Nonequilibrium steady state in open quantum systems: Influence action, stochastic equation and power balance
The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical...
Saved in:
Published in | Annals of physics Vol. 362; no. Complete; pp. 139 - 169 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.11.2015
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics.
•Nonequilibrium steady state (NESS) for interacting quantum many-body systems.•Derivation of stochastic equations for quantum oscillator chain with two heat baths.•Explicit calculation of the energy flow from one bath to the chain to the other bath.•Power balance relation shows the existence of NESS insensitive to initial conditions.•Functional method as a viable platform for issues in quantum thermodynamics. |
---|---|
AbstractList | The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics.
•Nonequilibrium steady state (NESS) for interacting quantum many-body systems.•Derivation of stochastic equations for quantum oscillator chain with two heat baths.•Explicit calculation of the energy flow from one bath to the chain to the other bath.•Power balance relation shows the existence of NESS insensitive to initial conditions.•Functional method as a viable platform for issues in quantum thermodynamics. The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. * Nonequilibrium steady state (NESS) for interacting quantum many-body systems. * Derivation of stochastic equations for quantum oscillator chain with two heat baths. * Explicit calculation of the energy flow from one bath to the chain to the other bath. * Power balance relation shows the existence of NESS insensitive to initial conditions. * Functional method as a viable platform for issues in quantum thermodynamics. The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. -- Highlights: •Nonequilibrium steady state (NESS) for interacting quantum many-body systems. •Derivation of stochastic equations for quantum oscillator chain with two heat baths. •Explicit calculation of the energy flow from one bath to the chain to the other bath. •Power balance relation shows the existence of NESS insensitive to initial conditions. •Functional method as a viable platform for issues in quantum thermodynamics. |
Author | Hsiang, J.-T. Hu, B.L. |
Author_xml | – sequence: 1 givenname: J.-T. surname: Hsiang fullname: Hsiang, J.-T. email: cosmology@gmail.com organization: Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433, China – sequence: 2 givenname: B.L. surname: Hu fullname: Hu, B.L. organization: Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433, China |
BackLink | https://www.osti.gov/biblio/22560249$$D View this record in Osti.gov |
BookMark | eNp9kE1L7DAUhoMoOH78AHcBt7aetE0z1dVFrh8gulFwF9L0FDN0kk6SXpl_f1NHEFy4OpDzvocnzxHZt84iIWcMcgasvlzlyo15AYznIHKAZo8sGDR1BiV_2ycLACizqmH1ITkKYQXAWMWXCzI8pTubyQym9WZa0xBRdds0VERqLHUjWrqZlI3zcpvW63BFH2w_TGg1UqWjcfYiFZx-VyEaTdM5NT9SZTs6ug_0tFWDSukTctCrIeDp1zwmr7d_X27us8fnu4ebP4-ZLnkZM53gBPSsZ6VqOFacd5q19ZK1y_SLphNYtwpFp3ktdN2wAhvetRxSpio5LMtjcr676xKQDNpE1O_aWYs6yqLgNRRV850avdtMGKJcucnbBCaZKKqiLISYU2yX0t6F4LGXozdr5beSgZzVy5VM6uWsXoKQSX3qiB-dhPDpJHplhl-b17smJj3_DPqZfhbdGT_Dd8780v4PJLWgrw |
CODEN | APNYA6 |
CitedBy_id | crossref_primary_10_3390_e24070870 crossref_primary_10_1103_PhysRevD_100_025019 crossref_primary_10_3390_e20060423 crossref_primary_10_1007_JHEP08_2023_122 crossref_primary_10_1016_j_physletb_2019_06_062 crossref_primary_10_1080_00018732_2018_1519981 crossref_primary_10_1103_PhysRevE_97_012135 crossref_primary_10_1103_PhysRevA_108_022213 crossref_primary_10_1103_PhysRevB_93_224305 crossref_primary_10_1103_PhysRevD_103_085004 crossref_primary_10_1103_PhysRevE_95_042111 crossref_primary_10_1088_0034_4885_79_9_096001 crossref_primary_10_1364_OE_410208 crossref_primary_10_1016_j_physletb_2015_09_047 crossref_primary_10_1103_PhysRevB_97_104306 crossref_primary_10_1103_PhysRevD_101_125002 crossref_primary_10_1103_PhysRevD_101_125003 crossref_primary_10_1016_j_aop_2020_168289 crossref_primary_10_1103_PhysRevA_99_042320 crossref_primary_10_1007_JHEP11_2015_090 crossref_primary_10_1103_PhysRevResearch_4_023221 crossref_primary_10_1142_S0217979222501752 crossref_primary_10_1103_PhysRevA_102_050203 crossref_primary_10_1088_0256_307X_38_8_080301 crossref_primary_10_3390_e24081016 crossref_primary_10_3390_e24121814 crossref_primary_10_1088_1367_2630_aab03a crossref_primary_10_1088_1361_6455_abde53 crossref_primary_10_1103_PhysRevA_110_062807 crossref_primary_10_3390_e18050176 crossref_primary_10_1002_andp_202100089 crossref_primary_10_1016_j_aop_2021_168594 crossref_primary_10_1103_PhysRevD_102_105006 |
Cites_doi | 10.1016/S0370-1573(02)00558-6 10.1209/epl/i1998-00352-3 10.1140/epjb/e2013-40907-3 10.1088/1742-5468/2010/11/P11018 10.1016/0370-1573(88)90023-3 10.1007/BF01614132 10.1103/RevModPhys.81.1665 10.1103/PhysRevB.72.214302 10.1103/PhysRevE.84.021106 10.1103/PhysRevD.47.1576 10.1103/PhysRevLett.87.069402 10.1103/PhysRevB.78.064108 10.1016/0003-4916(63)90068-X 10.1023/B:JOSS.0000003119.91989.48 10.1088/0034-4885/75/12/126001 10.1103/PhysRevE.61.3828 10.1103/PhysRevLett.94.025507 10.1103/PhysRevLett.74.2694 10.1103/PhysRevLett.88.223901 10.1016/0370-1573(85)90136-X 10.1103/PhysRevD.37.2878 10.1103/PhysRevB.90.125138 10.1103/PhysRevLett.85.1799 10.1088/1742-5468/2007/07/P07023 10.1038/468769a 10.1103/RevModPhys.84.1045 10.1016/j.nuclphysb.2014.03.016 10.1103/PhysRevLett.96.050403 10.1103/PhysRevB.89.045409 10.1103/RevModPhys.80.517 10.1063/1.1705319 10.1103/PhysRevA.85.012324 10.1016/S0378-4371(02)01521-2 10.1007/s002200100583 10.1103/PhysRevE.85.011112 10.1088/0305-4470/31/16/003 10.1007/BF00420668 10.1209/0295-5075/79/60003 10.1103/PhysRevE.87.012109 10.1063/1.1703727 10.1103/PhysRevLett.78.1896 10.1103/PhysRevLett.111.230601 10.1103/PhysRevD.45.2843 10.1103/PhysRevD.40.1071 10.1103/PhysRevE.88.052127 10.1103/PhysRevA.66.042327 10.1080/00018730210155133 10.1103/PhysRevLett.108.070604 10.1103/PhysRevA.69.033610 10.1016/S0550-3213(99)00435-6 10.1103/PhysRevD.65.065015 10.1063/1.1665794 10.1103/PhysRevE.85.011126 10.1080/00018730802538522 10.1103/PhysRevLett.109.170402 10.1007/s002200000216 10.1007/BF01614091 10.1007/s002200050572 10.1103/PhysRevB.40.4664 10.1103/PhysRevLett.71.2401 10.1007/BF02179860 10.1103/PhysRevLett.112.040601 10.1016/0378-4371(83)90013-4 10.1103/PhysRevD.53.7003 10.1103/PhysRevD.79.085020 10.1103/PhysRevE.66.036102 10.1103/RevModPhys.83.771 10.1063/1.1843591 10.1103/PhysRevE.56.5018 10.1103/PhysRevD.53.2012 10.1103/PhysRevLett.96.140602 10.1016/S0370-1573(01)00043-6 10.1063/1.1666713 10.1103/PhysRevE.86.061132 10.1007/s10955-005-9021-7 10.1007/s10955-005-8088-5 10.1007/s10955-008-9487-1 10.1023/A:1004589714161 10.1038/nphys444 10.2172/4376203 10.1088/1367-2630/12/5/055027 10.1103/PhysRevE.50.1645 10.1103/PhysRevLett.78.2690 10.1016/j.physleta.2013.04.001 10.1103/PhysRevE.60.2721 10.1103/PhysRevE.79.061103 10.1088/0264-9381/29/22/224005 10.1103/PhysRevE.85.061126 10.1088/1742-6596/35/1/039 10.1103/PhysRevE.90.012124 10.1103/PhysRevE.57.2992 10.1063/1.1781911 10.1103/PhysRevA.77.062102 10.1103/PhysRevLett.110.130406 10.1103/PhysRevE.90.042128 10.1140/epjb/e2012-30640-x 10.1088/1367-2630/14/7/073007 10.1103/PhysRevLett.105.180501 10.1146/annurev-conmatphys-062910-140506 10.1007/s10955-014-0933-y 10.1103/PhysRevD.72.084023 10.1016/j.physleta.2013.08.006 10.1103/PhysRevA.55.4070 10.1146/annurev-physchem-040513-103724 10.12942/lrr-2008-3 10.1088/1367-2630/13/5/053009 10.1016/S0370-1573(02)00138-2 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. |
Copyright_xml | – notice: 2015 Elsevier Inc. |
DBID | AAYXX CITATION 7U5 8FD L7M OTOTI |
DOI | 10.1016/j.aop.2015.07.009 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1096-035X |
EndPage | 169 |
ExternalDocumentID | 22560249 3842176771 10_1016_j_aop_2015_07_009 S0003491615002742 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABPPZ ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HMV HVGLF HZ~ IHE J1W K-O KOM LG5 LZ4 M37 M41 MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OHT OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SHN SPC SPCBC SPD SPG SSQ SSZ T5K TN5 TWZ UNMZH UPT UQL VH1 VQA WH7 WUQ XOL XPP XSW YYP ZCG ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7U5 8FD EFKBS L7M AALMO ABPIF ABPTK ABQIS EFJIC OTOTI PQEST |
ID | FETCH-LOGICAL-c353t-c01170f1f13a95e455dc1b681b80039d7e6bae7dc567c6912e95db501b6435083 |
IEDL.DBID | .~1 |
ISSN | 0003-4916 |
IngestDate | Fri May 19 01:42:37 EDT 2023 Mon Jul 14 08:25:01 EDT 2025 Thu Jul 03 08:45:13 EDT 2025 Thu Apr 24 22:51:16 EDT 2025 Fri Feb 23 02:23:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Complete |
Keywords | Influence functional formalism Nonequilibrium steady state Stochastic density matrix Energy flow relation Open quantum system Quantum transport |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-c01170f1f13a95e455dc1b681b80039d7e6bae7dc567c6912e95db501b6435083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1724232779 |
PQPubID | 43554 |
PageCount | 31 |
ParticipantIDs | osti_scitechconnect_22560249 proquest_journals_1724232779 crossref_primary_10_1016_j_aop_2015_07_009 crossref_citationtrail_10_1016_j_aop_2015_07_009 elsevier_sciencedirect_doi_10_1016_j_aop_2015_07_009 |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Annals of physics |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Rieder, Lebowitz, Lieb, Casher, Lebowitz, O’Connor, Lebowitz, Spohn, Lebowitz (br000055) 1967; 8 Y. Subaşi, C.H. Fleming, J.-T. Hsiang, B.L. Hu, Equilibration in a weakly nonlinear quantum open system, Phys. Rev. E (in preparation). Romero, Paz (br000490) 1997; 55 Calzetta, Hu (br000335) 1988; 37 Mendl, Spohn, Spohn, Das, Dhar, Saito, Mendl, Spohn (br000135) 2013; 111 Roy, Dhar (br000155) 2008; 131 Joos, Zeh, Kiefer, Guilini, Kupsch, Stamatescu (br000030) 2003 Gemmer, Michel, Mahler (br000035) 2009; vol. 784 Dhar (br000115) 2008; 57 Galve, Pachón, Zueco (br000285) 2010; 105 Jarzynski (br000210) 2011; 2 J.-T. Hsiang, B.L. Hu, Distance and coupling dependence of entanglement in the presence of a quantum field Hu, Paz, Zhang (br000395) 1992; 45 , Buca, Prosen, Ilievski, Prosen (br000080) 2012; 14 Galley, Hu (br000410) 2005; 72 . Feynman, Vernon (br000380) 1963; 24 Gardiner, Zoller (br000020) 2000 Lepri, Livi, Politi (br000110) 2003; 377 S. Chen, Y. Zhang, J. Wang, H. Zhao, Why asymmetric interparticle interaction can result in convergent heat conductivity Breuer, Petruccione (br000070) 2002 J.-T. Hsiang, R. Zhou, B.L. Hu, Entanglement structure of an open system of Hu, Li, Zhao, Hu, Li, Zhao, Li, Zhao, Hu, Li, Wang, Hu (br000105) 1998; 57 Seifert (br000190) 2012; 75 Znidaric (br000290) 2012; 85 Zhang, Lo, Xiong, Tu, Nori (br000360) 2012; 109 Asadian, Manzano, Tiersch, Briegel (br000160) 2013; 87 Anders (br000245) 2008; 77 Grabert, Schramm, Ingold (br000390) 1988; 168 Subaşi, Hu (br000215) 2012; 85 For example, the workshop kTlog2 ’12 can be found at Hu, Zhang, Calzetta, Hu, Mazzitelli (br000400) 1991; 352 J.-T. Hsiang, B.L. Hu, Nonequilibrium energy transport in nonlinear open quantum systems: a functional perturbative analysis, (Paper II, in preparation). Das, Dhar (br000450) 2012; 85 Calzetta, Hu (br000375) 2008 Jarzynski, Jarzynski (br000195) 1997; 78 Rey, Hu, Calzetta, Roura, Clark (br000355) 2004; 69 Amico, Fazio, Osterloh, Vedral (br000230) 2008; 80 Fleming, Roura, Hu (br000495) 2011; 84 Spohn, Lebowitz, Allahverdyan, Nieuwenhuizen, Nieuwenhuizen, Allahverdyan (br000040) 1978; 38 Subaşi, Fleming, Taylor, Hu (br000075) 2012; 86 J.-P. Eckmann, Non-equilibrium steady states, Beijing Lecture (2002) Levy, Alicki, Kosloff (br000050) 2012; 85 Ness (br000455) 2014; 89 Thingna, Wang, Hanggi (br000440) 2013; 88 Esposito, Harbola, Mukamel, Campisi, Hänggi, Talkner (br000205) 2009; 81 Bonetto, Lebowitz, Rey-Bellet (br000095) 2000 Evans, Cohen, Morriss, Evans, Searles, Evans, Searles (br000175) 1993; 71 Lin, Hu (br000480) 2009; 79 Hu, Lin, Louko (br000485) 2012; 29 Audenaert, Eisert, Plenio, Werner (br000240) 2002; 66 Halliwell, Yu (br000460) 1996; 53 Dhar, Wagh (br000145) 2007; 79 J.-T. Hsiang, B.L. Hu, Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state Freitas, Paz (br000165) 2014; 90 Martinez, Paz (br000045) 2013; 110 Eckmann, Pillet, Rey-Bellet, Eckmann, Hairer, Rey-Bellet, Thomas (br000060) 1999; 201 Kurchan (br000180) 1998; 31 Wieśniak, Vedral, Brukner (br000235) 2008; 78 Calzetta, Roura, Verdaguer (br000415) 2003; 319 Weiss (br000025) 1993 Ghesquiere, Dorlas (br000255) 2013; 377 Vedral (br000260) 2010; 468 Unruh, Zurek (br000420) 1989; 40 Kosloff, Levy (br000225) 2014; 65 quantum oscillators: II. strong disparate couplings Hu (br000425) 1994 Adesso (br000475) 2006 Gallavotti, Cohen (br000170) 1995; 74 Hu, Verdaguer (br000370) 2008; 11 Spohn (br000140) 2006; 124 Evans, Spohn, Aron, Biroli, Cugliandolo, Manzano, Hurtado (br000085) 1977; 54 Horowitz, Esposito (br000305) 2014; 4 Caldeira, Leggett (br000385) 1983; 121 Liu, Hanggi, Li, Ren, Li (br000125) 2014; 112 Crooks (br000200) 1999; 60 Popescu, Short, Winter, Goldstein, Lebowitz, Tumulka, Zanghi, Linden, Popescu, Short, Winter, Reimann, Short (br000065) 2006; 2 Lepri, Livi, Politi, Lepri, Livi, Politi (br000090) 1997; 78 Schwinger, Keldysh, Chou, Su, Hao, Yu (br000330) 1961; 2 E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems, Los Alamos report, LA-1940, 1955. Bödeker (br000365) 1999; 559 de Groot, Mazur, Vollmer, Gallavotti, Sasa, Tasaki (br000010) 1962; 372 Zoli (br000320) 2005; 72 Raval, Hu, Anglin (br000435) 1996; 53 Johnson, Hu (br000405) 2002; 65 Hu, Paz, Zhang (br000430) 1993; 47 Eckmann, Zabey (br000150) 2004; 114 Aarts, Resco (br000345) 2006; 35 C. Bodet, M. Kronenwett, B. Nowak, D. Sexty, T. Gasenzer, Non-equilibrium quantum many-body dynamics: functional integral approaches J.-T. Hsiang, B.L. Hu, ‘Hot entanglement’?—A nonequilibrium quantum field theory scrutiny Lebowitz, Spohn (br000185) 1999; 95 Chen, Lebowitz, Liverani (br000315) 1989; 40 Berges (br000340) 2005; 739 Aron, Biroli, Cugliandolo (br000325) 2010 Wang, Agarwalla, Li, Thingna, Wang, Agarwalla, Li, Thingna (br000445) 2013; 86 Deffner, Jarzynski (br000300) 2013; 3 J.-T. Hsiang, B.L. Hu, Nonequilibrium steady state in open quantum systems: influence action, stochastic equation and power balance Levy, Kosloff (br000220) 2012; 108 Anders, Winter (br000250) 2008; 8 Li, Ren, Wang, Zhang, Hanggi, Li (br000120) 2012; 84 Ghesquiere, Sinayskiy, Petruccione (br000265) 2013; 377 Dhar, Saito, Hanggi (br000310) 2012; 85 Zwanzig (br000015) 2001 Zhang (10.1016/j.aop.2015.07.009_sbref80b) 1990 Chen (10.1016/j.aop.2015.07.009_br000315) 1989; 40 Hu (10.1016/j.aop.2015.07.009_sbref21b) 2000; 61 Evans (10.1016/j.aop.2015.07.009_sbref35a) 1993; 71 Ness (10.1016/j.aop.2015.07.009_br000455) 2014; 89 Vollmer (10.1016/j.aop.2015.07.009_sbref2b) 2002; 372 Lepri (10.1016/j.aop.2015.07.009_sbref18b) 1998; 43 Subaşi (10.1016/j.aop.2015.07.009_br000215) 2012; 85 Breuer (10.1016/j.aop.2015.07.009_br000070) 2002 Li (10.1016/j.aop.2015.07.009_br000120) 2012; 84 Spohn (10.1016/j.aop.2015.07.009_sbref11d) 1977; 54 Spohn (10.1016/j.aop.2015.07.009_br000140) 2006; 124 10.1016/j.aop.2015.07.009_br000295 Spohn (10.1016/j.aop.2015.07.009_sbref17b) 1977; 2 Lepri (10.1016/j.aop.2015.07.009_sbref18a) 1997; 78 Caldeira (10.1016/j.aop.2015.07.009_br000385) 1983; 121 Derrida (10.1016/j.aop.2015.07.009_sbref1d) 2007 Das (10.1016/j.aop.2015.07.009_sbref27c) 2014; 90 Calzetta (10.1016/j.aop.2015.07.009_br000415) 2003; 319 Lin (10.1016/j.aop.2015.07.009_br000480) 2009; 79 Evans (10.1016/j.aop.2015.07.009_sbref17a) 1977; 54 Halliwell (10.1016/j.aop.2015.07.009_br000460) 1996; 53 Levy (10.1016/j.aop.2015.07.009_br000050) 2012; 85 Evans (10.1016/j.aop.2015.07.009_sbref35b) 1994; 50 Ghesquiere (10.1016/j.aop.2015.07.009_br000265) 2013; 377 Short (10.1016/j.aop.2015.07.009_sbref13e) 2011; 13 Buca (10.1016/j.aop.2015.07.009_sbref16a) 2012; 14 Ghesquiere (10.1016/j.aop.2015.07.009_br000255) 2013; 377 de Groot (10.1016/j.aop.2015.07.009_sbref2a) 1962 Eckmann (10.1016/j.aop.2015.07.009_br000150) 2004; 114 Fleming (10.1016/j.aop.2015.07.009_br000495) 2011; 84 O’Connor (10.1016/j.aop.2015.07.009_sbref11c) 1974; 15 Calzetta (10.1016/j.aop.2015.07.009_br000375) 2008 Gardiner (10.1016/j.aop.2015.07.009_br000020) 2000 Deffner (10.1016/j.aop.2015.07.009_br000300) 2013; 3 10.1016/j.aop.2015.07.009_br000280 Jarzynski (10.1016/j.aop.2015.07.009_sbref39a) 1997; 78 Esposito (10.1016/j.aop.2015.07.009_sbref41a) 2009; 81 Vedral (10.1016/j.aop.2015.07.009_br000260) 2010; 468 Roy (10.1016/j.aop.2015.07.009_br000155) 2008; 131 Subaşi (10.1016/j.aop.2015.07.009_br000075) 2012; 86 Hu (10.1016/j.aop.2015.07.009_sbref21a) 1998; 57 Spohn (10.1016/j.aop.2015.07.009_sbref27b) 2014; 154 Raval (10.1016/j.aop.2015.07.009_br000435) 1996; 53 Audenaert (10.1016/j.aop.2015.07.009_br000240) 2002; 66 10.1016/j.aop.2015.07.009_br000505 10.1016/j.aop.2015.07.009_br000465 Lebowitz (10.1016/j.aop.2015.07.009_br000185) 1999; 95 10.1016/j.aop.2015.07.009_br000500 Lepri (10.1016/j.aop.2015.07.009_br000110) 2003; 377 Znidaric (10.1016/j.aop.2015.07.009_br000290) 2012; 85 Joos (10.1016/j.aop.2015.07.009_br000030) 2003 Aarts (10.1016/j.aop.2015.07.009_br000345) 2006; 35 Calzetta (10.1016/j.aop.2015.07.009_sbref80c) 2001; 352 Hu (10.1016/j.aop.2015.07.009_br000430) 1993; 47 Casher (10.1016/j.aop.2015.07.009_sbref11b) 1971; 12 Weiss (10.1016/j.aop.2015.07.009_br000025) 1993 Dhar (10.1016/j.aop.2015.07.009_br000145) 2007; 79 Wang (10.1016/j.aop.2015.07.009_sbref89a) 2013 Adesso (10.1016/j.aop.2015.07.009_br000475) 2006 Reimann (10.1016/j.aop.2015.07.009_sbref13d) 2010; 12 10.1016/j.aop.2015.07.009_br000470 10.1016/j.aop.2015.07.009_br000350 Romero (10.1016/j.aop.2015.07.009_br000490) 1997; 55 Wang (10.1016/j.aop.2015.07.009_sbref89b) 2013; 86 Bödeker (10.1016/j.aop.2015.07.009_br000365) 1999; 559 Zhang (10.1016/j.aop.2015.07.009_br000360) 2012; 109 Goldstein (10.1016/j.aop.2015.07.009_sbref13b) 2006; 96 10.1016/j.aop.2015.07.009_or000005 Hu (10.1016/j.aop.2015.07.009_br000395) 1992; 45 Hu (10.1016/j.aop.2015.07.009_br000425) 1994 Feynman (10.1016/j.aop.2015.07.009_br000380) 1963; 24 Eckmann (10.1016/j.aop.2015.07.009_sbref12a) 1999; 201 Mendl (10.1016/j.aop.2015.07.009_sbref27a) 2013; 111 Rey (10.1016/j.aop.2015.07.009_br000355) 2004; 69 Jarzynski (10.1016/j.aop.2015.07.009_br000210) 2011; 2 Anders (10.1016/j.aop.2015.07.009_br000245) 2008; 77 Li (10.1016/j.aop.2015.07.009_sbref21d) 2002; 88 10.1016/j.aop.2015.07.009_br000100 Levy (10.1016/j.aop.2015.07.009_br000220) 2012; 108 Hu (10.1016/j.aop.2015.07.009_sbref80a) 1991 Spohn (10.1016/j.aop.2015.07.009_sbref8a) 1978; 38 Hu (10.1016/j.aop.2015.07.009_br000370) 2008; 11 Popescu (10.1016/j.aop.2015.07.009_sbref13a) 2006; 2 Chou (10.1016/j.aop.2015.07.009_sbref66c) 1985; 118 10.1016/j.aop.2015.07.009_or000015 Gallavotti (10.1016/j.aop.2015.07.009_sbref1b) 1995; 80 Dhar (10.1016/j.aop.2015.07.009_br000115) 2008; 57 Zhao (10.1016/j.aop.2015.07.009_sbref26b) 2006; 96 Li (10.1016/j.aop.2015.07.009_sbref21c) 2001; 87 Jarzynski (10.1016/j.aop.2015.07.009_sbref39b) 1997; 56 Calzetta (10.1016/j.aop.2015.07.009_br000335) 1988; 37 Keldysh (10.1016/j.aop.2015.07.009_sbref66b) 1964; 47 Spohn (10.1016/j.aop.2015.07.009_sbref1a) 1977; 54 Amico (10.1016/j.aop.2015.07.009_br000230) 2008; 80 Grabert (10.1016/j.aop.2015.07.009_br000390) 1988; 168 Thingna (10.1016/j.aop.2015.07.009_br000440) 2013; 88 Galley (10.1016/j.aop.2015.07.009_br000410) 2005; 72 Martinez (10.1016/j.aop.2015.07.009_br000045) 2013; 110 Manzano (10.1016/j.aop.2015.07.009_sbref17d) 2014; 90 Rey-Bellet (10.1016/j.aop.2015.07.009_sbref1c) 2002; 225 Schwinger (10.1016/j.aop.2015.07.009_sbref66a) 1961; 2 Ilievski (10.1016/j.aop.2015.07.009_sbref16b) 2014; 882 Horowitz (10.1016/j.aop.2015.07.009_br000305) 2014; 4 Berges (10.1016/j.aop.2015.07.009_br000340) 2005; 739 Das (10.1016/j.aop.2015.07.009_br000450) 2012; 85 Campisi (10.1016/j.aop.2015.07.009_sbref41b) 2011; 83 Asadian (10.1016/j.aop.2015.07.009_br000160) 2013; 87 Anders (10.1016/j.aop.2015.07.009_br000250) 2008; 8 Hu (10.1016/j.aop.2015.07.009_br000485) 2012; 29 Liu (10.1016/j.aop.2015.07.009_br000125) 2014; 112 Dhar (10.1016/j.aop.2015.07.009_br000310) 2012; 85 Gallavotti (10.1016/j.aop.2015.07.009_br000170) 1995; 74 Linden (10.1016/j.aop.2015.07.009_sbref13c) 2009; 79 Sasa (10.1016/j.aop.2015.07.009_sbref2d) 2006; 125 Rieder (10.1016/j.aop.2015.07.009_sbref11a) 1967; 8 Galve (10.1016/j.aop.2015.07.009_br000285) 2010; 105 Zhao (10.1016/j.aop.2015.07.009_sbref26a) 2005; 94 10.1016/j.aop.2015.07.009_br000275 Unruh (10.1016/j.aop.2015.07.009_br000420) 1989; 40 Nieuwenhuizen (10.1016/j.aop.2015.07.009_sbref8c) 2002; 66 10.1016/j.aop.2015.07.009_br000270 Evans (10.1016/j.aop.2015.07.009_sbref35c) 2002; 51 Gallavotti (10.1016/j.aop.2015.07.009_sbref2c) 2004; 14 Rey-Bellet (10.1016/j.aop.2015.07.009_sbref12c) 2002; 225 Johnson (10.1016/j.aop.2015.07.009_br000405) 2002; 65 Gemmer (10.1016/j.aop.2015.07.009_br000035) 2009; vol. 784 Eckmann (10.1016/j.aop.2015.07.009_sbref12b) 2000; 212 Kosloff (10.1016/j.aop.2015.07.009_br000225) 2014; 65 Allahverdyan (10.1016/j.aop.2015.07.009_sbref8b) 2000; 85 Zwanzig (10.1016/j.aop.2015.07.009_br000015) 2001 Seifert (10.1016/j.aop.2015.07.009_br000190) 2012; 75 Crooks (10.1016/j.aop.2015.07.009_br000200) 1999; 60 Wieśniak (10.1016/j.aop.2015.07.009_br000235) 2008; 78 Zoli (10.1016/j.aop.2015.07.009_br000320) 2005; 72 Aron (10.1016/j.aop.2015.07.009_br000325) 2010 Aron (10.1016/j.aop.2015.07.009_sbref17c) 2010 Bonetto (10.1016/j.aop.2015.07.009_br000095) 2000 Freitas (10.1016/j.aop.2015.07.009_br000165) 2014; 90 Kurchan (10.1016/j.aop.2015.07.009_br000180) 1998; 31 |
References_xml | – volume: 78 start-page: 064108 year: 2008 ident: br000235 publication-title: Phys. Rev. B – reference: C. Bodet, M. Kronenwett, B. Nowak, D. Sexty, T. Gasenzer, Non-equilibrium quantum many-body dynamics: functional integral approaches, – reference: J.-T. Hsiang, B.L. Hu, Distance and coupling dependence of entanglement in the presence of a quantum field, – volume: 78 start-page: 2690 year: 1997 ident: br000195 publication-title: Phys. Rev. Lett. – volume: 201 start-page: 657 year: 1999 ident: br000060 publication-title: Comm. Math. Phys. – volume: 3 start-page: 041003 year: 2013 ident: br000300 publication-title: Phys. Rev. X – reference: J.-T. Hsiang, R. Zhou, B.L. Hu, Entanglement structure of an open system of – volume: 352 start-page: 459 year: 1991 ident: br000400 publication-title: Lectures at the Seventh International Latin-American Symposium on General Relativity (SILARG VII). Proceeding appeared as Relativity and Gravitation: Classical and Quantum – volume: 86 start-page: 500 year: 2013 ident: br000445 publication-title: Front. Phys. – reference: S. Chen, Y. Zhang, J. Wang, H. Zhao, Why asymmetric interparticle interaction can result in convergent heat conductivity, – volume: 40 start-page: 1071 year: 1989 ident: br000420 publication-title: Phys. Rev. D – reference: J.-P. Eckmann, Non-equilibrium steady states, Beijing Lecture (2002) – volume: 57 start-page: 2992 year: 1998 ident: br000105 publication-title: Phys. Rev. E – volume: 66 start-page: 042327 year: 2002 ident: br000240 publication-title: Phys. Rev. A – volume: 2 start-page: 754 year: 2006 ident: br000065 publication-title: Nat. Phys. – volume: 739 start-page: 3 year: 2005 ident: br000340 publication-title: AIP Conf. Proc. – volume: 69 start-page: 033610 year: 2004 ident: br000355 publication-title: Phys. Rev. A. – volume: 86 start-page: 061132 year: 2012 ident: br000075 publication-title: Phys. Rev. E – volume: 53 start-page: 7003 year: 1996 ident: br000435 publication-title: Phys. Rev. D – volume: 81 start-page: 1665 year: 2009 ident: br000205 publication-title: Rev. Modern Phys. – year: 2006 ident: br000475 article-title: Entanglement of Gaussian states – volume: 8 start-page: 1073 year: 1967 ident: br000055 publication-title: J. Math. Phys. – year: 2001 ident: br000015 article-title: Nonequilibrium Statistical Mechanics – volume: 47 start-page: 1576 year: 1993 ident: br000430 publication-title: Phys. Rev. D – year: 2002 ident: br000070 article-title: The Theory of Open Quantum Systems – volume: 377 start-page: 2831 year: 2013 ident: br000255 publication-title: Phys. Lett. A – volume: 95 start-page: 333 year: 1999 ident: br000185 publication-title: J. Stat. Phys. – volume: 90 start-page: 042128 year: 2014 ident: br000165 publication-title: Phys. Rev. E – volume: 2 start-page: 329 year: 2011 ident: br000210 publication-title: Annu. Rev. Cond. Mat. Phys. – volume: 319 start-page: 188 year: 2003 ident: br000415 publication-title: Physica A – reference: , – volume: 84 start-page: 1045 year: 2012 ident: br000120 publication-title: Rev. Modern Phys. – volume: 65 start-page: 365 year: 2014 ident: br000225 publication-title: Annu. Rev. Phys. Chem. – year: 2003 ident: br000030 article-title: Decoherence and the Appearance of a Classical World in Quantum Theory – volume: 111 start-page: 230601 year: 2013 ident: br000135 publication-title: Phys. Rev. Lett. – volume: 72 start-page: 084023 year: 2005 ident: br000410 publication-title: Phys. Rev. D – year: 1994 ident: br000425 publication-title: Quantum statistical field theory in gravitation and cosmology Invited Lectures at the Third International Workshop on Thermal Fields and Applications, Banff, Canada, Aug. 1993, Proceedings – volume: 37 start-page: 2878 year: 1988 ident: br000335 publication-title: Phys. Rev. D – reference: J.-T. Hsiang, B.L. Hu, Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state, – volume: 53 start-page: 2012 year: 1996 ident: br000460 publication-title: Phys. Rev. D – reference: J.-T. Hsiang, B.L. Hu, ‘Hot entanglement’?—A nonequilibrium quantum field theory scrutiny, – volume: 60 start-page: 2721 year: 1999 ident: br000200 publication-title: Phys. Rev. E – reference: J.-T. Hsiang, B.L. Hu, Nonequilibrium steady state in open quantum systems: influence action, stochastic equation and power balance, – start-page: 128 year: 2000 end-page: 150 ident: br000095 article-title: Mathematical Physics 2000 – volume: 80 start-page: 517 year: 2008 ident: br000230 publication-title: Rev. Modern Phys. – reference: quantum oscillators: II. strong disparate couplings – volume: 11 start-page: 3 year: 2008 ident: br000370 publication-title: Living Rev. Relativ. – volume: 14 start-page: 073007 year: 2012 ident: br000080 publication-title: New J. Phys. – volume: 85 start-page: 011126 year: 2012 ident: br000310 publication-title: Phys. Rev. E – volume: 85 start-page: 061126 year: 2012 ident: br000050 publication-title: Phys. Rev. E – volume: 2 start-page: 407 year: 1961 ident: br000330 publication-title: J. Math. Phys. – volume: 377 start-page: 1 year: 2003 ident: br000110 publication-title: Phys. Rep. – volume: 468 start-page: 769 year: 2010 ident: br000260 publication-title: Nature – volume: vol. 784 year: 2009 ident: br000035 publication-title: Quantum Thermodynamics: Emergence of Thermodynamic Behavior within Composite Quantum Systems – volume: 72 start-page: 214302 year: 2005 ident: br000320 publication-title: Phys. Rev. B – start-page: P11018 year: 2010 ident: br000325 publication-title: J. Stat. Mech. – volume: 24 start-page: 118 year: 1963 ident: br000380 publication-title: Ann. Phys. (N.Y.) – volume: 85 start-page: 372 year: 2012 ident: br000450 publication-title: Eur. Phys. J. B – reference: Y. Subaşi, C.H. Fleming, J.-T. Hsiang, B.L. Hu, Equilibration in a weakly nonlinear quantum open system, Phys. Rev. E (in preparation). – volume: 8 start-page: 0245 year: 2008 ident: br000250 publication-title: Quantum Inf. Comput. – volume: 45 start-page: 2843 year: 1992 ident: br000395 publication-title: Phys. Rev. D – volume: 110 start-page: 130406 year: 2013 ident: br000045 publication-title: Phys. Rev. Lett. – volume: 108 start-page: 070604 year: 2012 ident: br000220 publication-title: Phys. Rev. Lett. – volume: 109 start-page: 170402 year: 2012 ident: br000360 publication-title: Phys. Rev. Lett. – volume: 377 start-page: 1682 year: 2013 ident: br000265 publication-title: Phys. Lett. A – year: 2008 ident: br000375 article-title: Nonequilibrium Quantum Field Theory – volume: 559 start-page: 502 year: 1999 ident: br000365 publication-title: Nuclear Phys. B – volume: 38 start-page: 109 year: 1978 ident: br000040 publication-title: Adv. Chem. Phys. – volume: 40 start-page: 4664 year: 1989 ident: br000315 publication-title: Phys. Rev. B – volume: 79 start-page: 085020 year: 2009 ident: br000480 publication-title: Phys. Rev. D – volume: 168 start-page: 115 year: 1988 ident: br000390 publication-title: Phys. Rep. – volume: 89 start-page: 045409 year: 2014 ident: br000455 publication-title: Phys. Rev. B – volume: 77 start-page: 062102 year: 2008 ident: br000245 publication-title: Phys. Rev. A – volume: 114 start-page: 515 year: 2004 ident: br000150 publication-title: J. Stat. Phys. – volume: 57 start-page: 457 year: 2008 ident: br000115 publication-title: Adv. Phys. – volume: 75 start-page: 126001 year: 2012 ident: br000190 publication-title: Rep. Progr. Phys. – volume: 124 start-page: 1041 year: 2006 ident: br000140 publication-title: J. Stat. Phys. – volume: 85 start-page: 011112 year: 2012 ident: br000215 publication-title: Phys. Rev. E – volume: 121 start-page: 587 year: 1983 ident: br000385 publication-title: Physica A – volume: 71 start-page: 2401 year: 1993 ident: br000175 publication-title: Phys. Rev. Lett. – reference: E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems, Los Alamos report, LA-1940, 1955. – volume: 372 start-page: 131 year: 1962 ident: br000010 article-title: Non-equilibrium thermodynamics publication-title: Phys. Rep. – volume: 78 start-page: 1869 year: 1997 ident: br000090 publication-title: Phys. Rev. Lett. – volume: 88 start-page: 052127 year: 2013 ident: br000440 publication-title: Phys. Rev. E – volume: 112 start-page: 040601 year: 2014 ident: br000125 publication-title: Phys. Rev. Lett. – year: 2000 ident: br000020 article-title: Quantum Noise, 2nd Enlarge Edition – volume: 131 start-page: 535 year: 2008 ident: br000155 publication-title: J. Stat. Phys. – volume: 85 start-page: 012324 year: 2012 ident: br000290 publication-title: Phys. Rev. A – volume: 84 start-page: 021106 year: 2011 ident: br000495 publication-title: Phys. Rev. E – reference: For example, the workshop kTlog2 ’12 can be found at – volume: 65 start-page: 065015 year: 2002 ident: br000405 publication-title: Phys. Rev. D – volume: 29 start-page: 224005 year: 2012 ident: br000485 publication-title: Classical Quantum Gravity – volume: 54 start-page: 293 year: 1977 ident: br000085 publication-title: Comm. Math. Phys. – volume: 55 start-page: 4070 year: 1997 ident: br000490 publication-title: Phys. Rev. A – volume: 74 start-page: 2694 year: 1995 ident: br000170 publication-title: Phys. Rev. Lett. – volume: 105 start-page: 180501 year: 2010 ident: br000285 publication-title: Phys. Rev. Lett. – reference: . – volume: 31 start-page: 3719 year: 1998 ident: br000180 publication-title: J. Phys. A – volume: 4 start-page: 031015 year: 2014 ident: br000305 publication-title: Phys. Rev. X – reference: J.-T. Hsiang, B.L. Hu, Nonequilibrium energy transport in nonlinear open quantum systems: a functional perturbative analysis, (Paper II, in preparation). – volume: 35 start-page: 414 year: 2006 ident: br000345 publication-title: J. Phys. Conf. Ser. – volume: 87 start-page: 012109 year: 2013 ident: br000160 publication-title: Phys. Rev. E – volume: 79 start-page: 60003 year: 2007 ident: br000145 publication-title: Europhys. Lett. – year: 1993 ident: br000025 article-title: Quantum Dissipative Systems – volume: 377 start-page: 1 year: 2003 ident: 10.1016/j.aop.2015.07.009_br000110 publication-title: Phys. Rep. doi: 10.1016/S0370-1573(02)00558-6 – year: 2003 ident: 10.1016/j.aop.2015.07.009_br000030 – volume: 43 start-page: 271 year: 1998 ident: 10.1016/j.aop.2015.07.009_sbref18b publication-title: Europhys. Lett. doi: 10.1209/epl/i1998-00352-3 – volume: 86 start-page: 500 year: 2013 ident: 10.1016/j.aop.2015.07.009_sbref89b publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2013-40907-3 – ident: 10.1016/j.aop.2015.07.009_or000015 – start-page: P11018 year: 2010 ident: 10.1016/j.aop.2015.07.009_br000325 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2010/11/P11018 – volume: 168 start-page: 115 year: 1988 ident: 10.1016/j.aop.2015.07.009_br000390 publication-title: Phys. Rep. doi: 10.1016/0370-1573(88)90023-3 – volume: 54 start-page: 97 year: 1977 ident: 10.1016/j.aop.2015.07.009_sbref1a publication-title: Comm. Math. Phys. doi: 10.1007/BF01614132 – volume: 81 start-page: 1665 year: 2009 ident: 10.1016/j.aop.2015.07.009_sbref41a publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.81.1665 – volume: 72 start-page: 214302 year: 2005 ident: 10.1016/j.aop.2015.07.009_br000320 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.214302 – year: 2008 ident: 10.1016/j.aop.2015.07.009_br000375 – volume: 84 start-page: 021106 year: 2011 ident: 10.1016/j.aop.2015.07.009_br000495 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.021106 – volume: 47 start-page: 1576 year: 1993 ident: 10.1016/j.aop.2015.07.009_br000430 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.47.1576 – volume: 87 start-page: 069402 year: 2001 ident: 10.1016/j.aop.2015.07.009_sbref21c publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.069402 – year: 1991 ident: 10.1016/j.aop.2015.07.009_sbref80a – volume: 78 start-page: 064108 year: 2008 ident: 10.1016/j.aop.2015.07.009_br000235 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.064108 – volume: 24 start-page: 118 year: 1963 ident: 10.1016/j.aop.2015.07.009_br000380 publication-title: Ann. Phys. (N.Y.) doi: 10.1016/0003-4916(63)90068-X – volume: 114 start-page: 515 year: 2004 ident: 10.1016/j.aop.2015.07.009_br000150 publication-title: J. Stat. Phys. doi: 10.1023/B:JOSS.0000003119.91989.48 – volume: 75 start-page: 126001 year: 2012 ident: 10.1016/j.aop.2015.07.009_br000190 publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/75/12/126001 – ident: 10.1016/j.aop.2015.07.009_br000505 – volume: 61 start-page: 3828 year: 2000 ident: 10.1016/j.aop.2015.07.009_sbref21b publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.61.3828 – volume: 94 start-page: 025507 year: 2005 ident: 10.1016/j.aop.2015.07.009_sbref26a publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.025507 – year: 1993 ident: 10.1016/j.aop.2015.07.009_br000025 – volume: 74 start-page: 2694 year: 1995 ident: 10.1016/j.aop.2015.07.009_br000170 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.2694 – volume: 88 start-page: 223901 year: 2002 ident: 10.1016/j.aop.2015.07.009_sbref21d publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.223901 – volume: 118 start-page: 1 year: 1985 ident: 10.1016/j.aop.2015.07.009_sbref66c publication-title: Phys. Rep. doi: 10.1016/0370-1573(85)90136-X – year: 2006 ident: 10.1016/j.aop.2015.07.009_br000475 – year: 2002 ident: 10.1016/j.aop.2015.07.009_br000070 – volume: 37 start-page: 2878 year: 1988 ident: 10.1016/j.aop.2015.07.009_br000335 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.37.2878 – volume: 90 start-page: 125138 year: 2014 ident: 10.1016/j.aop.2015.07.009_sbref17d publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.125138 – volume: 85 start-page: 1799 year: 2000 ident: 10.1016/j.aop.2015.07.009_sbref8b publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.1799 – start-page: P07023 year: 2007 ident: 10.1016/j.aop.2015.07.009_sbref1d publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2007/07/P07023 – volume: 468 start-page: 769 year: 2010 ident: 10.1016/j.aop.2015.07.009_br000260 publication-title: Nature doi: 10.1038/468769a – volume: 84 start-page: 1045 year: 2012 ident: 10.1016/j.aop.2015.07.009_br000120 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.84.1045 – volume: 882 start-page: 485 year: 2014 ident: 10.1016/j.aop.2015.07.009_sbref16b publication-title: Nuclear Phys. B doi: 10.1016/j.nuclphysb.2014.03.016 – volume: 96 start-page: 050403 year: 2006 ident: 10.1016/j.aop.2015.07.009_sbref13b publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.050403 – volume: 89 start-page: 045409 year: 2014 ident: 10.1016/j.aop.2015.07.009_br000455 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.045409 – volume: 80 start-page: 517 year: 2008 ident: 10.1016/j.aop.2015.07.009_br000230 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.80.517 – volume: 8 start-page: 1073 year: 1967 ident: 10.1016/j.aop.2015.07.009_sbref11a publication-title: J. Math. Phys. doi: 10.1063/1.1705319 – volume: 85 start-page: 012324 year: 2012 ident: 10.1016/j.aop.2015.07.009_br000290 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.012324 – volume: 319 start-page: 188 year: 2003 ident: 10.1016/j.aop.2015.07.009_br000415 publication-title: Physica A doi: 10.1016/S0378-4371(02)01521-2 – volume: 225 start-page: 305 year: 2002 ident: 10.1016/j.aop.2015.07.009_sbref12c publication-title: Comm. Math. Phys. doi: 10.1007/s002200100583 – volume: 85 start-page: 011112 year: 2012 ident: 10.1016/j.aop.2015.07.009_br000215 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.011112 – volume: 31 start-page: 3719 year: 1998 ident: 10.1016/j.aop.2015.07.009_br000180 publication-title: J. Phys. A doi: 10.1088/0305-4470/31/16/003 – volume: 2 start-page: 33 year: 1977 ident: 10.1016/j.aop.2015.07.009_sbref17b publication-title: Lett. Math. Phys. doi: 10.1007/BF00420668 – volume: 79 start-page: 60003 year: 2007 ident: 10.1016/j.aop.2015.07.009_br000145 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/79/60003 – volume: 87 start-page: 012109 year: 2013 ident: 10.1016/j.aop.2015.07.009_br000160 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.012109 – volume: 2 start-page: 407 year: 1961 ident: 10.1016/j.aop.2015.07.009_sbref66a publication-title: J. Math. Phys. doi: 10.1063/1.1703727 – volume: 78 start-page: 1869 year: 1997 ident: 10.1016/j.aop.2015.07.009_sbref18a publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1896 – volume: 111 start-page: 230601 year: 2013 ident: 10.1016/j.aop.2015.07.009_sbref27a publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.230601 – volume: 45 start-page: 2843 year: 1992 ident: 10.1016/j.aop.2015.07.009_br000395 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.45.2843 – volume: 40 start-page: 1071 year: 1989 ident: 10.1016/j.aop.2015.07.009_br000420 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.40.1071 – volume: 38 start-page: 109 year: 1978 ident: 10.1016/j.aop.2015.07.009_sbref8a publication-title: Adv. Chem. Phys. – ident: 10.1016/j.aop.2015.07.009_br000470 – start-page: P11018 year: 2010 ident: 10.1016/j.aop.2015.07.009_sbref17c publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2010/11/P11018 – volume: 88 start-page: 052127 year: 2013 ident: 10.1016/j.aop.2015.07.009_br000440 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.052127 – volume: 66 start-page: 042327 year: 2002 ident: 10.1016/j.aop.2015.07.009_br000240 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.66.042327 – volume: 54 start-page: 97 year: 1977 ident: 10.1016/j.aop.2015.07.009_sbref11d publication-title: Comm. Math. Phys. doi: 10.1007/BF01614132 – volume: 51 start-page: 1529 year: 2002 ident: 10.1016/j.aop.2015.07.009_sbref35c publication-title: Adv. Phys. doi: 10.1080/00018730210155133 – volume: 108 start-page: 070604 year: 2012 ident: 10.1016/j.aop.2015.07.009_br000220 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.070604 – volume: 69 start-page: 033610 year: 2004 ident: 10.1016/j.aop.2015.07.009_br000355 publication-title: Phys. Rev. A. doi: 10.1103/PhysRevA.69.033610 – volume: 559 start-page: 502 year: 1999 ident: 10.1016/j.aop.2015.07.009_br000365 publication-title: Nuclear Phys. B doi: 10.1016/S0550-3213(99)00435-6 – volume: 65 start-page: 065015 year: 2002 ident: 10.1016/j.aop.2015.07.009_br000405 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.65.065015 – volume: 12 start-page: 1701 year: 1971 ident: 10.1016/j.aop.2015.07.009_sbref11b publication-title: J. Math. Phys. doi: 10.1063/1.1665794 – volume: 85 start-page: 011126 year: 2012 ident: 10.1016/j.aop.2015.07.009_br000310 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.011126 – ident: 10.1016/j.aop.2015.07.009_br000280 – year: 2013 ident: 10.1016/j.aop.2015.07.009_sbref89a publication-title: Front. Phys. – volume: 57 start-page: 457 year: 2008 ident: 10.1016/j.aop.2015.07.009_br000115 publication-title: Adv. Phys. doi: 10.1080/00018730802538522 – ident: 10.1016/j.aop.2015.07.009_br000350 – volume: 109 start-page: 170402 year: 2012 ident: 10.1016/j.aop.2015.07.009_br000360 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.170402 – ident: 10.1016/j.aop.2015.07.009_or000005 – volume: 212 start-page: 105 year: 2000 ident: 10.1016/j.aop.2015.07.009_sbref12b publication-title: Comm. Math. Phys. doi: 10.1007/s002200000216 – volume: 54 start-page: 293 year: 1977 ident: 10.1016/j.aop.2015.07.009_sbref17a publication-title: Comm. Math. Phys. doi: 10.1007/BF01614091 – ident: 10.1016/j.aop.2015.07.009_br000270 – volume: 3 start-page: 041003 year: 2013 ident: 10.1016/j.aop.2015.07.009_br000300 publication-title: Phys. Rev. X – volume: 201 start-page: 657 year: 1999 ident: 10.1016/j.aop.2015.07.009_sbref12a publication-title: Comm. Math. Phys. doi: 10.1007/s002200050572 – volume: 40 start-page: 4664 year: 1989 ident: 10.1016/j.aop.2015.07.009_br000315 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.40.4664 – volume: 71 start-page: 2401 year: 1993 ident: 10.1016/j.aop.2015.07.009_sbref35a publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.2401 – volume: 80 start-page: 931 year: 1995 ident: 10.1016/j.aop.2015.07.009_sbref1b publication-title: J. Stat. Phys. doi: 10.1007/BF02179860 – volume: 112 start-page: 040601 year: 2014 ident: 10.1016/j.aop.2015.07.009_br000125 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.040601 – volume: 121 start-page: 587 year: 1983 ident: 10.1016/j.aop.2015.07.009_br000385 publication-title: Physica A doi: 10.1016/0378-4371(83)90013-4 – volume: 53 start-page: 7003 year: 1996 ident: 10.1016/j.aop.2015.07.009_br000435 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.53.7003 – volume: 79 start-page: 085020 year: 2009 ident: 10.1016/j.aop.2015.07.009_br000480 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.085020 – volume: 66 start-page: 036102 year: 2002 ident: 10.1016/j.aop.2015.07.009_sbref8c publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.66.036102 – volume: 83 start-page: 771 year: 2011 ident: 10.1016/j.aop.2015.07.009_sbref41b publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.83.771 – volume: 739 start-page: 3 year: 2005 ident: 10.1016/j.aop.2015.07.009_br000340 publication-title: AIP Conf. Proc. doi: 10.1063/1.1843591 – year: 1990 ident: 10.1016/j.aop.2015.07.009_sbref80b – year: 2001 ident: 10.1016/j.aop.2015.07.009_br000015 – year: 2000 ident: 10.1016/j.aop.2015.07.009_br000020 – volume: 56 start-page: 5018 year: 1997 ident: 10.1016/j.aop.2015.07.009_sbref39b publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.56.5018 – volume: 53 start-page: 2012 year: 1996 ident: 10.1016/j.aop.2015.07.009_br000460 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.53.2012 – volume: 96 start-page: 140602 year: 2006 ident: 10.1016/j.aop.2015.07.009_sbref26b publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.140602 – volume: 352 start-page: 459 year: 2001 ident: 10.1016/j.aop.2015.07.009_sbref80c publication-title: Phys. Rep. doi: 10.1016/S0370-1573(01)00043-6 – year: 1994 ident: 10.1016/j.aop.2015.07.009_br000425 – volume: 15 start-page: 692 year: 1974 ident: 10.1016/j.aop.2015.07.009_sbref11c publication-title: J. Math. Phys. doi: 10.1063/1.1666713 – volume: 86 start-page: 061132 year: 2012 ident: 10.1016/j.aop.2015.07.009_br000075 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.061132 – volume: 125 start-page: 125 year: 2006 ident: 10.1016/j.aop.2015.07.009_sbref2d publication-title: J. Stat. Phys. doi: 10.1007/s10955-005-9021-7 – volume: 124 start-page: 1041 year: 2006 ident: 10.1016/j.aop.2015.07.009_br000140 publication-title: J. Stat. Phys. doi: 10.1007/s10955-005-8088-5 – volume: 131 start-page: 535 year: 2008 ident: 10.1016/j.aop.2015.07.009_br000155 publication-title: J. Stat. Phys. doi: 10.1007/s10955-008-9487-1 – volume: 95 start-page: 333 year: 1999 ident: 10.1016/j.aop.2015.07.009_br000185 publication-title: J. Stat. Phys. doi: 10.1023/A:1004589714161 – volume: 47 start-page: 1515 year: 1964 ident: 10.1016/j.aop.2015.07.009_sbref66b publication-title: Zh. Eksp. Teor. Fiz. – volume: 2 start-page: 754 year: 2006 ident: 10.1016/j.aop.2015.07.009_sbref13a publication-title: Nat. Phys. doi: 10.1038/nphys444 – ident: 10.1016/j.aop.2015.07.009_br000100 doi: 10.2172/4376203 – year: 1962 ident: 10.1016/j.aop.2015.07.009_sbref2a – volume: 12 start-page: 055027 year: 2010 ident: 10.1016/j.aop.2015.07.009_sbref13d publication-title: New J. Phys. doi: 10.1088/1367-2630/12/5/055027 – volume: 50 start-page: 1645 year: 1994 ident: 10.1016/j.aop.2015.07.009_sbref35b publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.50.1645 – volume: 4 start-page: 031015 year: 2014 ident: 10.1016/j.aop.2015.07.009_br000305 publication-title: Phys. Rev. X – volume: 78 start-page: 2690 year: 1997 ident: 10.1016/j.aop.2015.07.009_sbref39a publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.2690 – start-page: 128 year: 2000 ident: 10.1016/j.aop.2015.07.009_br000095 – volume: 377 start-page: 1682 year: 2013 ident: 10.1016/j.aop.2015.07.009_br000265 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2013.04.001 – volume: 60 start-page: 2721 year: 1999 ident: 10.1016/j.aop.2015.07.009_br000200 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.60.2721 – volume: vol. 784 year: 2009 ident: 10.1016/j.aop.2015.07.009_br000035 – volume: 79 start-page: 061103 year: 2009 ident: 10.1016/j.aop.2015.07.009_sbref13c publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.061103 – volume: 29 start-page: 224005 year: 2012 ident: 10.1016/j.aop.2015.07.009_br000485 publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/29/22/224005 – volume: 85 start-page: 061126 year: 2012 ident: 10.1016/j.aop.2015.07.009_br000050 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.061126 – ident: 10.1016/j.aop.2015.07.009_br000295 – ident: 10.1016/j.aop.2015.07.009_br000275 – ident: 10.1016/j.aop.2015.07.009_br000465 – volume: 35 start-page: 414 year: 2006 ident: 10.1016/j.aop.2015.07.009_br000345 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/35/1/039 – volume: 90 start-page: 012124 year: 2014 ident: 10.1016/j.aop.2015.07.009_sbref27c publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.012124 – volume: 57 start-page: 2992 year: 1998 ident: 10.1016/j.aop.2015.07.009_sbref21a publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.57.2992 – volume: 14 start-page: 680 year: 2004 ident: 10.1016/j.aop.2015.07.009_sbref2c publication-title: Chaos doi: 10.1063/1.1781911 – volume: 225 start-page: 305 year: 2002 ident: 10.1016/j.aop.2015.07.009_sbref1c publication-title: Comm. Math. Phys. doi: 10.1007/s002200100583 – volume: 77 start-page: 062102 year: 2008 ident: 10.1016/j.aop.2015.07.009_br000245 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.062102 – volume: 110 start-page: 130406 year: 2013 ident: 10.1016/j.aop.2015.07.009_br000045 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.130406 – volume: 90 start-page: 042128 year: 2014 ident: 10.1016/j.aop.2015.07.009_br000165 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.042128 – volume: 85 start-page: 372 year: 2012 ident: 10.1016/j.aop.2015.07.009_br000450 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2012-30640-x – volume: 14 start-page: 073007 year: 2012 ident: 10.1016/j.aop.2015.07.009_sbref16a publication-title: New J. Phys. doi: 10.1088/1367-2630/14/7/073007 – volume: 105 start-page: 180501 year: 2010 ident: 10.1016/j.aop.2015.07.009_br000285 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.180501 – volume: 2 start-page: 329 year: 2011 ident: 10.1016/j.aop.2015.07.009_br000210 publication-title: Annu. Rev. Cond. Mat. Phys. doi: 10.1146/annurev-conmatphys-062910-140506 – ident: 10.1016/j.aop.2015.07.009_br000500 – volume: 154 start-page: 1191 year: 2014 ident: 10.1016/j.aop.2015.07.009_sbref27b publication-title: J. Stat. Phys. doi: 10.1007/s10955-014-0933-y – volume: 72 start-page: 084023 year: 2005 ident: 10.1016/j.aop.2015.07.009_br000410 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.72.084023 – volume: 377 start-page: 2831 year: 2013 ident: 10.1016/j.aop.2015.07.009_br000255 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2013.08.006 – volume: 55 start-page: 4070 year: 1997 ident: 10.1016/j.aop.2015.07.009_br000490 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.55.4070 – volume: 8 start-page: 0245 year: 2008 ident: 10.1016/j.aop.2015.07.009_br000250 publication-title: Quantum Inf. Comput. – volume: 65 start-page: 365 year: 2014 ident: 10.1016/j.aop.2015.07.009_br000225 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040513-103724 – volume: 11 start-page: 3 year: 2008 ident: 10.1016/j.aop.2015.07.009_br000370 publication-title: Living Rev. Relativ. doi: 10.12942/lrr-2008-3 – volume: 13 start-page: 053009 year: 2011 ident: 10.1016/j.aop.2015.07.009_sbref13e publication-title: New J. Phys. doi: 10.1088/1367-2630/13/5/053009 – volume: 372 start-page: 131 year: 2002 ident: 10.1016/j.aop.2015.07.009_sbref2b publication-title: Phys. Rep. doi: 10.1016/S0370-1573(02)00138-2 |
SSID | ssj0011458 |
Score | 2.363045 |
Snippet | The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 139 |
SubjectTerms | ACTION INTEGRAL ANHARMONIC OSCILLATORS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DENSITY DENSITY MATRIX Energy flow relation EXPECTATION VALUE FIELD THEORIES Harmonic analysis HARMONIC OSCILLATORS Influence functional formalism MANY-BODY PROBLEM Nonequilibrium steady state Normal distribution Open quantum system OSCILLATORS QUANTUM OPERATORS Quantum physics QUANTUM SYSTEMS Quantum transport STATISTICAL MECHANICS STEADY-STATE CONDITIONS Stochastic density matrix Stochastic models STOCHASTIC PROCESSES THERMODYNAMICS |
Title | Nonequilibrium steady state in open quantum systems: Influence action, stochastic equation and power balance |
URI | https://dx.doi.org/10.1016/j.aop.2015.07.009 https://www.proquest.com/docview/1724232779 https://www.osti.gov/biblio/22560249 |
Volume | 362 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yEbyIP3E6Rw6exLp2S9LVm4hjKu7kYLeQvmQ4me3mtoMX_3bfS1tBlB28DLrm9cd7afKFfO97jJ0L1YUxQDcQKozxByBIE5sEbYuLCbDYiXyViKeB6g_Fw0iONthtlQtDtMpy7C_GdD9al_-0Sm-2ZpMJ5fiStgohlmLDkTLYRUy9_Orzm-aBcF92q6p51Lra2fQcL5OTZGUkvX4ncRL_nptqOX5uvwZrPwP1dtlOCR35TfF0e2zDZftsy1M4YXHApoM8c_PVxJP4V2_ch--D-4whPsk41cni8xV6kk4WQuXX_L4qUsKLDIdLNMjhxZB8M8fL-cBxk1k-o3pqPCUqJLhDNuzdPd_2g7KWQgAd2VkGQNpv4TgaRx2TSCektBClCkFrl9JzbexUalxsQaoYVBK1XSJtKkNsg4AKcdoRq2X4GseMWwsY-FA4Y3BxqQCXuJExaiwikYYdiOssrLyooRQap3oXU10xyl41Ol6T43VI299JnV18m8wKlY11jUUVGv2jq2icBdaZNSiMZELyuEA8IrRpE-bDNSiersKry894oRHd0UZ2HCcn_7vpKdumoyJ5scFqy_eVO0MUs0ybvps22ebN_WN_8AVwa_D9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UY_RifEZ89uDJuLILbZf1ZogEFTlJ4q3pTkvE4AIKBy_-dme6uyRG48ELh21ngZk-vqbffMPYmVBNGAA0A6HCGD8AgjSxSVC3eJgAi4PIV4l46KlOX9w9yacl1ipzYYhWWaz9-ZruV-viSa3wZm0yHFKOL2mrEGLJLxyX2YrA6UtlDC4_FzwPxPuyWZbNo-7l1aYneZkxaVZG0gt4Einx982pMsb59mO19ltQe5NtFNiRX-c_b4stuWybrXoOJ7zvsFFvnLnpfOhZ_PNX7uP3wX3KEB9mnApl8ekcXUmNuVL5Fb8tq5TwPMXhAg3G8GxIv5nj63zkuMksn1BBNZ4SFxLcLuu3bx5bnaAophBAQzZmAZD4WziIBlHDJNIJKS1EqULU2qT8XBs7lRoXW5AqBpVEdZdIm8oQ-yCiQqC2xyoZ_o19xq0FjHwonDF4ulSAZ9zIGDUQkUjDBsRVFpZe1FAojVPBi5EuKWUvGh2vyfE6pPvvpMrOFyaTXGbjr86iDI3-NlY0bgN_mR1RGMmE9HGBiERoUyfQh4dQbC7Dq4t5_K4R3tFNdhwnB__70lO21nl86Orube_-kK1TS57JeMQqs7e5O0ZIM0tP_JD9AvZV8os |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonequilibrium+steady+state+in+open+quantum+systems%3A+Influence+action%2C+stochastic+equation+and+power+balance&rft.jtitle=Annals+of+physics&rft.au=Hsiang%2C+J.-T.&rft.au=Hu%2C+B.L.&rft.date=2015-11-01&rft.issn=0003-4916&rft.volume=362&rft.spage=139&rft.epage=169&rft_id=info:doi/10.1016%2Fj.aop.2015.07.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aop_2015_07_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4916&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4916&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4916&client=summon |