_citationtrail_10_1007_s11390_023_1346_7
springer_journals_10_1007_s11390_023_1346_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Dwork C, McSherry F, Nissim K, Smith A. Calibrating noise to sensitivity in private data analysis. In Proc. the 3rd Theory of Cryptography Conference, Mar. 2006, pp.265–284. https://doi.org/10.1007/11681878_14.
Han X, Wang M, Zhang X J, Meng X F. Differentially private top-k query over mapreduce. In Proc. the 4th International Workshop on Cloud Data Management, Oct. 2012, pp.25–32. https://doi.org/10.1145/2390021.2390027.
LiNHLyuMSuDYangWNDifferential privacy: From theory to practiceSynthesis Lectures on Information Security, Privacy, & Trust201684113810.1007/978-3-031-02350-7
Kairouz P, Oh S, Viswanath P. Extremal mechanisms for local differential privacy. In Proc. the 27th International Conference on Neural Information Processing Systems, Dec. 2014, pp.2879–2887. https://doi.org/10.5555/2969033.2969148.
Adar E, Weld D S, Bershad B N, Gribble S S. Why we search: Visualizing and predicting user behavior. In Proc. the 16th International Conference on World Wide Web, May 2007, pp.161–170. https://doi.org/10.1145/1242572.1242595.
Murakami T, Kawamoto Y. Utility-optimized local differential privacy mechanisms for distribution estimation. In Proc. the 28th USENIX Conference on Security Symposium, Aug. 2019, pp.1877–1894. https://doi.org/10.5555/3361338.3361468.
Agrawal R, Srikant R. Fast algorithms for mining association rules. In Proc. the 20th International Conference on Very Large Data Bases, Sept. 1994, pp.487–499. https://doi.org/10.5555/645920.672836.
Evfimievski A, Gehrke J, Srikant R. Limiting privacy breaches in privacy preserving data mining. In Proc. the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Jun. 2003, pp.211–222. https://doi.org/10.1145/773153.773174.
Liu Y H, Suresh A T, Yu F, Kumar S, Riley M. Learning discrete distributions: User vs item-level privacy. arXiv: 2007.13660, 2020. https://arxiv.org/abs/2007.13660, Dec. 2023.
Kulkarni T, Cormode G, Srivastava D. Marginal release under local differential privacy. arXiv: 1711.02952, 2017. https://arxiv.org/abs/1711.02952, Dec. 2023.
Nguyên T T, Xiao X K, Yang Y, Hui S C, Shin H, Shin J. Collecting and analyzing data from smart device users with local differential privacy. arXiv: 1606.05053, 2016. https://arxiv.org/abs/1606.05053, Dec. 2023.
Liu R X, Cao Y, Chen H, Guo R Y, Yoshikawa M. FLAME: Differentially private federated learning in the shuffle model. In Proc. the AAAI Conference on Artificial Intelligence, May 2021, pp.8688–8696. https://doi.org/10.1609/aaai.v35i10.17053.
Vadhan S. The complexity of differential privacy. In Tutorials on the Foundations of Cryptography, Lindell Y (ed.), Springer, 2017, pp.347–450. https://doi.org/10.1007/978-3-319-57048-8_7.
Ye Q Q, Hu H B, Meng X F, Zheng H D. PrivKV: Keyvalue data collection with local differential privacy. In Proc. the 2019 IEEE Symposium on Security and Privacy (SP), May 2019, pp.317–331. https://doi.org/10.1109/SP.2019.00018.
XiongXYChenFHuangPZTianMMHuXFChenBDQinJFrequent itemsets mining with differential privacy over large-scale dataIEEE Access20186288772888910.1109/ACCESS.2018.2839752
Duchi J C, Wainwright M J, Jordan M I. Local privacy and minimax bounds: Sharp rates for probability estimation. In Proc. the 26th International Conference on Neural Information Processing Systems, Dec. 2013, pp.1529–1537. https://doi.org/10.5555/2999611.2999782.
Wang S W, Huang L S, Nie Y W, Wang P Z, Xu H L, Yang W. PrivSet: Set-valued data analyses with locale differential privacy. In Proc. the 2018 IEEE Conference on Computer Communications, Apr. 2018, pp.1088–1096. https://doi.org/10.1109/INFOCOM.2018.8486234.
Papernot N, Song S, Mironov I, Raghunathan A, Talwar K, Erlingsson Ú. Scalable private learning with PATE. arXiv: 1802.08908, 2018. https://arxiv.org/abs/1802.08908, Dec. 2023.
Bassily R, Smith A. Local, private, efficient protocols for succinct histograms. In Proc. the 47th Annual ACM Symposium on Theory of Computing, Jun. 2015, pp.127–135. https://doi.org/10.1145/2746539.2746632.
Li N H, Qardaji W, Su D, Cao J N. PrivBasis: Frequent itemset mining with differential privacy. Proceedings of the VLDB Endowment, 2012, 5(11): 1340–1351. https://doi.org/10.14778/2350229.2350251.
Qin Z, Yang Y, Yu T, Khalil I, Xiao X K, Ren K. Heavy hitter estimation over set-valued data with local differential privacy. In Proc. the 2016 ACM SIGSAC Conference on Computer and Communications Security, Oct. 2016, pp.192–203. https://doi.org/10.1145/2976749.2978409.
Gu X L, Li M, Xiong L, Cao Y. Providing input-discriminative protection for local differential privacy. In Proc. the 36th IEEE International Conference on Data Engineering (ICDE), Apr. 2020, pp.505–516. https://doi.org/10.1109/ICDE48307.2020.00050.
Acharya J, Sun Z T, Zhang H. Hadamard response: Estimating distributions privately, efficiently, and with little communication. arXiv: 1802.04705, 2018. https://arxiv.org/abs/1802.04705, Dec. 2023.
Erlingsson Ú, Feldman V, Mironov I, Raghunathan A, Talwar K, Thakurta A. Amplification by shuffling: From local to central differential privacy via anonymity. In Proc. the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, Jan. 2019, pp.2468–2479. https://doi.org/10.1137/1.9781611975482.151.
DuchiJCJordanMIWainwrightMJMinimax optimal procedures for locally private estimationJournal of the American Statistical Association2018113521182201380345210.1080/01621459.2017.1389735
Bun M, Nelson J, Stemmer U. Heavy hitters and the structure of local privacy. In Proc. the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, May 2018, pp.435–447. https://doi.org/10.1145/3196959.3196981.
WangTHLiNHJhaSLocally differentially private heavy hitter identificationIEEE Trans. Dependable and Secure Computing202118298299310.1109/TDSC.2019.2927695
Wang N, Xiao X K, Yang Y, Zhao J, Hui S C, Shin H, Shin J, Yu G. Collecting and analyzing multidimensional data with local differential privacy. In Proc. the 35th International Conference on Data Engineering (ICDE), Apr. 2019, pp.638–649. https://doi.org/10.1109/ICDE.2019.00063.
Wang T H, Blocki J, Li N H, Jha S. Locally differentially private protocols for frequency estimation. In Proc. the 26th USENIX Conference on Security Symposium, Aug. 2017, pp.729–745. https://doi.org/10.5555/3241189.3241247.
SuSXuSZChengXLiZYYangFCDifferentially private frequent itemset mining via transaction splittingIEEE Trans. Knowledge and Data Engineering20152771875189110.1109/TKDE.2015.2399310
Cormode G, Jha S, Kulkarni T, Li N H, Srivastava D, Wang T H. Privacy at scale: Local differential privacy in practice. In Proc. the 2018 International Conference on Management of Data, May 2018, pp.1655–1658. https://doi.org/10.1145/3183713.3197390.
Gu X L, Li M, Cheng Y Q, Xiong L, Cao Y. PCKV: Locally differentially private correlated key-value data collection with optimized utility. In Proc. the 29th USENIX Conference on Security Symposium, Aug. 2020, pp.967–984. https://doi.org/10.5555/3489212.3489267.
Chen R, Li H R, Qin A K, Kasiviswanathan S P, Jin H. Private spatial data aggregation in the local setting. In Proc. the 32nd IEEE International Conference on Data Engineering (ICDE), May 2016, pp.289–300. https://doi.org/10.1109/ICDE.2016.7498248.
Bassily R, Nissim K, Stemmer U, Thakurta A. Practical locally private heavy hitters. In Proc. the 31st International Conference on Neural Information Processing Systems, Dec. 2017, pp.2288–2296. https://doi.org/10.5555/3294771.3294989.
Wang T H, Li N H, Jha S. Locally differentially private frequent itemset mining. In Proc. the 2018 IEEE Symposium on Security and Privacy (SP), May 2018, pp.127–143. https://doi.org/10.1109/SP.2018.00035.
Zeng C, Naughton J F, Cai J Y. On differentially private frequent itemset mining. Proceedings of the VLDB Endowment, 2012, 6(1): 25–36. https://doi.org/10.14778/2428536.2428539.
Brin S, Motwani R, Silverstein C. Beyond market baskets: Generalizing association rules to correlations. In Proc. the 1997 ACM SIGMOD International Conference on Management of Data, Jun. 1997, pp.265–276. https://doi.org/10.1145/253260.253327.
Dwork C. Differential privacy: A survey of results. In Proc. the 5th International Conference on Theory and Applications of Models of Computation, Apr. 2008. https://doi.org/10.1007/978-3-540-79228-4_1.
GursoyMETamersoyATruexSWeiWQLiuLSecure and utility-aware data collection with condensed local differential privacyIEEE Trans. Dependable and Secure Computing20211852365237810.1109/TDSC.2019.2949041
XY Xiong (1346_CR2) 2018; 6
NH Li (1346_CR15) 2016; 8
1346_CR29
1346_CR28
JC Duchi (1346_CR26) 2018; 113
1346_CR3
1346_CR20
1346_CR4
1346_CR23
1346_CR5
1346_CR22
1346_CR6
1346_CR25
1346_CR7
1346_CR24
1346_CR8
1346_CR27
1346_CR9
1346_CR1
S Su (1346_CR10) 2015; 27
ME Gursoy (1346_CR30) 2021; 18
1346_CR18
1346_CR17
1346_CR39
1346_CR19
1346_CR32
1346_CR31
1346_CR12
1346_CR34
1346_CR11
1346_CR33
1346_CR14
1346_CR36
1346_CR13
TH Wang (1346_CR21) 2021; 18
1346_CR35
1346_CR16
1346_CR38
1346_CR37
References_xml – reference: GursoyMETamersoyATruexSWeiWQLiuLSecure and utility-aware data collection with condensed local differential privacyIEEE Trans. Dependable and Secure Computing20211852365237810.1109/TDSC.2019.2949041
– reference: Liu Y H, Suresh A T, Yu F, Kumar S, Riley M. Learning discrete distributions: User vs item-level privacy. arXiv: 2007.13660, 2020. https://arxiv.org/abs/2007.13660, Dec. 2023.
– reference: Erlingsson Ú, Feldman V, Mironov I, Raghunathan A, Talwar K, Thakurta A. Amplification by shuffling: From local to central differential privacy via anonymity. In Proc. the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, Jan. 2019, pp.2468–2479. https://doi.org/10.1137/1.9781611975482.151.
– reference: Nguyên T T, Xiao X K, Yang Y, Hui S C, Shin H, Shin J. Collecting and analyzing data from smart device users with local differential privacy. arXiv: 1606.05053, 2016. https://arxiv.org/abs/1606.05053, Dec. 2023.
– reference: Bassily R, Smith A. Local, private, efficient protocols for succinct histograms. In Proc. the 47th Annual ACM Symposium on Theory of Computing, Jun. 2015, pp.127–135. https://doi.org/10.1145/2746539.2746632.
– reference: XiongXYChenFHuangPZTianMMHuXFChenBDQinJFrequent itemsets mining with differential privacy over large-scale dataIEEE Access20186288772888910.1109/ACCESS.2018.2839752
– reference: Li N H, Qardaji W, Su D, Cao J N. PrivBasis: Frequent itemset mining with differential privacy. Proceedings of the VLDB Endowment, 2012, 5(11): 1340–1351. https://doi.org/10.14778/2350229.2350251.
– reference: Kairouz P, Oh S, Viswanath P. Extremal mechanisms for local differential privacy. In Proc. the 27th International Conference on Neural Information Processing Systems, Dec. 2014, pp.2879–2887. https://doi.org/10.5555/2969033.2969148.
– reference: Chen R, Li H R, Qin A K, Kasiviswanathan S P, Jin H. Private spatial data aggregation in the local setting. In Proc. the 32nd IEEE International Conference on Data Engineering (ICDE), May 2016, pp.289–300. https://doi.org/10.1109/ICDE.2016.7498248.
– reference: Gu X L, Li M, Xiong L, Cao Y. Providing input-discriminative protection for local differential privacy. In Proc. the 36th IEEE International Conference on Data Engineering (ICDE), Apr. 2020, pp.505–516. https://doi.org/10.1109/ICDE48307.2020.00050.
– reference: Acharya J, Sun Z T, Zhang H. Hadamard response: Estimating distributions privately, efficiently, and with little communication. arXiv: 1802.04705, 2018. https://arxiv.org/abs/1802.04705, Dec. 2023.
– reference: Brin S, Motwani R, Silverstein C. Beyond market baskets: Generalizing association rules to correlations. In Proc. the 1997 ACM SIGMOD International Conference on Management of Data, Jun. 1997, pp.265–276. https://doi.org/10.1145/253260.253327.
– reference: Dwork C, McSherry F, Nissim K, Smith A. Calibrating noise to sensitivity in private data analysis. In Proc. the 3rd Theory of Cryptography Conference, Mar. 2006, pp.265–284. https://doi.org/10.1007/11681878_14.
– reference: Wang T H, Blocki J, Li N H, Jha S. Locally differentially private protocols for frequency estimation. In Proc. the 26th USENIX Conference on Security Symposium, Aug. 2017, pp.729–745. https://doi.org/10.5555/3241189.3241247.
– reference: Cormode G, Jha S, Kulkarni T, Li N H, Srivastava D, Wang T H. Privacy at scale: Local differential privacy in practice. In Proc. the 2018 International Conference on Management of Data, May 2018, pp.1655–1658. https://doi.org/10.1145/3183713.3197390.
– reference: DuchiJCJordanMIWainwrightMJMinimax optimal procedures for locally private estimationJournal of the American Statistical Association2018113521182201380345210.1080/01621459.2017.1389735
– reference: Bun M, Nelson J, Stemmer U. Heavy hitters and the structure of local privacy. In Proc. the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, May 2018, pp.435–447. https://doi.org/10.1145/3196959.3196981.
– reference: Dwork C. Differential privacy: A survey of results. In Proc. the 5th International Conference on Theory and Applications of Models of Computation, Apr. 2008. https://doi.org/10.1007/978-3-540-79228-4_1.
– reference: Han X, Wang M, Zhang X J, Meng X F. Differentially private top-k query over mapreduce. In Proc. the 4th International Workshop on Cloud Data Management, Oct. 2012, pp.25–32. https://doi.org/10.1145/2390021.2390027.
– reference: Agrawal R, Srikant R. Fast algorithms for mining association rules. In Proc. the 20th International Conference on Very Large Data Bases, Sept. 1994, pp.487–499. https://doi.org/10.5555/645920.672836.
– reference: Duchi J C, Wainwright M J, Jordan M I. Local privacy and minimax bounds: Sharp rates for probability estimation. In Proc. the 26th International Conference on Neural Information Processing Systems, Dec. 2013, pp.1529–1537. https://doi.org/10.5555/2999611.2999782.
– reference: Ye Q Q, Hu H B, Meng X F, Zheng H D. PrivKV: Keyvalue data collection with local differential privacy. In Proc. the 2019 IEEE Symposium on Security and Privacy (SP), May 2019, pp.317–331. https://doi.org/10.1109/SP.2019.00018.
– reference: Bassily R, Nissim K, Stemmer U, Thakurta A. Practical locally private heavy hitters. In Proc. the 31st International Conference on Neural Information Processing Systems, Dec. 2017, pp.2288–2296. https://doi.org/10.5555/3294771.3294989.
– reference: Papernot N, Song S, Mironov I, Raghunathan A, Talwar K, Erlingsson Ú. Scalable private learning with PATE. arXiv: 1802.08908, 2018. https://arxiv.org/abs/1802.08908, Dec. 2023.
– reference: Wang S W, Huang L S, Nie Y W, Wang P Z, Xu H L, Yang W. PrivSet: Set-valued data analyses with locale differential privacy. In Proc. the 2018 IEEE Conference on Computer Communications, Apr. 2018, pp.1088–1096. https://doi.org/10.1109/INFOCOM.2018.8486234.
– reference: Wang T H, Li N H, Jha S. Locally differentially private frequent itemset mining. In Proc. the 2018 IEEE Symposium on Security and Privacy (SP), May 2018, pp.127–143. https://doi.org/10.1109/SP.2018.00035.
– reference: LiNHLyuMSuDYangWNDifferential privacy: From theory to practiceSynthesis Lectures on Information Security, Privacy, & Trust201684113810.1007/978-3-031-02350-7
– reference: Adar E, Weld D S, Bershad B N, Gribble S S. Why we search: Visualizing and predicting user behavior. In Proc. the 16th International Conference on World Wide Web, May 2007, pp.161–170. https://doi.org/10.1145/1242572.1242595.
– reference: Vadhan S. The complexity of differential privacy. In Tutorials on the Foundations of Cryptography, Lindell Y (ed.), Springer, 2017, pp.347–450. https://doi.org/10.1007/978-3-319-57048-8_7.
– reference: Murakami T, Kawamoto Y. Utility-optimized local differential privacy mechanisms for distribution estimation. In Proc. the 28th USENIX Conference on Security Symposium, Aug. 2019, pp.1877–1894. https://doi.org/10.5555/3361338.3361468.
– reference: Liu R X, Cao Y, Chen H, Guo R Y, Yoshikawa M. FLAME: Differentially private federated learning in the shuffle model. In Proc. the AAAI Conference on Artificial Intelligence, May 2021, pp.8688–8696. https://doi.org/10.1609/aaai.v35i10.17053.
– reference: Evfimievski A, Gehrke J, Srikant R. Limiting privacy breaches in privacy preserving data mining. In Proc. the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Jun. 2003, pp.211–222. https://doi.org/10.1145/773153.773174.
– reference: SuSXuSZChengXLiZYYangFCDifferentially private frequent itemset mining via transaction splittingIEEE Trans. Knowledge and Data Engineering20152771875189110.1109/TKDE.2015.2399310
– reference: Gu X L, Li M, Cheng Y Q, Xiong L, Cao Y. PCKV: Locally differentially private correlated key-value data collection with optimized utility. In Proc. the 29th USENIX Conference on Security Symposium, Aug. 2020, pp.967–984. https://doi.org/10.5555/3489212.3489267.
– reference: Zeng C, Naughton J F, Cai J Y. On differentially private frequent itemset mining. Proceedings of the VLDB Endowment, 2012, 6(1): 25–36. https://doi.org/10.14778/2428536.2428539.
– reference: Qin Z, Yang Y, Yu T, Khalil I, Xiao X K, Ren K. Heavy hitter estimation over set-valued data with local differential privacy. In Proc. the 2016 ACM SIGSAC Conference on Computer and Communications Security, Oct. 2016, pp.192–203. https://doi.org/10.1145/2976749.2978409.
– reference: Wang N, Xiao X K, Yang Y, Zhao J, Hui S C, Shin H, Shin J, Yu G. Collecting and analyzing multidimensional data with local differential privacy. In Proc. the 35th International Conference on Data Engineering (ICDE), Apr. 2019, pp.638–649. https://doi.org/10.1109/ICDE.2019.00063.
– reference: Kulkarni T, Cormode G, Srivastava D. Marginal release under local differential privacy. arXiv: 1711.02952, 2017. https://arxiv.org/abs/1711.02952, Dec. 2023.
– reference: WangTHLiNHJhaSLocally differentially private heavy hitter identificationIEEE Trans. Dependable and Secure Computing202118298299310.1109/TDSC.2019.2927695
– ident: 1346_CR22
  doi: 10.5555/2999611.2999782
– ident: 1346_CR39
  doi: 10.5555/2969033.2969148
– ident: 1346_CR4
  doi: 10.5555/645920.672836
– volume: 27
  start-page: 1875
  issue: 7
  year: 2015
  ident: 1346_CR10
  publication-title: IEEE Trans. Knowledge and Data Engineering
  doi: 10.1109/TKDE.2015.2399310
– ident: 1346_CR19
  doi: 10.5555/3241189.3241247
– ident: 1346_CR31
  doi: 10.5555/3361338.3361468
– ident: 1346_CR36
  doi: 10.1145/3196959.3196981
– ident: 1346_CR24
  doi: 10.5555/3489212.3489267
– ident: 1346_CR25
  doi: 10.1137/1.9781611975482.151
– ident: 1346_CR27
  doi: 10.1109/ICDE.2019.00063
– volume: 18
  start-page: 2365
  issue: 5
  year: 2021
  ident: 1346_CR30
  publication-title: IEEE Trans. Dependable and Secure Computing
  doi: 10.1109/TDSC.2019.2949041
– ident: 1346_CR3
  doi: 10.1109/SP.2018.00035
– volume: 113
  start-page: 182
  issue: 521
  year: 2018
  ident: 1346_CR26
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2017.1389735
– ident: 1346_CR1
  doi: 10.14778/2350229.2350251
– ident: 1346_CR38
– ident: 1346_CR34
  doi: 10.1145/773153.773174
– ident: 1346_CR29
  doi: 10.1109/ICDE.2016.7498248
– ident: 1346_CR14
  doi: 10.1007/978-3-319-57048-8_7
– ident: 1346_CR28
  doi: 10.1609/aaai.v35i10.17053
– ident: 1346_CR20
  doi: 10.1145/2746539.2746632
– ident: 1346_CR17
– ident: 1346_CR32
  doi: 10.1109/ICDE48307.2020.00050
– ident: 1346_CR7
  doi: 10.1007/978-3-540-79228-4_1
– ident: 1346_CR35
  doi: 10.5555/3294771.3294989
– ident: 1346_CR33
  doi: 10.1145/2390021.2390027
– ident: 1346_CR13
  doi: 10.14778/2428536.2428539
– volume: 18
  start-page: 982
  issue: 2
  year: 2021
  ident: 1346_CR21
  publication-title: IEEE Trans. Dependable and Secure Computing
  doi: 10.1109/TDSC.2019.2927695
– volume: 8
  start-page: 1
  issue: 4
  year: 2016
  ident: 1346_CR15
  publication-title: Synthesis Lectures on Information Security, Privacy, & Trust
  doi: 10.1007/978-3-031-02350-7
– ident: 1346_CR11
  doi: 10.1145/2976749.2978409
– ident: 1346_CR8
  doi: 10.1007/11681878_14
– ident: 1346_CR6
  doi: 10.1145/253260.253327
– ident: 1346_CR37
– ident: 1346_CR9
  doi: 10.1109/INFOCOM.2018.8486234
– ident: 1346_CR23
  doi: 10.1109/SP.2019.00018
– ident: 1346_CR5
  doi: 10.1145/1242572.1242595
– volume: 6
  start-page: 28877
  year: 2018
  ident: 1346_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2839752
– ident: 1346_CR12
  doi: 10.1145/3183713.3197390
– ident: 1346_CR18
– ident: 1346_CR16
SSID ssj0037044
Score 2.3349352
Snippet Local differential privacy (LDP) approaches to collecting sensitive information for frequent itemset mining (FIM) can reliably guarantee privacy. Most current...
Local differential privacy(LDP)approaches to collecting sensitive information for frequent itemset mining(FIM)can reliably guarantee privacy.Most current...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1403
SubjectTerms Artificial Intelligence
Coding
Computer Science
Data mining
Data Structures and Information Theory
Information Systems Applications (incl.Internet)
Mining
Perturbation
Privacy
Regular Paper
Sampling
Software Engineering
Theory of Computation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbocuHS8qoKBeQDXEBWEzuxkxPisSuEAK0QSNwiv1J1C1m6SRH8e2aCQ-Cyl1xiJ9LMeGY8r4-QXRGVhgtlmI5SzhLNSwbX5pjhMDrvMhtbib3Dl1fy7DY5v0vvQsCtDmWVnU5sFbWbWoyR_-I5ziID9yI9fPzHEDUKs6sBQuMLWQQVnGUDsng8vBpfd7pYqKiFc8UgNkN4zC6v2TbPgfMTMbBZLBaJZOqzZerdzfcMadvXU5W6-v3BBI2WydfgO9KjN2avkAVfrZJvHS4DDcd0jYxBnegHYD0dVnaKxokeg7FydDRrC6cbigH62jf0soWHoNhINqMXaNboaUBMgZN_T8ezP0_avqyT29Hw5uSMBeQEZkUqGniKKEtKqX1sXe5j5XOurI-8ktI5rXVeeqNFpo02oOyM5Cr2uXQqN4rrpBTfyaCaVv4HoR7z2wYoL5MssSnwPE9daWMfc-ezUm2QqKNaYcNYcUS3uC_6gchI6AIIXSChC9iy_77l8W2mxrzFWx0rinC86qIXhg1y0LGnfz3nY3uBg_3iST35-zypn03heXshA6d4c_5Pf5Il3soNVrVskUEz---3wTdpzE4QwFcL49-f
  priority: 102
  providerName: ProQuest
Title Hadamard Encoding Based Frequent Itemset Mining under Local Differential Privacy
URI https://link.springer.com/article/10.1007/s11390-023-1346-7
https://www.proquest.com/docview/2921194055
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e202306013
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uFy_u4jrkoBcl0CRt0h5ndKq4DIM4oKeSpKk4apVpFf33vtTWKojgpTk0yeG9vCV5y4fQLvcyzbjURHkBI75iGYFrMyWuGZ1NQ0ONcLXDFwNxMvJPr4Pruo67aLLdm5BkpanbYjdwVjwCNoZQ7gsip9FsAFd3l8c1Yt1G_XLpVQiu7t2aOETMJpT52xY_jVHrYX4FRatSnjxT-e03qxMvovnaXcTdT_4uoSmbL6OFBooB15K5goagQdQjcBv3c_Pk7BHugX1KcTypcqVL7N7kC1viiwoRArvasQk-d5YMH9UgKSDsD3g4uXtV5n0VjeL-1eEJqcESiOEBL-HLvdDPhLLUpJGl0kZMGutZKUSaKqWizGrFQ6WVBv2mBZPURiKVkZZM-RlfQzP5U27XEbYupK1p5As_9E0AbI6CNDPUUpbaMJMbyGuolpi6k7gDtHhI2h7IjtAJEDpxhE5gyf7XkufPNhp_Td5uWJHUElUkLHK96MC9DDbQQcOe9vcfm-3VHGwnj4vx_du4eNOJZdUdDPzgzX_tuoXmWHWMXF7LNpopJy92B7yTUnfQdBgfd9BsN-71Bm48vjnrw9jrD4aXneqsfgBwf-BQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCFN6JQwAd6AVkkdmInB4SAdtnS3aqHVuot-BXEts2WTYD2T_EbmfHGDVz21ksusR1p5svM2OOZj5BXIqkNF8owneScZZrXDLbNKcNmdN4VNrUSa4en-3J8lH05zo_XyJ9YC4PXKqNNDIbazS2ekb_lJfYig_Aif3_-gyFrFGZXI4XGEhZ7_vI3bNnad7vboN8tzkc7h5_GrGcVYFbkooOnSIqsltqn1pU-Vb7kyvrEKymd01qXtTdaFNpoA4bASK5SX0qnSqO4zmoB694gNzMBnhwr00efo-UXKgnksXhkzpCMM2ZRQ6kehFoJAw_JUpFJpv73g0Nwe5WPDVVETa2bb_84vNE9cqePVOmHJbTukzXfPCB3IwsE7Y3CQ3IAxkufAdDoTmPn6ArpR3CNjo4W4Zp2RzEd0PqOTgMZBcWytQWdoBOl2z0_C9iZU3qw-P5L28tH5OhaJPqYrDfzxj8h1GM23YCeZVZkNgeElbmrbepT7nxRqw2SRKlVtm9ijlwap9XQfhkFXYGgKxR0BVNeX005X3bwWDV4M6qi6n_mthqgt0HeRPUMr1csttVrcBg8a2cnF7P2wlSeh-0fhOBPV3_0Jbk1PpxOqsnu_t4zcpsHDOF9mk2y3i1--ucQFXXmRYAiJV-vG_t_AZ9nHSw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRCXtrxEaQs-0AvIavyInRw4FLarlj60B1bqzfiJWNq02gRofxV_kXE2aUBClTj0kktsK5q3M_PNIPSaZ9EyriwxWc6IMCwSuDZTkprRBV846mTCDh-fyP2p-Hiany6hXz0Wpq1271OSC0xD6tJUNTuXPu4MwDcIXDIC_oZQLiRRXVXlYbj-CXe2-t3BCBi8zdh479OHfdKNFSCO57yBJ88KEaUJ1PkyUBVKplzIgpLSe2NMGYM1vDDWWLAEVjJFQym9Kq1iRkQO595D90UCH4MCTdlub_q5ytrpsemfOUnTOPs06r8--W9HOES3NwnZFkZURVN9-cPjjdfQSheq4t2FbD1CS6F6jFb7MRC4swpP0ASslzkHScN7lbtIvhC_B9_o8Xje1mk3OOUD6tDg43YaBU64tTk-Sl4Uj7oBLWBozvBk_vWHcddP0fROKPoMLVcXVXiOcEjpdEtLIUUhXA4iVuY-Ohoo86GIah1lPdW067qYp2EaZ3rov5wIrYHQOhFaw5Y3N1suFy08blu82bNCd9pca1amPngQ2ubr6G3PnuH1LYdtdxwcFs_q2berWX1ldWDt_Q9i8Bf_deor9GAyGuujg5PDDfSQtRKVyms20XIz_x62IEhq7MtWMDH6fNea8Bu-ax4F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hadamard+Encoding+Based+Frequent+Itemset+Mining+under+Local+Differential+Privacy&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Zhao%2C+Dan&rft.au=Zhao%2C+Su-Yun&rft.au=Chen%2C+Hong&rft.au=Liu%2C+Rui-Xuan&rft.date=2023-12-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=38&rft.issue=6&rft.spage=1403&rft.epage=1422&rft_id=info:doi/10.1007%2Fs11390-023-1346-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11390_023_1346_7
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg