DAMP: accurate time series anomaly detection on trillions of datapoints and ultra-fast arriving data streams
Time series anomaly detection is one of the most active areas of research in data mining, with dozens of new approaches been suggested each year. In spite of all these creative solutions proposed for this problem, recent empirical evidence suggests that the time series discord , a relatively simple...
Saved in:
Published in | Data mining and knowledge discovery Vol. 37; no. 2; pp. 627 - 669 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2023
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1384-5810 1573-756X |
DOI | 10.1007/s10618-022-00911-7 |
Cover
Loading…
Abstract | Time series anomaly detection is one of the most active areas of research in data mining, with dozens of new approaches been suggested each year. In spite of all these creative solutions proposed for this problem, recent empirical evidence suggests that the
time series discord
, a relatively simple twenty-year old distance-based technique, remains among the state-of-art techniques. While there are many algorithms for computing the time series discords, they all have limitations. First, they are limited to the batch case, whereas the online case is more actionable. Second, these algorithms exhibit poor scalability beyond tens of thousands of datapoints. In this work we introduce DAMP, a novel algorithm that addresses both these issues. DAMP computes exact left-discords on fast arriving streams, at up to 300,000 Hz using a commodity desktop. This allows us to find time series discords in datasets with trillions of datapoints for the first time. We will demonstrate the utility of our algorithm with the most ambitious set of time series anomaly detection experiments ever conducted. We will further show that our speedup improvements can be applied in the multidimensional case. |
---|---|
AbstractList | Time series anomaly detection is one of the most active areas of research in data mining, with dozens of new approaches been suggested each year. In spite of all these creative solutions proposed for this problem, recent empirical evidence suggests that the time series discord, a relatively simple twenty-year old distance-based technique, remains among the state-of-art techniques. While there are many algorithms for computing the time series discords, they all have limitations. First, they are limited to the batch case, whereas the online case is more actionable. Second, these algorithms exhibit poor scalability beyond tens of thousands of datapoints. In this work we introduce DAMP, a novel algorithm that addresses both these issues. DAMP computes exact left-discords on fast arriving streams, at up to 300,000 Hz using a commodity desktop. This allows us to find time series discords in datasets with trillions of datapoints for the first time. We will demonstrate the utility of our algorithm with the most ambitious set of time series anomaly detection experiments ever conducted. We will further show that our speedup improvements can be applied in the multidimensional case. Time series anomaly detection is one of the most active areas of research in data mining, with dozens of new approaches been suggested each year. In spite of all these creative solutions proposed for this problem, recent empirical evidence suggests that the time series discord , a relatively simple twenty-year old distance-based technique, remains among the state-of-art techniques. While there are many algorithms for computing the time series discords, they all have limitations. First, they are limited to the batch case, whereas the online case is more actionable. Second, these algorithms exhibit poor scalability beyond tens of thousands of datapoints. In this work we introduce DAMP, a novel algorithm that addresses both these issues. DAMP computes exact left-discords on fast arriving streams, at up to 300,000 Hz using a commodity desktop. This allows us to find time series discords in datasets with trillions of datapoints for the first time. We will demonstrate the utility of our algorithm with the most ambitious set of time series anomaly detection experiments ever conducted. We will further show that our speedup improvements can be applied in the multidimensional case. |
Author | Lu, Yue Wu, Renjie Zuluaga, Maria A. Mueen, Abdullah Keogh, Eamonn |
Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0003-4812-9658 surname: Lu fullname: Lu, Yue email: ylu175@ucr.edu organization: University of California, Riverside – sequence: 2 givenname: Renjie surname: Wu fullname: Wu, Renjie organization: University of California, Riverside – sequence: 3 givenname: Abdullah surname: Mueen fullname: Mueen, Abdullah organization: Department of Computer Science, University of New Mexico – sequence: 4 givenname: Maria A. surname: Zuluaga fullname: Zuluaga, Maria A. organization: Data Science Department, EURECOM – sequence: 5 givenname: Eamonn surname: Keogh fullname: Keogh, Eamonn organization: University of California, Riverside |
BackLink | https://hal.science/hal-03935329$$DView record in HAL |
BookMark | eNp9kU9r3DAQxUVJoPn3BXIS9NSD2pFkW1ZvS5I2gS3JIYXexMgrpwpeayNpF_bbR163BHoICDSI3xu9mXdKjsYwOkIuOXzhAOpr4tDwloEQDEBzztQHcsJrJZmqm99HpZZtxeqWw0dymtIzANRCwgkZrhc_H75R7LptxOxo9mtHk4veJYpjWOOwpyuXXZd9GGk5OfphKHWioacrzLgJfswTvKLbIUdkPaZMMUa_8-PTAaEpR4frdE6OexySu_h7n5Ff328er27Z8v7H3dViyTpZy8ys7noQjW5EL3TtrLBVJXRbgdW9tto5LYRUyLGqVo0ArluwtrFtp2porKjlGfk89_2Dg9lEv8a4NwG9uV0szfQGUpefhN7xwn6a2U0ML1uXsnkO2zgWe0YopRWIqpk6tjPVxZBSdL3pfMZpJ2ViPxgOZsrBzDmYkoM55GBUkYr_pP8cvSuSsygVeHxy8c3VO6pXDqSb7g |
CitedBy_id | crossref_primary_10_1016_j_mlwa_2024_100530 crossref_primary_10_1007_s10994_024_06712_x crossref_primary_10_1038_s44260_025_00030_6 crossref_primary_10_1016_j_is_2025_102524 |
Cites_doi | 10.52964/AMJA.0553 10.1109/ICDM50108.2020.00147 10.1109/JAS.2019.1911747 10.1145/3219819.3219845 10.1137/1.9781611977172.21 10.1007/s10618-020-00702-y 10.1016/j.cageo.2022.105040 10.1145/3292500.3330672 10.1109/LRA.2018.2801475 10.14778/3529337.3529354 10.1109/ICDM.2018.00099 10.1109/ACCESS.2020.2990528 10.1007/s00778-021-00655-8 10.1016/j.compind.2022.103692 10.1007/978-3-030-91445-5_12 10.1109/TKDE.2021.3112126 10.1016/j.enbuild.2020.109892 10.14778/3467861.3467863 10.1145/3292500.3330650 10.1038/s41597-022-01455-7 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U 1XC |
DOI | 10.1007/s10618-022-00911-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library (ProQuest Database) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 669 |
ExternalDocumentID | oai_HAL_hal_03935329v1 10_1007_s10618_022_00911_7 |
GrantInformation_xml | – fundername: French National Research Agency grantid: ANR-19-P3IA-0002 – fundername: National Science Foundation: NSF grantid: 2103976; OIA-1757207; CNS-2008910; RI-2104537 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PUEGO Q9U 1XC |
ID | FETCH-LOGICAL-c353t-b9cf026962f295eb2b4429840b9f9b9ee92237a1a44d6201980bb6b8c7506b253 |
IEDL.DBID | U2A |
ISSN | 1384-5810 |
IngestDate | Fri May 09 12:18:12 EDT 2025 Sat Aug 23 14:29:49 EDT 2025 Tue Jul 01 00:40:32 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Fri Feb 21 02:44:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Streaming data Anomaly detection Time series |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-b9cf026962f295eb2b4429840b9f9b9ee92237a1a44d6201980bb6b8c7506b253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4812-9658 0000-0002-1147-766X |
PQID | 2779702465 |
PQPubID | 43030 |
PageCount | 43 |
ParticipantIDs | hal_primary_oai_HAL_hal_03935329v1 proquest_journals_2779702465 crossref_citationtrail_10_1007_s10618_022_00911_7 crossref_primary_10_1007_s10618_022_00911_7 springer_journals_10_1007_s10618_022_00911_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V Springer |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer |
References | Yeh C-CM, Zhu Y, Dau HA et al (2019) Online amnestic dtw to allow real-time golden batch monitoring. pp 2604–2612 WuRKeoghECurrent time series anomaly detection benchmarks are flawed and are creating the illusion of progressIEEE Trans Knowl Data Eng202110.1109/TKDE.2021.3112126 Aubet F-X, Zügner D, Gasthaus J (2021) Monte Carlo EM for deep time series anomaly detection. arXiv:2112.14436 [cs, stat] TruongHTTaBPLeQALight-weight federated learning-based anomaly detection for time-series data in industrial control systemsComput Ind202214010369210.1016/j.compind.2022.103692 DauHABagnallAKamgarKThe UCR time series archiveIEEE/CAA J Autom Sin201961293130510.1109/JAS.2019.1911747 KirtiRKaradiRCardiac tamponade: atypical presentations after cardiac surgeryAcute Med201211939610.52964/AMJA.0553 CNC Crashes. Video. (15 Feb 2018). from https://youtu.be/t2tBtZCa7j4?t=205. Retrieved December 20, 2021 Wikipedia. Leap year problem. from https://en.wikipedia.org/wiki/Leap_year_problem. Retrieved December 1, 2021 National Weather Service. January 24, 2019 heavy rain and flooding. From https://www.weather.gov/aly/24Jan19HeavyRainFlood. Retrieved May 1 2022 ThillMKonenWBäckTTime series encodings with temporal convolutional networks2020ChamSpringer161173 NeupaneDSeokJBearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A reviewIEEE Access20208931559317810.1109/ACCESS.2020.2990528 Yeh C-CM, Zheng Y, Wang J et al (2021) Error-bounded approximate time series joins using compact dictionary representations of time series. CoRR abs arXiv:2112.12965 Mueen A, Zhu Y, Yeh M et al (2017) The fastest similarity search algorithm for time series subsequences under euclidean distance. http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.htmlAccessed 24 Janurary, 2022 Wastewater News. Valentine’s day storm slams California, pushing water agencies to the edge. From www.news.cornell.edu/Chronicle/00/5.18.00/wireless_class.html. Retrieved Dec 1 2021 AudibertJMartiSGuyardFZuluagaMALemaireVMalinowskiSBagnallAFrom univariate to multivariate time series anomaly detection with non-local informationAdvanced analytics and learning on temporal data2021ChamSpringer International Publishing18619410.1007/978-3-030-91445-5_12 ImaniSMadridFDingWIntroducing time series snippets: a new primitive for summarizing long time seriesData Min Knowl Disc20203417131743415536710.1007/s10618-020-00702-y1460.62147 ParkJYWilsonEParkerANagyZThe good, the bad, and the ugly: data-driven load profile discord identification in a large building portfolioEnergy Build202021510.1016/j.enbuild.2020.109892 Silive.com. Wild storm pelts Staten Island with giant hail—‘threat of tornado has passed’ from https://www.silive.com/news/2019/05/nws-issues-tornado-warning-for-staten-island.html. Retrieved May 1 2022 Paparrizos J, Kang Y, Boniol P et al (2022) TSB-UAD: An end-to-end benchmark suite for univariate time-series anomaly detection. In: Proceedings of the VLDB endowment (PVLDB) journal DaigavaneAWagstaffKLDoranGUnsupervised detection of Saturn magnetic field boundary crossings from plasma spectrometer dataComput Geosci202216110.1016/j.cageo.2022.105040 Nakamura T, Imamura M, Mercer R, Keogh E (2020) Merlin: parameter-free discovery of arbitrary length anomalies in massive time series archives. In: 2020 IEEE international conference on data mining (ICDM). IEEE, Sorrento, Italy, pp 1190–1195 Su Y, Zhao Y, Niu C et al (2019) Robust anomaly detection for multivariate time series through stochastic recurrent neural network pp 2828–2837 Zhu Y, Yeh C-CM, Zimmerman Z et al (2018) Matrix profile XI: SCRIMP++: time series motif discovery at interactive speeds. In: IEEE pp 837–846 Palpanas T (2022) Personal communication June 4th 2022 Khansa HE, Gervet C and Brouillet A (2012) Prominent discord discovery with matrix profile: application to climate data insight. In: 10th international conference of advanced computer science & information technology (ACSIT 2022) May 21~22, 2022, Zurich, Switzerland BoniolPLinardiMRoncalloFUnsupervised and scalable subsequence anomaly detection in large data seriesVLDB J20213090993110.1007/s00778-021-00655-8 Case Western Reserve University Bearing Data Center (2021) Available: https://csegroups.case.edu/bearingdatacenter/home. Accessed: Nov. 15, 2021 Zheng X, Xu N, Trinh L et al (2021) PSML: a multi-scale time-series dataset for machine learning in decarbonized energy grids. arXiv preprint arXiv: 2110.06324 Keogh E (2021) Irrational exuberance why we should not believe 95% of papers on time series anomaly detection. In: 7th SIGKDD workshop on mining and learning from time series at SIGKDD 2021. Workshop Keynote https://www.youtube.com/watch?v=Vg1p3DouX8w&t=324s Higham NJ (2002) Accuracy and stability of numerical algorithms, 2 edn. ISBN: 978-0-89871-521-7 DAMP (2022) https://sites.google.com/view/discord-aware-matrix-profile Hundman K, Constantinou V, Laporte C et al (2018) Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. ACM, London United Kingdom, pp 387–395 Nilsson F (2022) Joint human-machine exploration of industrial time series using the matrix profile. In: Halmstad university, school of information technology, Halmstad embedded and intelligent systems research (EIS), CAISR—center for applied intelligent systems research ParkDHoshiYKempCCA multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoderIEEE Robot Autom Lett201831544155110.1109/LRA.2018.2801475 BoniolPPaparrizosJPalpanasTFranklinMJSAND: streaming subsequence anomaly detectionProc VLDB Endow2021141717172910.14778/3467861.3467863 Doshi K, Abudalou S, Yilmaz Y (2022) TiSAT: time series anomaly transformer. arXiv:2203.05167 [cs, eess, stat] 911_CR1 D Park (911_CR27) 2018; 3 J Audibert (911_CR2) 2021 911_CR19 911_CR14 911_CR36 911_CR37 911_CR16 911_CR38 911_CR17 911_CR39 911_CR10 P Boniol (911_CR5) 2021; 14 911_CR33 911_CR12 911_CR34 911_CR13 911_CR30 HT Truong (911_CR32) 2022; 140 911_CR29 D Neupane (911_CR23) 2020; 8 R Wu (911_CR35) 2021 S Imani (911_CR15) 2020; 34 A Daigavane (911_CR9) 2022; 161 911_CR25 911_CR26 M Thill (911_CR31) 2020 HA Dau (911_CR11) 2019; 6 JY Park (911_CR28) 2020; 215 911_CR21 911_CR22 P Boniol (911_CR4) 2021; 30 911_CR24 911_CR8 911_CR7 R Kirti (911_CR18) 2012; 11 |
References_xml | – reference: Higham NJ (2002) Accuracy and stability of numerical algorithms, 2 edn. ISBN: 978-0-89871-521-7 – reference: Wastewater News. Valentine’s day storm slams California, pushing water agencies to the edge. From www.news.cornell.edu/Chronicle/00/5.18.00/wireless_class.html. Retrieved Dec 1 2021 – reference: Wikipedia. Leap year problem. from https://en.wikipedia.org/wiki/Leap_year_problem. Retrieved December 1, 2021 – reference: ThillMKonenWBäckTTime series encodings with temporal convolutional networks2020ChamSpringer161173 – reference: Zheng X, Xu N, Trinh L et al (2021) PSML: a multi-scale time-series dataset for machine learning in decarbonized energy grids. arXiv preprint arXiv: 2110.06324 – reference: Doshi K, Abudalou S, Yilmaz Y (2022) TiSAT: time series anomaly transformer. arXiv:2203.05167 [cs, eess, stat] – reference: NeupaneDSeokJBearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A reviewIEEE Access20208931559317810.1109/ACCESS.2020.2990528 – reference: Mueen A, Zhu Y, Yeh M et al (2017) The fastest similarity search algorithm for time series subsequences under euclidean distance. http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.htmlAccessed 24 Janurary, 2022 – reference: Palpanas T (2022) Personal communication June 4th 2022 – reference: TruongHTTaBPLeQALight-weight federated learning-based anomaly detection for time-series data in industrial control systemsComput Ind202214010369210.1016/j.compind.2022.103692 – reference: Yeh C-CM, Zhu Y, Dau HA et al (2019) Online amnestic dtw to allow real-time golden batch monitoring. pp 2604–2612 – reference: ParkJYWilsonEParkerANagyZThe good, the bad, and the ugly: data-driven load profile discord identification in a large building portfolioEnergy Build202021510.1016/j.enbuild.2020.109892 – reference: Keogh E (2021) Irrational exuberance why we should not believe 95% of papers on time series anomaly detection. In: 7th SIGKDD workshop on mining and learning from time series at SIGKDD 2021. Workshop Keynote https://www.youtube.com/watch?v=Vg1p3DouX8w&t=324s – reference: Nilsson F (2022) Joint human-machine exploration of industrial time series using the matrix profile. In: Halmstad university, school of information technology, Halmstad embedded and intelligent systems research (EIS), CAISR—center for applied intelligent systems research – reference: ImaniSMadridFDingWIntroducing time series snippets: a new primitive for summarizing long time seriesData Min Knowl Disc20203417131743415536710.1007/s10618-020-00702-y1460.62147 – reference: BoniolPLinardiMRoncalloFUnsupervised and scalable subsequence anomaly detection in large data seriesVLDB J20213090993110.1007/s00778-021-00655-8 – reference: DAMP (2022) https://sites.google.com/view/discord-aware-matrix-profile – reference: KirtiRKaradiRCardiac tamponade: atypical presentations after cardiac surgeryAcute Med201211939610.52964/AMJA.0553 – reference: Yeh C-CM, Zheng Y, Wang J et al (2021) Error-bounded approximate time series joins using compact dictionary representations of time series. CoRR abs arXiv:2112.12965 – reference: ParkDHoshiYKempCCA multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoderIEEE Robot Autom Lett201831544155110.1109/LRA.2018.2801475 – reference: AudibertJMartiSGuyardFZuluagaMALemaireVMalinowskiSBagnallAFrom univariate to multivariate time series anomaly detection with non-local informationAdvanced analytics and learning on temporal data2021ChamSpringer International Publishing18619410.1007/978-3-030-91445-5_12 – reference: Khansa HE, Gervet C and Brouillet A (2012) Prominent discord discovery with matrix profile: application to climate data insight. In: 10th international conference of advanced computer science & information technology (ACSIT 2022) May 21~22, 2022, Zurich, Switzerland – reference: Su Y, Zhao Y, Niu C et al (2019) Robust anomaly detection for multivariate time series through stochastic recurrent neural network pp 2828–2837 – reference: Nakamura T, Imamura M, Mercer R, Keogh E (2020) Merlin: parameter-free discovery of arbitrary length anomalies in massive time series archives. In: 2020 IEEE international conference on data mining (ICDM). IEEE, Sorrento, Italy, pp 1190–1195 – reference: Aubet F-X, Zügner D, Gasthaus J (2021) Monte Carlo EM for deep time series anomaly detection. arXiv:2112.14436 [cs, stat] – reference: Silive.com. Wild storm pelts Staten Island with giant hail—‘threat of tornado has passed’ from https://www.silive.com/news/2019/05/nws-issues-tornado-warning-for-staten-island.html. Retrieved May 1 2022 – reference: Hundman K, Constantinou V, Laporte C et al (2018) Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. ACM, London United Kingdom, pp 387–395 – reference: BoniolPPaparrizosJPalpanasTFranklinMJSAND: streaming subsequence anomaly detectionProc VLDB Endow2021141717172910.14778/3467861.3467863 – reference: Zhu Y, Yeh C-CM, Zimmerman Z et al (2018) Matrix profile XI: SCRIMP++: time series motif discovery at interactive speeds. In: IEEE pp 837–846 – reference: CNC Crashes. Video. (15 Feb 2018). from https://youtu.be/t2tBtZCa7j4?t=205. Retrieved December 20, 2021 – reference: Paparrizos J, Kang Y, Boniol P et al (2022) TSB-UAD: An end-to-end benchmark suite for univariate time-series anomaly detection. In: Proceedings of the VLDB endowment (PVLDB) journal – reference: DaigavaneAWagstaffKLDoranGUnsupervised detection of Saturn magnetic field boundary crossings from plasma spectrometer dataComput Geosci202216110.1016/j.cageo.2022.105040 – reference: Case Western Reserve University Bearing Data Center (2021) Available: https://csegroups.case.edu/bearingdatacenter/home. Accessed: Nov. 15, 2021 – reference: DauHABagnallAKamgarKThe UCR time series archiveIEEE/CAA J Autom Sin201961293130510.1109/JAS.2019.1911747 – reference: WuRKeoghECurrent time series anomaly detection benchmarks are flawed and are creating the illusion of progressIEEE Trans Knowl Data Eng202110.1109/TKDE.2021.3112126 – reference: National Weather Service. January 24, 2019 heavy rain and flooding. From https://www.weather.gov/aly/24Jan19HeavyRainFlood. Retrieved May 1 2022 – ident: 911_CR24 – ident: 911_CR8 – volume: 11 start-page: 93 year: 2012 ident: 911_CR18 publication-title: Acute Med doi: 10.52964/AMJA.0553 – ident: 911_CR21 doi: 10.1109/ICDM50108.2020.00147 – ident: 911_CR22 – volume: 6 start-page: 1293 year: 2019 ident: 911_CR11 publication-title: IEEE/CAA J Autom Sin doi: 10.1109/JAS.2019.1911747 – ident: 911_CR14 doi: 10.1145/3219819.3219845 – ident: 911_CR36 doi: 10.1137/1.9781611977172.21 – ident: 911_CR12 – volume: 34 start-page: 1713 year: 2020 ident: 911_CR15 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-020-00702-y – volume: 161 year: 2022 ident: 911_CR9 publication-title: Comput Geosci doi: 10.1016/j.cageo.2022.105040 – ident: 911_CR16 – ident: 911_CR30 doi: 10.1145/3292500.3330672 – ident: 911_CR33 – ident: 911_CR10 – ident: 911_CR25 – volume: 3 start-page: 1544 year: 2018 ident: 911_CR27 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2018.2801475 – ident: 911_CR26 doi: 10.14778/3529337.3529354 – ident: 911_CR39 doi: 10.1109/ICDM.2018.00099 – volume: 8 start-page: 93155 year: 2020 ident: 911_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990528 – ident: 911_CR29 – ident: 911_CR7 – ident: 911_CR1 – volume: 30 start-page: 909 year: 2021 ident: 911_CR4 publication-title: VLDB J doi: 10.1007/s00778-021-00655-8 – start-page: 161 volume-title: Time series encodings with temporal convolutional networks year: 2020 ident: 911_CR31 – ident: 911_CR13 – volume: 140 start-page: 103692 year: 2022 ident: 911_CR32 publication-title: Comput Ind doi: 10.1016/j.compind.2022.103692 – ident: 911_CR34 – start-page: 186 volume-title: Advanced analytics and learning on temporal data year: 2021 ident: 911_CR2 doi: 10.1007/978-3-030-91445-5_12 – year: 2021 ident: 911_CR35 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2021.3112126 – volume: 215 year: 2020 ident: 911_CR28 publication-title: Energy Build doi: 10.1016/j.enbuild.2020.109892 – ident: 911_CR19 – ident: 911_CR17 – volume: 14 start-page: 1717 year: 2021 ident: 911_CR5 publication-title: Proc VLDB Endow doi: 10.14778/3467861.3467863 – ident: 911_CR37 doi: 10.1145/3292500.3330650 – ident: 911_CR38 doi: 10.1038/s41597-022-01455-7 |
SSID | ssj0005230 |
Score | 2.4104147 |
Snippet | Time series anomaly detection is one of the most active areas of research in data mining, with dozens of new approaches been suggested each year. In spite of... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 627 |
SubjectTerms | Algorithms Anomalies Artificial Intelligence Chemistry and Earth Sciences Computer Aided Engineering Computer Science Data mining Data Mining and Knowledge Discovery Data transmission Information Storage and Retrieval Physics Statistics for Engineering Time series |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9tAEF6a5KUvOXoQNwdLyFu6NJJWe-QlOIcxpQmmNJA3sbvWkoAjuZIcyL_PjLyy00IMepJGEuib3flmNAchx1ppp6RRTAiAgVsTMW1h4TlrwXtWWtm2O__NrRje8Z_36X0IuNUhrbLbE9uNelw6jJH_iKXUEgyKSM-nfxlOjcK_q2GExhrZgC1YgfO1cXF9O_r9JskjmdcJK85SFZ2GsplQPCcixTCbHXhGFDH5j2lae8DEyDes878fpa39GWyTzUAcaX-O9A75kBefyFY3lIGGNfqZTK76N6MzapybYRcIisPjKepZXlNTlE9m8kLHedNmYBUUjqbCkAsoHy09xYTRaflYNCg8prNJUxnmTd1QU1WPGHxoRSiWmJin-gu5G1z_uRyyMFKBuSRNGma18-B1aRH7WKfgVVsOBgmcPKu9tjrPNdAFaSLD-VgAN9Dq1FphlQNiIWycJl_JelEW-S6hXvoklzIFKc_BLwEhzqUH_iMs-CCqR6Lua2Yu9BvHsReTbNkpGRHIAIGsRSCTPXKyuGc677axUvoIQFoIYqPsYf9XhufaiuMk1s9Rj-x3GGZhedbZUpl65HuH6_Ly-6_8tvppe-QjjqOf56jtk_WmmuUHQFoaexg08xUTsOUG priority: 102 providerName: ProQuest |
Title | DAMP: accurate time series anomaly detection on trillions of datapoints and ultra-fast arriving data streams |
URI | https://link.springer.com/article/10.1007/s10618-022-00911-7 https://www.proquest.com/docview/2779702465 https://hal.science/hal-03935329 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED6WlsJe9qPtWLYuiLG3TlDZsn7szduShm0tpSzQPhlJsVghdYrtDPbf76TYbTbWwsBgsM826JOs76Tv7gDeaaWdkkZRIRAGbg2j2uLAc9ai96y0sjE7_8mpmM74l4vsogsKa3q1e78lGf_UG8Fugika1OfICxijcgDbWfDdsRfPknxD2JGuY4MVp5liR12ozL_f8cd0NPgRxJAbTPOvzdE450yewZOOLJJ8je5zeFRWu_C0L8RAunG5CztRx-maPVh8zk_OPhDj3CrkgCChdDwJvaxsiKmW12bxi8zLNuqvKoJHW4cFF-x6ZOlJkIveLK-qNhjPyWrR1oZ607TE1PVVWHqIJiQEmJjrZh9mk_H3T1PaFVSgLs3SllrtPPpcWiQ-0Rn61JbjdIQuntVeW12WGsmCNMxwPhfIDLQ6slZY5ZBWCJtk6QvYqpZV-RKIlz4tpcT2Z56jV4JGnEuP7EdY9EDUEFjfroXrso2HoheL4i5PcsCiQCyKiEUhh3B4-8zNOtfGg9ZvEa5bw5Ame5p_K8K1GG-cJvonG8JBj2bRDc6mSKTUErmJyIbwvkf47vb9n3z1f-av4XEoTr9WrB3AVluvyjdIYVo7goGaHI9gOz--_DrG88fx6dn5KPbj391J54A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCF8hRLW7AQnMCiSRw_kCq0oixbultxaKXejJ21RaVtsk2yRf1T_EZm8ugWJHqrlFMySSR_43l5HoS80UpnSlrFhAAYuLMR0w42XuYceM9KK9d0558eivEx_3aSnqyR330tDKZV9jKxEdSzIsMY-YdYSi1BoYj00-Kc4dQoPF3tR2i0bHHgL3-By1bt7u8Bvm_jePTl6POYdVMFWJakSc2czgI4HlrEIdYpOJaOg0wGP8fpoJ32XoPGlDaynM8EqEetdpwTTmWgW4WLcUoEiPy7PEk07ig1-notpSRpq5IVZ6mKdroina5UT0SKYe48WDVRxORfivDOT0zDvGbj_nMs22i70UPyoDNT6bDlq0dkzeePyUY_AoJ2EuEJme8Np98_UptlS-w5QXFUPUWu9hW1eXFm55d05usm3yuncNUlBniA1WkRKKanLorTvEbiGV3O69KyYKua2rI8xVBHQ0KxoMWeVU_J8a0s9TOynhe5f05okCHxUqZAFTh4QUDEuQxgbQkHHo8akKhfTZN13c1xyMbcrPoyIwIGEDANAkYOyLurdxZtb48bqV8DSFeE2JZ7PJwYvNfUNyexvogGZKvH0HTCoDIr1h2Q9z2uq8f__-WLm7_2itwbH00nZrJ_eLBJ7sdgfrXZcVtkvS6XfhvMpdq9bHiUkh-3vSn-AO0tHus |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RQEB7qFsQXrTdcbfUg-qSHbm7nIhRZ3S5b2y6LWOhbPCebg4VtsiZZpX_NX9eZXLpVsG-FPCWTBDJzZuY7-WYG4I1WOlHSKC4EqiG0xuPa4sJLrEX0rLSydXf-46mYnIRfTqPTDfjT1cIQrbLzibWjnucJ7ZHv-lJqiQFFRLuupUXMRuOPy5-cJkjRn9ZunEZjIofpxW-Eb-XewQh1_db3x_vfPk94O2GAJ0EUVNzqxCEI0cJ3vo4QZNoQ_TNiHqudtjpNNUZPaTwThnOBoVKrgbXCqgTjrLA-TYxA978pERUNerD5aX86-3qNYBI0Ncoq5JHyBm3JTlu4JzzFiUmPOY7ncflXWLzzg0iZ1zLef37S1rFvvAX326SVDRsrewgbafYIHnQDIVjrHx7DYjQ8nn1gJklW1IGC0eB6Rjaelsxk-blZXLB5WtXsr4zhURW03YOGz3LHiKy6zM-yioTnbLWoCsOdKStmiuKMNj5qEUblLea8fAInt_Kxn0Ivy7P0GTAnXZBKGaGUCxEToVAYSoe5l7CIf1QfvO5rxknb65xGbizidZdm0kCMGohrDcSyD--u7lk2nT5ulH6NSroSpCbdk-FRTOfqaufA17-8Pmx3Ooxb11DGa0Puw_tOr-vL_3_l85uf9gru4oKIjw6mhy_gno-5WEOV24ZeVazSHcydKvuyNVIG3297XVwCdqIkfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DAMP%3A+accurate+time+series+anomaly+detection+on+trillions+of+datapoints+and+ultra-fast+arriving+data+streams&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Lu%2C+Yue&rft.au=Wu%2C+Renjie&rft.au=Mueen%2C+Abdullah&rft.au=Zuluaga%2C+Maria+A.&rft.date=2023-03-01&rft.pub=Springer&rft.issn=1384-5810&rft.eissn=1573-756X&rft_id=info:doi/10.1007%2Fs10618-022-00911-7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03935329v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |