Optimization of mid-infrared noninvasive blood-glucose prediction model by support vector regression coupled with different spectral features

[Display omitted] •The accuracy of noninvasive blood-glucose test is improved to meet FDA standards.•Hypothenar is the optimal body-spot for collecting subcutaneous blood-glucose signals.•Exploiting the minimization of spectral interference yields the lowest prediction error. Mid-infrared spectral a...

Full description

Saved in:
Bibliographic Details
Published inSpectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 321; p. 124738
Main Authors Song, Liying, Han, Zhiqiang, Lau, Woon-Ming
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 15.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The accuracy of noninvasive blood-glucose test is improved to meet FDA standards.•Hypothenar is the optimal body-spot for collecting subcutaneous blood-glucose signals.•Exploiting the minimization of spectral interference yields the lowest prediction error. Mid-infrared spectral analysis of glucose in subcutaneous interstitial fluid has been widely employed as a noninvasive alternative to the standard blood-glucose detection requiring blood-sampling via skin-puncturing, but improving the confidence level of such a replacement remains highly desirable. Here, we show that with an innovative metric of attributes in measurements and data-management, a high accuracy in correlating the test results of our improved spectral analysis to those of the standard detection is accomplished. First, our comparative laser speckle contrast imaging of subcutaneous interstitial fluid in fingertips, thenar and hypothenar reveal that spectral measurements from hypothenar, with an attenuated total reflection Fourier transform infrared spectrometer, give much stronger signals than the stereotype measurements from fingertips. Second, we demonstrate that discriminative selection of the spectral locations and ranges, to minimize spectral interference and maximize signal-to-noise, are critically important. The optimal band is pinned at that between 1000 ± 3 cm−1 and1040 ± 3 cm−1. Third, we propose an individual exclusive prediction model by adopting the support vector regression analysis of the spectral data from four subjects. The average predicted coefficient of determination, root mean square error and mean absolute error of four subjects are 0.97, 0.21 mmol/L, 0.17 mmol/L, respectively, and the average probability of being in Zone A of the Clark error grid is 100.00 %. Additionally, we demonstrate with the Bland and Altman plot that our proposed model has the highest consistency with portable blood glucose meter detection method.
AbstractList [Display omitted] •The accuracy of noninvasive blood-glucose test is improved to meet FDA standards.•Hypothenar is the optimal body-spot for collecting subcutaneous blood-glucose signals.•Exploiting the minimization of spectral interference yields the lowest prediction error. Mid-infrared spectral analysis of glucose in subcutaneous interstitial fluid has been widely employed as a noninvasive alternative to the standard blood-glucose detection requiring blood-sampling via skin-puncturing, but improving the confidence level of such a replacement remains highly desirable. Here, we show that with an innovative metric of attributes in measurements and data-management, a high accuracy in correlating the test results of our improved spectral analysis to those of the standard detection is accomplished. First, our comparative laser speckle contrast imaging of subcutaneous interstitial fluid in fingertips, thenar and hypothenar reveal that spectral measurements from hypothenar, with an attenuated total reflection Fourier transform infrared spectrometer, give much stronger signals than the stereotype measurements from fingertips. Second, we demonstrate that discriminative selection of the spectral locations and ranges, to minimize spectral interference and maximize signal-to-noise, are critically important. The optimal band is pinned at that between 1000 ± 3 cm−1 and1040 ± 3 cm−1. Third, we propose an individual exclusive prediction model by adopting the support vector regression analysis of the spectral data from four subjects. The average predicted coefficient of determination, root mean square error and mean absolute error of four subjects are 0.97, 0.21 mmol/L, 0.17 mmol/L, respectively, and the average probability of being in Zone A of the Clark error grid is 100.00 %. Additionally, we demonstrate with the Bland and Altman plot that our proposed model has the highest consistency with portable blood glucose meter detection method.
Mid-infrared spectral analysis of glucose in subcutaneous interstitial fluid has been widely employed as a noninvasive alternative to the standard blood-glucose detection requiring blood-sampling via skin-puncturing, but improving the confidence level of such a replacement remains highly desirable. Here, we show that with an innovative metric of attributes in measurements and data-management, a high accuracy in correlating the test results of our improved spectral analysis to those of the standard detection is accomplished. First, our comparative laser speckle contrast imaging of subcutaneous interstitial fluid in fingertips, thenar and hypothenar reveal that spectral measurements from hypothenar, with an attenuated total reflection Fourier transform infrared spectrometer, give much stronger signals than the stereotype measurements from fingertips. Second, we demonstrate that discriminative selection of the spectral locations and ranges, to minimize spectral interference and maximize signal-to-noise, are critically important. The optimal band is pinned at that between 1000 ± 3 cm and1040 ± 3 cm . Third, we propose an individual exclusive prediction model by adopting the support vector regression analysis of the spectral data from four subjects. The average predicted coefficient of determination, root mean square error and mean absolute error of four subjects are 0.97, 0.21 mmol/L, 0.17 mmol/L, respectively, and the average probability of being in Zone A of the Clark error grid is 100.00 %. Additionally, we demonstrate with the Bland and Altman plot that our proposed model has the highest consistency with portable blood glucose meter detection method.
ArticleNumber 124738
Author Lau, Woon-Ming
Song, Liying
Han, Zhiqiang
Author_xml – sequence: 1
  givenname: Liying
  surname: Song
  fullname: Song, Liying
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 2
  givenname: Zhiqiang
  surname: Han
  fullname: Han, Zhiqiang
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 3
  givenname: Woon-Ming
  surname: Lau
  fullname: Lau, Woon-Ming
  email: leolau@lyu.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38945006$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtu3CAUQFGVqnm0H9BNxA94wssGK6soStpKkbJp1wjDJWVkGwvwRMk_5J_DZNouusgKJM656J5TdDTHGRD6SsmGEtpdbDfZmA0jTGwoE5KrD-iEKskb3rbyqN656hoqWHuMTnPeEkKoYuQTOuaqFy0h3Ql6uV9KmMKzKSHOOHo8BdeE2SeTwOH6X5h3Jocd4GGM0TUP42pjBrzU52DfpCk6GPHwhPO6LDEVvANbYsIJHhLkvEdsXJexznsM5Td2wXtIMBecl0omM2IPpqwV_ow-ejNm-PLnPEO_bm9-Xn9v7u6__bi-umssb3lpjOylt0IKZbpOqhYc64beSCL5wIQXwnoGQnkFHbHCGCehFz2zTClhLVB-hs4Pc5d1mMDpJYXJpCf9t0sF6AGwKeacwP9DKNH79nqra3u9b68P7asj_3NsKG9d645hfNe8PJhQd94FSDrbALOtiVMtpF0M79ivnCyiQg
CitedBy_id crossref_primary_10_1016_j_saa_2024_125400
crossref_primary_10_3390_s25020587
Cites_doi 10.2337/diacare.27.2.615
10.1016/j.saa.2011.09.007
10.1038/nprot.2014.110
10.1016/S0008-6215(00)82690-7
10.1016/j.chemolab.2022.104731
10.1007/s00125-005-1852-x
10.1366/000370203769699090
10.1364/ECBO.2007.6628_63
10.1016/j.tips.2013.05.007
10.2337/dc23-S002
10.1007/BF02446645
10.1089/15209150152607132
10.1039/D1AN01385H
10.1007/s00340-018-6946-5
10.1364/BOE.7.000701
10.1016/j.talanta.2019.01.034
10.1016/S0008-6215(00)85652-9
10.1038/sj.cdd.4400413
10.1517/17425247.2013.801452
10.1117/1.JBO.24.8.080901
10.1016/j.aca.2012.03.043
10.1007/s00216-013-7607-5
10.1111/j.1464-5491.2008.02642.x
10.1039/C8AN01382A
10.1088/0031-9155/48/13/313
10.1007/978-1-4757-2440-0
10.2337/diacare.10.5.622
10.1021/ac302841f
10.1177/039139888901200211
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier B.V.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1016/j.saa.2024.124738
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3557
ExternalDocumentID 38945006
10_1016_j_saa_2024_124738
S1386142524009041
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ACDAQ
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
ZMT
~G-
1RT
53G
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
M36
R2-
SSH
UHS
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c353t-a797fc4748a66785ed26b9a7073b24f44cf2e48f8e60c4aad7e9492c2884cce13
IEDL.DBID .~1
ISSN 1386-1425
IngestDate Mon Jul 21 05:55:51 EDT 2025
Tue Jul 01 03:32:47 EDT 2025
Thu Apr 24 23:12:55 EDT 2025
Sat Aug 31 16:00:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Blood glucose
Support vector regression
ATR-FTIR
Noninvasive
Language English
License Copyright © 2024. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-a797fc4748a66785ed26b9a7073b24f44cf2e48f8e60c4aad7e9492c2884cce13
PMID 38945006
ParticipantIDs pubmed_primary_38945006
crossref_primary_10_1016_j_saa_2024_124738
crossref_citationtrail_10_1016_j_saa_2024_124738
elsevier_sciencedirect_doi_10_1016_j_saa_2024_124738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-15
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
PublicationTitleAlternate Spectrochim Acta A Mol Biomol Spectrosc
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pleitez, Lieblein, Bauer, Hertzberg, Von Lilienfeld-Toal, Mantele (b0055) 2013; 85
Chen, Zhou, Xu, Wang, Tai, Xie, Zhang, Guan, Huang (b0090) 2019; 197
44 (1998) 899-912. doi: 10.1038/sj.cdd.4400413.
Kajiwara, Uemura, Kishikawa, Nishida, Hashiguchi, Uehara, Sakakida, Ichinose, Shichiri (b0025) 1993; 31
Thennadil, Rennert, Wenzel, Hazen, Ruchti, Block (b0045) 2001; 3
Schweitzer, Eikje, Fitzmaurice, Sota, Aizawa (b0125) 2007
M. D. Natalja Skrebova Eikje, S. Takayuki,M. D. Katsuo Aizawa, Cutaneous approach towards clinical and pathophysiological aspects of hyperglycemia by ATR FTIR spectroscopy, Proc. SPIE. 6628 (2007) 66281M. doi: 10.1117/12.728430.
46 (2023) S19-S40. doi: 10.2337/dc23-S002.
N. A. Elsayed, G. Aleppo, V. R. Aroda, R. R. Bannuru, F. M. Brown, D. Bruemmer, B. S. Collins, M. E. Hilliard, D. Isaacs, E. L. Johnson, S. Kahan, K. Khunti, J. Leon, S. K. Lyons, M. L. Perry, P. Prahalad, R. E. Pratley, J. J. Seley, R. C. Stanton, R. A. Gabbay,A. On Behalf of the American Diabetes, Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023, Diabetes Care
Altman, Bland (b0165) 1983; 32
Steil, Rebrin, Hariri, Jinagonda, Tadros, Darwin, Saad (b0050) 2005; 48
Zhang, Yao, Ma, Yu (b0105) 2021; 146
Baker, Trevisan, Bassan, Bhargava, Butler, Dorling, Fielden, Fogarty, Fullwood, Heys, Hughes, Lasch, Martin-Hirsch, Obinaju, Sockalingum, Sule-Suso, Strong, Walsh, Wood, Gardner, Martin (b0155) 2014; 9
Werth, Liakat, Dong, Woods, Gmachl (b0080) 2018; 124
Vasko, Blackwell, Koenig (b0175) 1972; 23
Oliver, Toumazou, Cass, Johnston (b0015) 2009; 26
Aloraynan, Rassel, Xu, Ban (b0110) 2022; 12
Clarke, Cox, Gonder-Frederick, Carter, Pohl (b0160) 1987; 10
V. Vapnik,V. Vapnik, The Natural of Statistical Learning Theory, (1995).
Chew, Ng, Tan, Kong, Lin, Chin, Lim, Huang, Quek, Fu, Xiao, Syn, Foo, Khoo, Wang, Dimitriadis, Young, Siddiqui, Lam, Wang, Figtree, Chan, Cummings, Noureddin, Wong, Ma, Mantzoros, Sanyal, Muthiah (b0005) 2000; 35
Sa, Song, Gu, Zhang (b0115) 2023; 233
Kazarian, Ewing (b0150) 2013; 10
H. M. Heise, R. Marbach, Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy, Cell. Mol. Biol. (Noisy-le-Grand, France)
Heeman, Steenbergen, Van Dam, Boerma (b0140) 2019; 24
FDA, Self-Monitoring Blood Glucose Test Systems for Over-the-Counter Use Guidance for Industry and Food and Drug Administration Staff Preface Public Comment. 〈https://www.fda.gov/〉.
Koyama, Kino, Matsuura, Gannot (b0130) 2019
Matsuura, Koyama, Razeghi, Lewis, Khodaparast, Tournié (b0135) 2019
Maruo, Tsurugi, Tamura, Ozaki (b0040) 2003; 57
Herbert Michael, Andreas (b0120) 1998; 3257
Vashist (b0020) 2012; 750
Kino, Omori, Katagiri, Matsuura (b0075) 2016; 7
Shen, Davies, Linfield, Elsey, Taday, Arnone (b0035) 2003; 48
Roustit, Cracowski (b0170) 2013; 34
Travo, Paya, Deleris, Colin, Mortemousque, Forfar (b0070) 2014; 406
Zeller, Novak, Landgraf (b0185) 1989; 12
Mathlouthi, Vinh Luu (b0180) 1980; 81
Pleitez, Von Lilienfeld-Toal, Mantele (b0190) 2012; 85
Noma, Sakamoto, Mochizuki, Tsukamoto, Minamoto, Funatsu, Yamashita, Nakamura, Kiriyama, Kurihara, Mishima (b0060) 2004; 27
Isensee, Muller, Pucci, Petrich (b0085) 2018; 143
Koyama, Kino, Matsuura (b0095) 2019; 10872
Matsuura, Koyama (b0100) 2019; 10926
Kajiwara (10.1016/j.saa.2024.124738_b0025) 1993; 31
Baker (10.1016/j.saa.2024.124738_b0155) 2014; 9
Chew (10.1016/j.saa.2024.124738_b0005) 2000; 35
Matsuura (10.1016/j.saa.2024.124738_b0135) 2019
Pleitez (10.1016/j.saa.2024.124738_b0055) 2013; 85
Zhang (10.1016/j.saa.2024.124738_b0105) 2021; 146
Aloraynan (10.1016/j.saa.2024.124738_b0110) 2022; 12
Heeman (10.1016/j.saa.2024.124738_b0140) 2019; 24
Travo (10.1016/j.saa.2024.124738_b0070) 2014; 406
Matsuura (10.1016/j.saa.2024.124738_b0100) 2019; 10926
Zeller (10.1016/j.saa.2024.124738_b0185) 1989; 12
Kino (10.1016/j.saa.2024.124738_b0075) 2016; 7
Steil (10.1016/j.saa.2024.124738_b0050) 2005; 48
10.1016/j.saa.2024.124738_b0065
Oliver (10.1016/j.saa.2024.124738_b0015) 2009; 26
Koyama (10.1016/j.saa.2024.124738_b0095) 2019; 10872
Koyama (10.1016/j.saa.2024.124738_b0130) 2019
Roustit (10.1016/j.saa.2024.124738_b0170) 2013; 34
Herbert Michael (10.1016/j.saa.2024.124738_b0120) 1998; 3257
10.1016/j.saa.2024.124738_b0145
Mathlouthi (10.1016/j.saa.2024.124738_b0180) 1980; 81
Sa (10.1016/j.saa.2024.124738_b0115) 2023; 233
Shen (10.1016/j.saa.2024.124738_b0035) 2003; 48
Maruo (10.1016/j.saa.2024.124738_b0040) 2003; 57
Altman (10.1016/j.saa.2024.124738_b0165) 1983; 32
Werth (10.1016/j.saa.2024.124738_b0080) 2018; 124
Thennadil (10.1016/j.saa.2024.124738_b0045) 2001; 3
Kazarian (10.1016/j.saa.2024.124738_b0150) 2013; 10
Noma (10.1016/j.saa.2024.124738_b0060) 2004; 27
10.1016/j.saa.2024.124738_b0030
10.1016/j.saa.2024.124738_b0195
Vasko (10.1016/j.saa.2024.124738_b0175) 1972; 23
10.1016/j.saa.2024.124738_b0010
Isensee (10.1016/j.saa.2024.124738_b0085) 2018; 143
Pleitez (10.1016/j.saa.2024.124738_b0190) 2012; 85
Schweitzer (10.1016/j.saa.2024.124738_b0125) 2007
Clarke (10.1016/j.saa.2024.124738_b0160) 1987; 10
Vashist (10.1016/j.saa.2024.124738_b0020) 2012; 750
Chen (10.1016/j.saa.2024.124738_b0090) 2019; 197
References_xml – volume: 12
  year: 2022
  ident: b0110
  article-title: A single wavelength mid-infrared photoacoustic spectroscopy for noninvasive glucose detection using machine learning
  publication-title: Biosensors (basel)
– volume: 10872
  start-page: 108720A
  year: 2019
  ident: b0095
  article-title: Non-invasive blood glucose measurement using fixed-wavelength quantum cascade lasers
  publication-title: Proc. SPIE
– reference: M. D. Natalja Skrebova Eikje, S. Takayuki,M. D. Katsuo Aizawa, Cutaneous approach towards clinical and pathophysiological aspects of hyperglycemia by ATR FTIR spectroscopy, Proc. SPIE. 6628 (2007) 66281M. doi: 10.1117/12.728430.
– volume: 12
  start-page: 129
  year: 1989
  end-page: 135
  ident: b0185
  article-title: Blood Glucose Measurement by Infrared Spectroscopy
  publication-title: Int. J. Artif. Organs
– year: 2019
  ident: b0135
  article-title: Non-invasive blood glucose measurement using quantum cascade lasers
  publication-title: Quantum Sensing and Nano Electronics and Photonics XVI
– volume: 34
  start-page: 373
  year: 2013
  end-page: 384
  ident: b0170
  article-title: Assessment of endothelial and neurovascular function in human skin microcirculation
  publication-title: Trends Pharmacol. Sci
– volume: 27
  start-page: 615
  year: 2004
  ident: b0060
  article-title: Relationship between periodontal disease and diabetic retinopathy
  publication-title: Diabetes Care
– reference: H. M. Heise, R. Marbach, Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy, Cell. Mol. Biol. (Noisy-le-Grand, France)
– volume: 48
  start-page: 1833
  year: 2005
  end-page: 1840
  ident: b0050
  article-title: Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia
  publication-title: Diabetologia
– reference: 46 (2023) S19-S40. doi: 10.2337/dc23-S002.
– volume: 35
  start-page: 414
  year: 2000
  end-page: 428.e413
  ident: b0005
  article-title: The global burden of metabolic disease: Data from to 2019
  publication-title: Cell Metabol
– reference: V. Vapnik,V. Vapnik, The Natural of Statistical Learning Theory, (1995).
– volume: 143
  start-page: 6025
  year: 2018
  end-page: 6036
  ident: b0085
  article-title: Towards a quantum cascade laser-based implant for the continuous monitoring of glucose
  publication-title: Analyst
– reference: FDA, Self-Monitoring Blood Glucose Test Systems for Over-the-Counter Use Guidance for Industry and Food and Drug Administration Staff Preface Public Comment. 〈https://www.fda.gov/〉.
– year: 2007
  ident: b0125
  article-title: Cutaneous approach towards clinical and pathophysiological aspects of hyperglycemia by ATR FTIR spectroscopy
  publication-title: Diagnostic Op. Spectrosc. Biomed. IV
– volume: 750
  start-page: 16
  year: 2012
  end-page: 27
  ident: b0020
  article-title: Non-invasive glucose monitoring technology in diabetes management: A review
  publication-title: Anal. Chim. Acta
– volume: 10926
  start-page: 1092606
  year: 2019
  ident: b0100
  article-title: Non-invasive blood glucose measurement using quantum cascade lasers
  publication-title: Proc. SPIE
– volume: 10
  start-page: 622
  year: 1987
  end-page: 628
  ident: b0160
  article-title: Evaluating clinical accuracy of systems for self-monitoring of blood glucose
  publication-title: Diabetes Care
– volume: 26
  start-page: 197
  year: 2009
  end-page: 210
  ident: b0015
  article-title: Glucose sensors: a review of current and emerging technology
  publication-title: Diabetic Med.
– volume: 48
  start-page: 2023
  year: 2003
  end-page: 2032
  ident: b0035
  article-title: The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood
  publication-title: Phys. Med. Biol.
– reference: N. A. Elsayed, G. Aleppo, V. R. Aroda, R. R. Bannuru, F. M. Brown, D. Bruemmer, B. S. Collins, M. E. Hilliard, D. Isaacs, E. L. Johnson, S. Kahan, K. Khunti, J. Leon, S. K. Lyons, M. L. Perry, P. Prahalad, R. E. Pratley, J. J. Seley, R. C. Stanton, R. A. Gabbay,A. On Behalf of the American Diabetes, Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023, Diabetes Care
– volume: 24
  start-page: 1
  year: 2019
  end-page: 11
  ident: b0140
  article-title: Clinical applications of laser speckle contrast imaging: a review
  publication-title: J Biomed Opt
– volume: 31
  start-page: S17
  year: 1993
  end-page: S22
  ident: b0025
  article-title: Noninvasive measurement of blood glucose concentrations by analysing fourier transform infra-red absorbance spectra through oral mucosa
  publication-title: Med. Biol. Eng. Compu.
– volume: 10
  start-page: 1207
  year: 2013
  end-page: 1221
  ident: b0150
  article-title: Applications of Fourier transform infrared spectroscopic imaging to tablet dissolution and drug release
  publication-title: Expert Opin. Drug Deliv.
– reference: 44 (1998) 899-912. doi: 10.1038/sj.cdd.4400413.
– volume: 406
  start-page: 2367
  year: 2014
  end-page: 2376
  ident: b0070
  article-title: Potential of FTIR spectroscopy for analysis of tears for diagnosis purposes
  publication-title: Anal. Bioanal. Chem.
– volume: 124
  year: 2018
  ident: b0080
  article-title: Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy
  publication-title: Appl. Phys. B
– volume: 3257
  start-page: 2
  year: 1998
  end-page: 12
  ident: b0120
  article-title: Blood glucose assays based on infrared spectroscopy: alternatives for medical diagnostics, Proc
  publication-title: SPIE
– volume: 81
  start-page: 203
  year: 1980
  end-page: 212
  ident: b0180
  article-title: Laser-Raman spectra of d-glucose and sucrose in aqueous solution
  publication-title: Carbohydr. Res
– volume: 233
  year: 2023
  ident: b0115
  article-title: Mid-infrared spectroscopy with an effective variable selection method based on MPA for glucose detection
  publication-title: Chemom. Intel. Lab. Syst.
– volume: 3
  start-page: 357
  year: 2001
  end-page: 365
  ident: b0045
  article-title: Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels
  publication-title: Diabetes Technol. Ther.
– volume: 57
  start-page: 1236
  year: 2003
  end-page: 1244
  ident: b0040
  article-title: In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy
  publication-title: Appl. Spectrosc.
– volume: 32
  start-page: 307
  year: 1983
  end-page: 317
  ident: b0165
  article-title: Measurement in Medicine: The Analysis of Method Comparison Studies, Journal of the Royal Statistical Society
  publication-title: Series D (the Statistician)
– volume: 23
  start-page: 407
  year: 1972
  end-page: 416
  ident: b0175
  article-title: Infrared and raman spectroscopy of carbohydrates.: Part II: Normal coordinate analysis of α-D-glucose
  publication-title: Carbohydr. Res.
– volume: 85
  start-page: 61
  year: 2012
  end-page: 65
  ident: b0190
  article-title: Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc
– volume: 85
  start-page: 1013
  year: 2013
  end-page: 1020
  ident: b0055
  article-title: In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy
  publication-title: Anal. Chem.
– volume: 197
  start-page: 211
  year: 2019
  end-page: 217
  ident: b0090
  article-title: Non-invasive blood glucose measurement of 95% certainty by pressure regulated Mid-IR
  publication-title: Talanta
– volume: 146
  start-page: 6576
  year: 2021
  end-page: 6581
  ident: b0105
  article-title: Ultrasensitive glucose detection from tears and saliva through integrating a glucose oxidase-coupled DNAzyme and CRISPR-Cas12a
  publication-title: Analyst
– year: 2019
  ident: b0130
  article-title: Non-invasive blood glucose measurement using fixed-wavelength quantum cascade lasers
  publication-title: Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIX
– volume: 9
  start-page: 1771
  year: 2014
  end-page: 1791
  ident: b0155
  article-title: Using Fourier transform IR spectroscopy to analyze biological materials
  publication-title: Nat. Protoc.
– volume: 7
  start-page: 701
  year: 2016
  end-page: 708
  ident: b0075
  article-title: Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism
  publication-title: Biomed. Opt Express
– volume: 27
  start-page: 615
  year: 2004
  ident: 10.1016/j.saa.2024.124738_b0060
  article-title: Relationship between periodontal disease and diabetic retinopathy
  publication-title: Diabetes Care.
  doi: 10.2337/diacare.27.2.615
– volume: 85
  start-page: 61
  year: 2012
  ident: 10.1016/j.saa.2024.124738_b0190
  article-title: Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2011.09.007
– volume: 10926
  start-page: 1092606
  year: 2019
  ident: 10.1016/j.saa.2024.124738_b0100
  article-title: Non-invasive blood glucose measurement using quantum cascade lasers
  publication-title: Proc. SPIE.
– volume: 9
  start-page: 1771
  year: 2014
  ident: 10.1016/j.saa.2024.124738_b0155
  article-title: Using Fourier transform IR spectroscopy to analyze biological materials
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.110
– volume: 23
  start-page: 407
  year: 1972
  ident: 10.1016/j.saa.2024.124738_b0175
  article-title: Infrared and raman spectroscopy of carbohydrates.: Part II: Normal coordinate analysis of α-D-glucose
  publication-title: Carbohydr. Res.
  doi: 10.1016/S0008-6215(00)82690-7
– volume: 35
  start-page: 414
  issue: 2023
  year: 2000
  ident: 10.1016/j.saa.2024.124738_b0005
  article-title: The global burden of metabolic disease: Data from to 2019
  publication-title: Cell Metabol.
– volume: 233
  year: 2023
  ident: 10.1016/j.saa.2024.124738_b0115
  article-title: Mid-infrared spectroscopy with an effective variable selection method based on MPA for glucose detection
  publication-title: Chemom. Intel. Lab. Syst..
  doi: 10.1016/j.chemolab.2022.104731
– volume: 48
  start-page: 1833
  year: 2005
  ident: 10.1016/j.saa.2024.124738_b0050
  article-title: Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia
  publication-title: Diabetologia.
  doi: 10.1007/s00125-005-1852-x
– volume: 57
  start-page: 1236
  year: 2003
  ident: 10.1016/j.saa.2024.124738_b0040
  article-title: In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370203769699090
– ident: 10.1016/j.saa.2024.124738_b0065
  doi: 10.1364/ECBO.2007.6628_63
– volume: 34
  start-page: 373
  year: 2013
  ident: 10.1016/j.saa.2024.124738_b0170
  article-title: Assessment of endothelial and neurovascular function in human skin microcirculation
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2013.05.007
– ident: 10.1016/j.saa.2024.124738_b0010
  doi: 10.2337/dc23-S002
– volume: 10872
  start-page: 108720A
  year: 2019
  ident: 10.1016/j.saa.2024.124738_b0095
  article-title: Non-invasive blood glucose measurement using fixed-wavelength quantum cascade lasers
  publication-title: Proc. SPIE.
– ident: 10.1016/j.saa.2024.124738_b0195
– volume: 31
  start-page: S17
  year: 1993
  ident: 10.1016/j.saa.2024.124738_b0025
  article-title: Noninvasive measurement of blood glucose concentrations by analysing fourier transform infra-red absorbance spectra through oral mucosa
  publication-title: Med. Biol. Eng. Compu..
  doi: 10.1007/BF02446645
– volume: 3
  start-page: 357
  year: 2001
  ident: 10.1016/j.saa.2024.124738_b0045
  article-title: Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels
  publication-title: Diabetes Technol. Ther..
  doi: 10.1089/15209150152607132
– volume: 146
  start-page: 6576
  year: 2021
  ident: 10.1016/j.saa.2024.124738_b0105
  article-title: Ultrasensitive glucose detection from tears and saliva through integrating a glucose oxidase-coupled DNAzyme and CRISPR-Cas12a
  publication-title: Analyst.
  doi: 10.1039/D1AN01385H
– volume: 124
  year: 2018
  ident: 10.1016/j.saa.2024.124738_b0080
  article-title: Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy
  publication-title: Appl. Phys. B.
  doi: 10.1007/s00340-018-6946-5
– volume: 7
  start-page: 701
  year: 2016
  ident: 10.1016/j.saa.2024.124738_b0075
  article-title: Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism
  publication-title: Biomed. Opt Express.
  doi: 10.1364/BOE.7.000701
– volume: 197
  start-page: 211
  year: 2019
  ident: 10.1016/j.saa.2024.124738_b0090
  article-title: Non-invasive blood glucose measurement of 95% certainty by pressure regulated Mid-IR
  publication-title: Talanta.
  doi: 10.1016/j.talanta.2019.01.034
– year: 2019
  ident: 10.1016/j.saa.2024.124738_b0135
  article-title: Non-invasive blood glucose measurement using quantum cascade lasers
– volume: 81
  start-page: 203
  year: 1980
  ident: 10.1016/j.saa.2024.124738_b0180
  article-title: Laser-Raman spectra of d-glucose and sucrose in aqueous solution
  publication-title: Carbohydr. Res.
  doi: 10.1016/S0008-6215(00)85652-9
– ident: 10.1016/j.saa.2024.124738_b0030
  doi: 10.1038/sj.cdd.4400413
– volume: 10
  start-page: 1207
  year: 2013
  ident: 10.1016/j.saa.2024.124738_b0150
  article-title: Applications of Fourier transform infrared spectroscopic imaging to tablet dissolution and drug release
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425247.2013.801452
– volume: 24
  start-page: 1
  year: 2019
  ident: 10.1016/j.saa.2024.124738_b0140
  article-title: Clinical applications of laser speckle contrast imaging: a review
  publication-title: J Biomed Opt.
  doi: 10.1117/1.JBO.24.8.080901
– volume: 750
  start-page: 16
  year: 2012
  ident: 10.1016/j.saa.2024.124738_b0020
  article-title: Non-invasive glucose monitoring technology in diabetes management: A review
  publication-title: Anal. Chim. Acta.
  doi: 10.1016/j.aca.2012.03.043
– volume: 406
  start-page: 2367
  year: 2014
  ident: 10.1016/j.saa.2024.124738_b0070
  article-title: Potential of FTIR spectroscopy for analysis of tears for diagnosis purposes
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-013-7607-5
– volume: 12
  year: 2022
  ident: 10.1016/j.saa.2024.124738_b0110
  article-title: A single wavelength mid-infrared photoacoustic spectroscopy for noninvasive glucose detection using machine learning
  publication-title: Biosensors (basel).
– volume: 32
  start-page: 307
  year: 1983
  ident: 10.1016/j.saa.2024.124738_b0165
  article-title: Measurement in Medicine: The Analysis of Method Comparison Studies, Journal of the Royal Statistical Society
  publication-title: Series D (the Statistician).
– volume: 26
  start-page: 197
  year: 2009
  ident: 10.1016/j.saa.2024.124738_b0015
  article-title: Glucose sensors: a review of current and emerging technology
  publication-title: Diabetic Med.
  doi: 10.1111/j.1464-5491.2008.02642.x
– volume: 143
  start-page: 6025
  year: 2018
  ident: 10.1016/j.saa.2024.124738_b0085
  article-title: Towards a quantum cascade laser-based implant for the continuous monitoring of glucose
  publication-title: Analyst.
  doi: 10.1039/C8AN01382A
– volume: 48
  start-page: 2023
  year: 2003
  ident: 10.1016/j.saa.2024.124738_b0035
  article-title: The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/48/13/313
– year: 2019
  ident: 10.1016/j.saa.2024.124738_b0130
  article-title: Non-invasive blood glucose measurement using fixed-wavelength quantum cascade lasers
– volume: 3257
  start-page: 2
  year: 1998
  ident: 10.1016/j.saa.2024.124738_b0120
  article-title: Blood glucose assays based on infrared spectroscopy: alternatives for medical diagnostics, Proc
  publication-title: SPIE.
– year: 2007
  ident: 10.1016/j.saa.2024.124738_b0125
  article-title: Cutaneous approach towards clinical and pathophysiological aspects of hyperglycemia by ATR FTIR spectroscopy
  publication-title: Diagnostic Op. Spectrosc. Biomed. IV.
– ident: 10.1016/j.saa.2024.124738_b0145
  doi: 10.1007/978-1-4757-2440-0
– volume: 10
  start-page: 622
  year: 1987
  ident: 10.1016/j.saa.2024.124738_b0160
  article-title: Evaluating clinical accuracy of systems for self-monitoring of blood glucose
  publication-title: Diabetes Care.
  doi: 10.2337/diacare.10.5.622
– volume: 85
  start-page: 1013
  year: 2013
  ident: 10.1016/j.saa.2024.124738_b0055
  article-title: In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy
  publication-title: Anal. Chem.
  doi: 10.1021/ac302841f
– volume: 12
  start-page: 129
  year: 1989
  ident: 10.1016/j.saa.2024.124738_b0185
  article-title: Blood Glucose Measurement by Infrared Spectroscopy
  publication-title: Int. J. Artif. Organs.
  doi: 10.1177/039139888901200211
SSID ssj0001820
ssib047304432
Score 2.4390962
Snippet [Display omitted] •The accuracy of noninvasive blood-glucose test is improved to meet FDA standards.•Hypothenar is the optimal body-spot for collecting...
Mid-infrared spectral analysis of glucose in subcutaneous interstitial fluid has been widely employed as a noninvasive alternative to the standard...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 124738
SubjectTerms ATR-FTIR
Blood glucose
Blood Glucose - analysis
Humans
Male
Noninvasive
Regression Analysis
Spectrophotometry, Infrared - methods
Spectroscopy, Fourier Transform Infrared - methods
Support Vector Machine
Support vector regression
Title Optimization of mid-infrared noninvasive blood-glucose prediction model by support vector regression coupled with different spectral features
URI https://dx.doi.org/10.1016/j.saa.2024.124738
https://www.ncbi.nlm.nih.gov/pubmed/38945006
Volume 321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQVUUvFaXQAi3yoSeksBtnktjH1apo26pbJIrELbInDtoKlij7I_XCG_SdO-MkUC576C2ObMfxTGYm429mhPjkHaihow8wNs5GoJyOtLFVpFJMSMGmHI_OaItpNrmCr9fp9ZYY97EwDKvsZH8r04O07u4Mut0c1LPZ4DJONOkWlTIK0gxD8DpAzlx-9vAE8-AE5eGnS2cR9-5PNgPGa2E59ZCCM9JyIURlo276R_Gc74rXncUoR-2i3ogtP98TO-O-UNueeBlQnLh4K_78IAFw10VWyvtK3s3KiFioYZS5nLPndW0Zry6f4dVl3fBxTRgUKuNI91suVjWb5nId3Pqy8TctYnYu8X5V39J87MKVfYGVpQwxmw2ttPIhWehiX1ydf_45nkRdvYWI6JIsI5ubvELIQduMdFjqS5U5Y3OSAk5BBYCV8qAr7bMhgrVl7g0YhUprQPRxciC26VX8eyE9el06RG08gkE0SaltylexrVCXh2LY73SBXTJyrolxW_Sos18FEadg4hQtcQ7F6eOQus3Esakz9OQrnrFTQZpi07B3Lakfn0D2HKQkmY7-b8Jj8YpbHLwYpx_E9rJZ-Y9kxSzdSWDTE_Fi9OXbZEqt6cX3vyNg9XI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFaKXqlBoaQv40BNS2I0zSexjtSpa3gdA4hbZE6faCpYou4vUS_9B_3NnnITHZQ-9RYntOB57von9zYwQ37wDNXS0AGPjbATK6UgbW0UqxYQANmV_dGZbXGTjGzi5TW9XxKj3hWFaZaf7W50etHV3Z9CN5qCeTAZXcaIJW1TKLEgzZOf1N0DLl9MYHP555nlwhPLw16WziIv3R5uB5DWzHHtIwSHBXPBRWQpOL5Dn6L1415mM8nvbqw2x4qebYn3UZ2rbFGuBxomzD-LvJWmA-861Uj5U8n5SRjSHGqaZyylvvT5aJqzLV4R1WTd8XhMqhdQ40v2Ws0XNtrl8DPv6svE_W8rsVOLDor6j9ngPV_YZVuYyOG021NPKh2ihsy1xc_TjejSOuoQLEQkmmUc2N3mFkIO2GYFY6kuVOWNzUgNOQQWAlfKgK-2zIYK1Ze4NGIVKa0D0cbItVulT_CchPXpdOkRtPIJBNEmpbcpXsa1Qlzti2I90gV00ck6KcVf0tLNfBQmnYOEUrXB2xMFTlboNxbGsMPTiK17Np4KgYlm1j62on95ABh2kpJo-_1-D-2J9fH1-VpwdX5x-EW_5CXsyxulXsTpvFn6XTJq52wtT9h_5VvX0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+mid-infrared+noninvasive+blood-glucose+prediction+model+by+support+vector+regression+coupled+with+different+spectral+features&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Song%2C+Liying&rft.au=Han%2C+Zhiqiang&rft.au=Lau%2C+Woon-Ming&rft.date=2024-11-15&rft.issn=1386-1425&rft.volume=321&rft.spage=124738&rft_id=info:doi/10.1016%2Fj.saa.2024.124738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_saa_2024_124738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon