Optimization of mid-infrared noninvasive blood-glucose prediction model by support vector regression coupled with different spectral features
[Display omitted] •The accuracy of noninvasive blood-glucose test is improved to meet FDA standards.•Hypothenar is the optimal body-spot for collecting subcutaneous blood-glucose signals.•Exploiting the minimization of spectral interference yields the lowest prediction error. Mid-infrared spectral a...
Saved in:
Published in | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 321; p. 124738 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
15.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The accuracy of noninvasive blood-glucose test is improved to meet FDA standards.•Hypothenar is the optimal body-spot for collecting subcutaneous blood-glucose signals.•Exploiting the minimization of spectral interference yields the lowest prediction error.
Mid-infrared spectral analysis of glucose in subcutaneous interstitial fluid has been widely employed as a noninvasive alternative to the standard blood-glucose detection requiring blood-sampling via skin-puncturing, but improving the confidence level of such a replacement remains highly desirable. Here, we show that with an innovative metric of attributes in measurements and data-management, a high accuracy in correlating the test results of our improved spectral analysis to those of the standard detection is accomplished. First, our comparative laser speckle contrast imaging of subcutaneous interstitial fluid in fingertips, thenar and hypothenar reveal that spectral measurements from hypothenar, with an attenuated total reflection Fourier transform infrared spectrometer, give much stronger signals than the stereotype measurements from fingertips. Second, we demonstrate that discriminative selection of the spectral locations and ranges, to minimize spectral interference and maximize signal-to-noise, are critically important. The optimal band is pinned at that between 1000 ± 3 cm−1 and1040 ± 3 cm−1. Third, we propose an individual exclusive prediction model by adopting the support vector regression analysis of the spectral data from four subjects. The average predicted coefficient of determination, root mean square error and mean absolute error of four subjects are 0.97, 0.21 mmol/L, 0.17 mmol/L, respectively, and the average probability of being in Zone A of the Clark error grid is 100.00 %. Additionally, we demonstrate with the Bland and Altman plot that our proposed model has the highest consistency with portable blood glucose meter detection method. |
---|---|
AbstractList | [Display omitted]
•The accuracy of noninvasive blood-glucose test is improved to meet FDA standards.•Hypothenar is the optimal body-spot for collecting subcutaneous blood-glucose signals.•Exploiting the minimization of spectral interference yields the lowest prediction error.
Mid-infrared spectral analysis of glucose in subcutaneous interstitial fluid has been widely employed as a noninvasive alternative to the standard blood-glucose detection requiring blood-sampling via skin-puncturing, but improving the confidence level of such a replacement remains highly desirable. Here, we show that with an innovative metric of attributes in measurements and data-management, a high accuracy in correlating the test results of our improved spectral analysis to those of the standard detection is accomplished. First, our comparative laser speckle contrast imaging of subcutaneous interstitial fluid in fingertips, thenar and hypothenar reveal that spectral measurements from hypothenar, with an attenuated total reflection Fourier transform infrared spectrometer, give much stronger signals than the stereotype measurements from fingertips. Second, we demonstrate that discriminative selection of the spectral locations and ranges, to minimize spectral interference and maximize signal-to-noise, are critically important. The optimal band is pinned at that between 1000 ± 3 cm−1 and1040 ± 3 cm−1. Third, we propose an individual exclusive prediction model by adopting the support vector regression analysis of the spectral data from four subjects. The average predicted coefficient of determination, root mean square error and mean absolute error of four subjects are 0.97, 0.21 mmol/L, 0.17 mmol/L, respectively, and the average probability of being in Zone A of the Clark error grid is 100.00 %. Additionally, we demonstrate with the Bland and Altman plot that our proposed model has the highest consistency with portable blood glucose meter detection method. Mid-infrared spectral analysis of glucose in subcutaneous interstitial fluid has been widely employed as a noninvasive alternative to the standard blood-glucose detection requiring blood-sampling via skin-puncturing, but improving the confidence level of such a replacement remains highly desirable. Here, we show that with an innovative metric of attributes in measurements and data-management, a high accuracy in correlating the test results of our improved spectral analysis to those of the standard detection is accomplished. First, our comparative laser speckle contrast imaging of subcutaneous interstitial fluid in fingertips, thenar and hypothenar reveal that spectral measurements from hypothenar, with an attenuated total reflection Fourier transform infrared spectrometer, give much stronger signals than the stereotype measurements from fingertips. Second, we demonstrate that discriminative selection of the spectral locations and ranges, to minimize spectral interference and maximize signal-to-noise, are critically important. The optimal band is pinned at that between 1000 ± 3 cm and1040 ± 3 cm . Third, we propose an individual exclusive prediction model by adopting the support vector regression analysis of the spectral data from four subjects. The average predicted coefficient of determination, root mean square error and mean absolute error of four subjects are 0.97, 0.21 mmol/L, 0.17 mmol/L, respectively, and the average probability of being in Zone A of the Clark error grid is 100.00 %. Additionally, we demonstrate with the Bland and Altman plot that our proposed model has the highest consistency with portable blood glucose meter detection method. |
ArticleNumber | 124738 |
Author | Lau, Woon-Ming Song, Liying Han, Zhiqiang |
Author_xml | – sequence: 1 givenname: Liying surname: Song fullname: Song, Liying organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China – sequence: 2 givenname: Zhiqiang surname: Han fullname: Han, Zhiqiang organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China – sequence: 3 givenname: Woon-Ming surname: Lau fullname: Lau, Woon-Ming email: leolau@lyu.edu.cn organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38945006$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtu3CAUQFGVqnm0H9BNxA94wssGK6soStpKkbJp1wjDJWVkGwvwRMk_5J_DZNouusgKJM656J5TdDTHGRD6SsmGEtpdbDfZmA0jTGwoE5KrD-iEKskb3rbyqN656hoqWHuMTnPeEkKoYuQTOuaqFy0h3Ql6uV9KmMKzKSHOOHo8BdeE2SeTwOH6X5h3Jocd4GGM0TUP42pjBrzU52DfpCk6GPHwhPO6LDEVvANbYsIJHhLkvEdsXJexznsM5Td2wXtIMBecl0omM2IPpqwV_ow-ejNm-PLnPEO_bm9-Xn9v7u6__bi-umssb3lpjOylt0IKZbpOqhYc64beSCL5wIQXwnoGQnkFHbHCGCehFz2zTClhLVB-hs4Pc5d1mMDpJYXJpCf9t0sF6AGwKeacwP9DKNH79nqra3u9b68P7asj_3NsKG9d645hfNe8PJhQd94FSDrbALOtiVMtpF0M79ivnCyiQg |
CitedBy_id | crossref_primary_10_1016_j_saa_2024_125400 crossref_primary_10_3390_s25020587 |
Cites_doi | 10.2337/diacare.27.2.615 10.1016/j.saa.2011.09.007 10.1038/nprot.2014.110 10.1016/S0008-6215(00)82690-7 10.1016/j.chemolab.2022.104731 10.1007/s00125-005-1852-x 10.1366/000370203769699090 10.1364/ECBO.2007.6628_63 10.1016/j.tips.2013.05.007 10.2337/dc23-S002 10.1007/BF02446645 10.1089/15209150152607132 10.1039/D1AN01385H 10.1007/s00340-018-6946-5 10.1364/BOE.7.000701 10.1016/j.talanta.2019.01.034 10.1016/S0008-6215(00)85652-9 10.1038/sj.cdd.4400413 10.1517/17425247.2013.801452 10.1117/1.JBO.24.8.080901 10.1016/j.aca.2012.03.043 10.1007/s00216-013-7607-5 10.1111/j.1464-5491.2008.02642.x 10.1039/C8AN01382A 10.1088/0031-9155/48/13/313 10.1007/978-1-4757-2440-0 10.2337/diacare.10.5.622 10.1021/ac302841f 10.1177/039139888901200211 |
ContentType | Journal Article |
Copyright | 2024 Copyright © 2024. Published by Elsevier B.V. |
Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1016/j.saa.2024.124738 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-3557 |
ExternalDocumentID | 38945006 10_1016_j_saa_2024_124738 S1386142524009041 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ACDAQ ACRLP ADBBV ADECG ADEZE AEBSH AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K WH7 XPP ZMT ~G- 1RT 53G 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ M36 R2- SSH UHS CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c353t-a797fc4748a66785ed26b9a7073b24f44cf2e48f8e60c4aad7e9492c2884cce13 |
IEDL.DBID | .~1 |
ISSN | 1386-1425 |
IngestDate | Mon Jul 21 05:55:51 EDT 2025 Tue Jul 01 03:32:47 EDT 2025 Thu Apr 24 23:12:55 EDT 2025 Sat Aug 31 16:00:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Blood glucose Support vector regression ATR-FTIR Noninvasive |
Language | English |
License | Copyright © 2024. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-a797fc4748a66785ed26b9a7073b24f44cf2e48f8e60c4aad7e9492c2884cce13 |
PMID | 38945006 |
ParticipantIDs | pubmed_primary_38945006 crossref_primary_10_1016_j_saa_2024_124738 crossref_citationtrail_10_1016_j_saa_2024_124738 elsevier_sciencedirect_doi_10_1016_j_saa_2024_124738 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-15 |
PublicationDateYYYYMMDD | 2024-11-15 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy |
PublicationTitleAlternate | Spectrochim Acta A Mol Biomol Spectrosc |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Pleitez, Lieblein, Bauer, Hertzberg, Von Lilienfeld-Toal, Mantele (b0055) 2013; 85 Chen, Zhou, Xu, Wang, Tai, Xie, Zhang, Guan, Huang (b0090) 2019; 197 44 (1998) 899-912. doi: 10.1038/sj.cdd.4400413. Kajiwara, Uemura, Kishikawa, Nishida, Hashiguchi, Uehara, Sakakida, Ichinose, Shichiri (b0025) 1993; 31 Thennadil, Rennert, Wenzel, Hazen, Ruchti, Block (b0045) 2001; 3 Schweitzer, Eikje, Fitzmaurice, Sota, Aizawa (b0125) 2007 M. D. Natalja Skrebova Eikje, S. Takayuki,M. D. Katsuo Aizawa, Cutaneous approach towards clinical and pathophysiological aspects of hyperglycemia by ATR FTIR spectroscopy, Proc. SPIE. 6628 (2007) 66281M. doi: 10.1117/12.728430. 46 (2023) S19-S40. doi: 10.2337/dc23-S002. N. A. Elsayed, G. Aleppo, V. R. Aroda, R. R. Bannuru, F. M. Brown, D. Bruemmer, B. S. Collins, M. E. Hilliard, D. Isaacs, E. L. Johnson, S. Kahan, K. Khunti, J. Leon, S. K. Lyons, M. L. Perry, P. Prahalad, R. E. Pratley, J. J. Seley, R. C. Stanton, R. A. Gabbay,A. On Behalf of the American Diabetes, Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023, Diabetes Care Altman, Bland (b0165) 1983; 32 Steil, Rebrin, Hariri, Jinagonda, Tadros, Darwin, Saad (b0050) 2005; 48 Zhang, Yao, Ma, Yu (b0105) 2021; 146 Baker, Trevisan, Bassan, Bhargava, Butler, Dorling, Fielden, Fogarty, Fullwood, Heys, Hughes, Lasch, Martin-Hirsch, Obinaju, Sockalingum, Sule-Suso, Strong, Walsh, Wood, Gardner, Martin (b0155) 2014; 9 Werth, Liakat, Dong, Woods, Gmachl (b0080) 2018; 124 Vasko, Blackwell, Koenig (b0175) 1972; 23 Oliver, Toumazou, Cass, Johnston (b0015) 2009; 26 Aloraynan, Rassel, Xu, Ban (b0110) 2022; 12 Clarke, Cox, Gonder-Frederick, Carter, Pohl (b0160) 1987; 10 V. Vapnik,V. Vapnik, The Natural of Statistical Learning Theory, (1995). Chew, Ng, Tan, Kong, Lin, Chin, Lim, Huang, Quek, Fu, Xiao, Syn, Foo, Khoo, Wang, Dimitriadis, Young, Siddiqui, Lam, Wang, Figtree, Chan, Cummings, Noureddin, Wong, Ma, Mantzoros, Sanyal, Muthiah (b0005) 2000; 35 Sa, Song, Gu, Zhang (b0115) 2023; 233 Kazarian, Ewing (b0150) 2013; 10 H. M. Heise, R. Marbach, Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy, Cell. Mol. Biol. (Noisy-le-Grand, France) Heeman, Steenbergen, Van Dam, Boerma (b0140) 2019; 24 FDA, Self-Monitoring Blood Glucose Test Systems for Over-the-Counter Use Guidance for Industry and Food and Drug Administration Staff Preface Public Comment. 〈https://www.fda.gov/〉. Koyama, Kino, Matsuura, Gannot (b0130) 2019 Matsuura, Koyama, Razeghi, Lewis, Khodaparast, Tournié (b0135) 2019 Maruo, Tsurugi, Tamura, Ozaki (b0040) 2003; 57 Herbert Michael, Andreas (b0120) 1998; 3257 Vashist (b0020) 2012; 750 Kino, Omori, Katagiri, Matsuura (b0075) 2016; 7 Shen, Davies, Linfield, Elsey, Taday, Arnone (b0035) 2003; 48 Roustit, Cracowski (b0170) 2013; 34 Travo, Paya, Deleris, Colin, Mortemousque, Forfar (b0070) 2014; 406 Zeller, Novak, Landgraf (b0185) 1989; 12 Mathlouthi, Vinh Luu (b0180) 1980; 81 Pleitez, Von Lilienfeld-Toal, Mantele (b0190) 2012; 85 Noma, Sakamoto, Mochizuki, Tsukamoto, Minamoto, Funatsu, Yamashita, Nakamura, Kiriyama, Kurihara, Mishima (b0060) 2004; 27 Isensee, Muller, Pucci, Petrich (b0085) 2018; 143 Koyama, Kino, Matsuura (b0095) 2019; 10872 Matsuura, Koyama (b0100) 2019; 10926 Kajiwara (10.1016/j.saa.2024.124738_b0025) 1993; 31 Baker (10.1016/j.saa.2024.124738_b0155) 2014; 9 Chew (10.1016/j.saa.2024.124738_b0005) 2000; 35 Matsuura (10.1016/j.saa.2024.124738_b0135) 2019 Pleitez (10.1016/j.saa.2024.124738_b0055) 2013; 85 Zhang (10.1016/j.saa.2024.124738_b0105) 2021; 146 Aloraynan (10.1016/j.saa.2024.124738_b0110) 2022; 12 Heeman (10.1016/j.saa.2024.124738_b0140) 2019; 24 Travo (10.1016/j.saa.2024.124738_b0070) 2014; 406 Matsuura (10.1016/j.saa.2024.124738_b0100) 2019; 10926 Zeller (10.1016/j.saa.2024.124738_b0185) 1989; 12 Kino (10.1016/j.saa.2024.124738_b0075) 2016; 7 Steil (10.1016/j.saa.2024.124738_b0050) 2005; 48 10.1016/j.saa.2024.124738_b0065 Oliver (10.1016/j.saa.2024.124738_b0015) 2009; 26 Koyama (10.1016/j.saa.2024.124738_b0095) 2019; 10872 Koyama (10.1016/j.saa.2024.124738_b0130) 2019 Roustit (10.1016/j.saa.2024.124738_b0170) 2013; 34 Herbert Michael (10.1016/j.saa.2024.124738_b0120) 1998; 3257 10.1016/j.saa.2024.124738_b0145 Mathlouthi (10.1016/j.saa.2024.124738_b0180) 1980; 81 Sa (10.1016/j.saa.2024.124738_b0115) 2023; 233 Shen (10.1016/j.saa.2024.124738_b0035) 2003; 48 Maruo (10.1016/j.saa.2024.124738_b0040) 2003; 57 Altman (10.1016/j.saa.2024.124738_b0165) 1983; 32 Werth (10.1016/j.saa.2024.124738_b0080) 2018; 124 Thennadil (10.1016/j.saa.2024.124738_b0045) 2001; 3 Kazarian (10.1016/j.saa.2024.124738_b0150) 2013; 10 Noma (10.1016/j.saa.2024.124738_b0060) 2004; 27 10.1016/j.saa.2024.124738_b0030 10.1016/j.saa.2024.124738_b0195 Vasko (10.1016/j.saa.2024.124738_b0175) 1972; 23 10.1016/j.saa.2024.124738_b0010 Isensee (10.1016/j.saa.2024.124738_b0085) 2018; 143 Pleitez (10.1016/j.saa.2024.124738_b0190) 2012; 85 Schweitzer (10.1016/j.saa.2024.124738_b0125) 2007 Clarke (10.1016/j.saa.2024.124738_b0160) 1987; 10 Vashist (10.1016/j.saa.2024.124738_b0020) 2012; 750 Chen (10.1016/j.saa.2024.124738_b0090) 2019; 197 |
References_xml | – volume: 12 year: 2022 ident: b0110 article-title: A single wavelength mid-infrared photoacoustic spectroscopy for noninvasive glucose detection using machine learning publication-title: Biosensors (basel) – volume: 10872 start-page: 108720A year: 2019 ident: b0095 article-title: Non-invasive blood glucose measurement using fixed-wavelength quantum cascade lasers publication-title: Proc. SPIE – reference: M. D. Natalja Skrebova Eikje, S. Takayuki,M. D. Katsuo Aizawa, Cutaneous approach towards clinical and pathophysiological aspects of hyperglycemia by ATR FTIR spectroscopy, Proc. SPIE. 6628 (2007) 66281M. doi: 10.1117/12.728430. – volume: 12 start-page: 129 year: 1989 end-page: 135 ident: b0185 article-title: Blood Glucose Measurement by Infrared Spectroscopy publication-title: Int. J. Artif. Organs – year: 2019 ident: b0135 article-title: Non-invasive blood glucose measurement using quantum cascade lasers publication-title: Quantum Sensing and Nano Electronics and Photonics XVI – volume: 34 start-page: 373 year: 2013 end-page: 384 ident: b0170 article-title: Assessment of endothelial and neurovascular function in human skin microcirculation publication-title: Trends Pharmacol. Sci – volume: 27 start-page: 615 year: 2004 ident: b0060 article-title: Relationship between periodontal disease and diabetic retinopathy publication-title: Diabetes Care – reference: H. M. Heise, R. Marbach, Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy, Cell. Mol. Biol. (Noisy-le-Grand, France) – volume: 48 start-page: 1833 year: 2005 end-page: 1840 ident: b0050 article-title: Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia publication-title: Diabetologia – reference: 46 (2023) S19-S40. doi: 10.2337/dc23-S002. – volume: 35 start-page: 414 year: 2000 end-page: 428.e413 ident: b0005 article-title: The global burden of metabolic disease: Data from to 2019 publication-title: Cell Metabol – reference: V. Vapnik,V. Vapnik, The Natural of Statistical Learning Theory, (1995). – volume: 143 start-page: 6025 year: 2018 end-page: 6036 ident: b0085 article-title: Towards a quantum cascade laser-based implant for the continuous monitoring of glucose publication-title: Analyst – reference: FDA, Self-Monitoring Blood Glucose Test Systems for Over-the-Counter Use Guidance for Industry and Food and Drug Administration Staff Preface Public Comment. 〈https://www.fda.gov/〉. – year: 2007 ident: b0125 article-title: Cutaneous approach towards clinical and pathophysiological aspects of hyperglycemia by ATR FTIR spectroscopy publication-title: Diagnostic Op. Spectrosc. Biomed. IV – volume: 750 start-page: 16 year: 2012 end-page: 27 ident: b0020 article-title: Non-invasive glucose monitoring technology in diabetes management: A review publication-title: Anal. Chim. Acta – volume: 10926 start-page: 1092606 year: 2019 ident: b0100 article-title: Non-invasive blood glucose measurement using quantum cascade lasers publication-title: Proc. SPIE – volume: 10 start-page: 622 year: 1987 end-page: 628 ident: b0160 article-title: Evaluating clinical accuracy of systems for self-monitoring of blood glucose publication-title: Diabetes Care – volume: 26 start-page: 197 year: 2009 end-page: 210 ident: b0015 article-title: Glucose sensors: a review of current and emerging technology publication-title: Diabetic Med. – volume: 48 start-page: 2023 year: 2003 end-page: 2032 ident: b0035 article-title: The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood publication-title: Phys. Med. Biol. – reference: N. A. Elsayed, G. Aleppo, V. R. Aroda, R. R. Bannuru, F. M. Brown, D. Bruemmer, B. S. Collins, M. E. Hilliard, D. Isaacs, E. L. Johnson, S. Kahan, K. Khunti, J. Leon, S. K. Lyons, M. L. Perry, P. Prahalad, R. E. Pratley, J. J. Seley, R. C. Stanton, R. A. Gabbay,A. On Behalf of the American Diabetes, Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023, Diabetes Care – volume: 24 start-page: 1 year: 2019 end-page: 11 ident: b0140 article-title: Clinical applications of laser speckle contrast imaging: a review publication-title: J Biomed Opt – volume: 31 start-page: S17 year: 1993 end-page: S22 ident: b0025 article-title: Noninvasive measurement of blood glucose concentrations by analysing fourier transform infra-red absorbance spectra through oral mucosa publication-title: Med. Biol. Eng. Compu. – volume: 10 start-page: 1207 year: 2013 end-page: 1221 ident: b0150 article-title: Applications of Fourier transform infrared spectroscopic imaging to tablet dissolution and drug release publication-title: Expert Opin. Drug Deliv. – reference: 44 (1998) 899-912. doi: 10.1038/sj.cdd.4400413. – volume: 406 start-page: 2367 year: 2014 end-page: 2376 ident: b0070 article-title: Potential of FTIR spectroscopy for analysis of tears for diagnosis purposes publication-title: Anal. Bioanal. Chem. – volume: 124 year: 2018 ident: b0080 article-title: Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy publication-title: Appl. Phys. B – volume: 3257 start-page: 2 year: 1998 end-page: 12 ident: b0120 article-title: Blood glucose assays based on infrared spectroscopy: alternatives for medical diagnostics, Proc publication-title: SPIE – volume: 81 start-page: 203 year: 1980 end-page: 212 ident: b0180 article-title: Laser-Raman spectra of d-glucose and sucrose in aqueous solution publication-title: Carbohydr. Res – volume: 233 year: 2023 ident: b0115 article-title: Mid-infrared spectroscopy with an effective variable selection method based on MPA for glucose detection publication-title: Chemom. Intel. Lab. Syst. – volume: 3 start-page: 357 year: 2001 end-page: 365 ident: b0045 article-title: Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels publication-title: Diabetes Technol. Ther. – volume: 57 start-page: 1236 year: 2003 end-page: 1244 ident: b0040 article-title: In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy publication-title: Appl. Spectrosc. – volume: 32 start-page: 307 year: 1983 end-page: 317 ident: b0165 article-title: Measurement in Medicine: The Analysis of Method Comparison Studies, Journal of the Royal Statistical Society publication-title: Series D (the Statistician) – volume: 23 start-page: 407 year: 1972 end-page: 416 ident: b0175 article-title: Infrared and raman spectroscopy of carbohydrates.: Part II: Normal coordinate analysis of α-D-glucose publication-title: Carbohydr. Res. – volume: 85 start-page: 61 year: 2012 end-page: 65 ident: b0190 article-title: Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc – volume: 85 start-page: 1013 year: 2013 end-page: 1020 ident: b0055 article-title: In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy publication-title: Anal. Chem. – volume: 197 start-page: 211 year: 2019 end-page: 217 ident: b0090 article-title: Non-invasive blood glucose measurement of 95% certainty by pressure regulated Mid-IR publication-title: Talanta – volume: 146 start-page: 6576 year: 2021 end-page: 6581 ident: b0105 article-title: Ultrasensitive glucose detection from tears and saliva through integrating a glucose oxidase-coupled DNAzyme and CRISPR-Cas12a publication-title: Analyst – year: 2019 ident: b0130 article-title: Non-invasive blood glucose measurement using fixed-wavelength quantum cascade lasers publication-title: Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIX – volume: 9 start-page: 1771 year: 2014 end-page: 1791 ident: b0155 article-title: Using Fourier transform IR spectroscopy to analyze biological materials publication-title: Nat. Protoc. – volume: 7 start-page: 701 year: 2016 end-page: 708 ident: b0075 article-title: Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism publication-title: Biomed. Opt Express – volume: 27 start-page: 615 year: 2004 ident: 10.1016/j.saa.2024.124738_b0060 article-title: Relationship between periodontal disease and diabetic retinopathy publication-title: Diabetes Care. doi: 10.2337/diacare.27.2.615 – volume: 85 start-page: 61 year: 2012 ident: 10.1016/j.saa.2024.124738_b0190 article-title: Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2011.09.007 – volume: 10926 start-page: 1092606 year: 2019 ident: 10.1016/j.saa.2024.124738_b0100 article-title: Non-invasive blood glucose measurement using quantum cascade lasers publication-title: Proc. SPIE. – volume: 9 start-page: 1771 year: 2014 ident: 10.1016/j.saa.2024.124738_b0155 article-title: Using Fourier transform IR spectroscopy to analyze biological materials publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.110 – volume: 23 start-page: 407 year: 1972 ident: 10.1016/j.saa.2024.124738_b0175 article-title: Infrared and raman spectroscopy of carbohydrates.: Part II: Normal coordinate analysis of α-D-glucose publication-title: Carbohydr. Res. doi: 10.1016/S0008-6215(00)82690-7 – volume: 35 start-page: 414 issue: 2023 year: 2000 ident: 10.1016/j.saa.2024.124738_b0005 article-title: The global burden of metabolic disease: Data from to 2019 publication-title: Cell Metabol. – volume: 233 year: 2023 ident: 10.1016/j.saa.2024.124738_b0115 article-title: Mid-infrared spectroscopy with an effective variable selection method based on MPA for glucose detection publication-title: Chemom. Intel. Lab. Syst.. doi: 10.1016/j.chemolab.2022.104731 – volume: 48 start-page: 1833 year: 2005 ident: 10.1016/j.saa.2024.124738_b0050 article-title: Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia publication-title: Diabetologia. doi: 10.1007/s00125-005-1852-x – volume: 57 start-page: 1236 year: 2003 ident: 10.1016/j.saa.2024.124738_b0040 article-title: In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy publication-title: Appl. Spectrosc. doi: 10.1366/000370203769699090 – ident: 10.1016/j.saa.2024.124738_b0065 doi: 10.1364/ECBO.2007.6628_63 – volume: 34 start-page: 373 year: 2013 ident: 10.1016/j.saa.2024.124738_b0170 article-title: Assessment of endothelial and neurovascular function in human skin microcirculation publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2013.05.007 – ident: 10.1016/j.saa.2024.124738_b0010 doi: 10.2337/dc23-S002 – volume: 10872 start-page: 108720A year: 2019 ident: 10.1016/j.saa.2024.124738_b0095 article-title: Non-invasive blood glucose measurement using fixed-wavelength quantum cascade lasers publication-title: Proc. SPIE. – ident: 10.1016/j.saa.2024.124738_b0195 – volume: 31 start-page: S17 year: 1993 ident: 10.1016/j.saa.2024.124738_b0025 article-title: Noninvasive measurement of blood glucose concentrations by analysing fourier transform infra-red absorbance spectra through oral mucosa publication-title: Med. Biol. Eng. Compu.. doi: 10.1007/BF02446645 – volume: 3 start-page: 357 year: 2001 ident: 10.1016/j.saa.2024.124738_b0045 article-title: Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels publication-title: Diabetes Technol. Ther.. doi: 10.1089/15209150152607132 – volume: 146 start-page: 6576 year: 2021 ident: 10.1016/j.saa.2024.124738_b0105 article-title: Ultrasensitive glucose detection from tears and saliva through integrating a glucose oxidase-coupled DNAzyme and CRISPR-Cas12a publication-title: Analyst. doi: 10.1039/D1AN01385H – volume: 124 year: 2018 ident: 10.1016/j.saa.2024.124738_b0080 article-title: Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy publication-title: Appl. Phys. B. doi: 10.1007/s00340-018-6946-5 – volume: 7 start-page: 701 year: 2016 ident: 10.1016/j.saa.2024.124738_b0075 article-title: Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism publication-title: Biomed. Opt Express. doi: 10.1364/BOE.7.000701 – volume: 197 start-page: 211 year: 2019 ident: 10.1016/j.saa.2024.124738_b0090 article-title: Non-invasive blood glucose measurement of 95% certainty by pressure regulated Mid-IR publication-title: Talanta. doi: 10.1016/j.talanta.2019.01.034 – year: 2019 ident: 10.1016/j.saa.2024.124738_b0135 article-title: Non-invasive blood glucose measurement using quantum cascade lasers – volume: 81 start-page: 203 year: 1980 ident: 10.1016/j.saa.2024.124738_b0180 article-title: Laser-Raman spectra of d-glucose and sucrose in aqueous solution publication-title: Carbohydr. Res. doi: 10.1016/S0008-6215(00)85652-9 – ident: 10.1016/j.saa.2024.124738_b0030 doi: 10.1038/sj.cdd.4400413 – volume: 10 start-page: 1207 year: 2013 ident: 10.1016/j.saa.2024.124738_b0150 article-title: Applications of Fourier transform infrared spectroscopic imaging to tablet dissolution and drug release publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425247.2013.801452 – volume: 24 start-page: 1 year: 2019 ident: 10.1016/j.saa.2024.124738_b0140 article-title: Clinical applications of laser speckle contrast imaging: a review publication-title: J Biomed Opt. doi: 10.1117/1.JBO.24.8.080901 – volume: 750 start-page: 16 year: 2012 ident: 10.1016/j.saa.2024.124738_b0020 article-title: Non-invasive glucose monitoring technology in diabetes management: A review publication-title: Anal. Chim. Acta. doi: 10.1016/j.aca.2012.03.043 – volume: 406 start-page: 2367 year: 2014 ident: 10.1016/j.saa.2024.124738_b0070 article-title: Potential of FTIR spectroscopy for analysis of tears for diagnosis purposes publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-013-7607-5 – volume: 12 year: 2022 ident: 10.1016/j.saa.2024.124738_b0110 article-title: A single wavelength mid-infrared photoacoustic spectroscopy for noninvasive glucose detection using machine learning publication-title: Biosensors (basel). – volume: 32 start-page: 307 year: 1983 ident: 10.1016/j.saa.2024.124738_b0165 article-title: Measurement in Medicine: The Analysis of Method Comparison Studies, Journal of the Royal Statistical Society publication-title: Series D (the Statistician). – volume: 26 start-page: 197 year: 2009 ident: 10.1016/j.saa.2024.124738_b0015 article-title: Glucose sensors: a review of current and emerging technology publication-title: Diabetic Med. doi: 10.1111/j.1464-5491.2008.02642.x – volume: 143 start-page: 6025 year: 2018 ident: 10.1016/j.saa.2024.124738_b0085 article-title: Towards a quantum cascade laser-based implant for the continuous monitoring of glucose publication-title: Analyst. doi: 10.1039/C8AN01382A – volume: 48 start-page: 2023 year: 2003 ident: 10.1016/j.saa.2024.124738_b0035 article-title: The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/48/13/313 – year: 2019 ident: 10.1016/j.saa.2024.124738_b0130 article-title: Non-invasive blood glucose measurement using fixed-wavelength quantum cascade lasers – volume: 3257 start-page: 2 year: 1998 ident: 10.1016/j.saa.2024.124738_b0120 article-title: Blood glucose assays based on infrared spectroscopy: alternatives for medical diagnostics, Proc publication-title: SPIE. – year: 2007 ident: 10.1016/j.saa.2024.124738_b0125 article-title: Cutaneous approach towards clinical and pathophysiological aspects of hyperglycemia by ATR FTIR spectroscopy publication-title: Diagnostic Op. Spectrosc. Biomed. IV. – ident: 10.1016/j.saa.2024.124738_b0145 doi: 10.1007/978-1-4757-2440-0 – volume: 10 start-page: 622 year: 1987 ident: 10.1016/j.saa.2024.124738_b0160 article-title: Evaluating clinical accuracy of systems for self-monitoring of blood glucose publication-title: Diabetes Care. doi: 10.2337/diacare.10.5.622 – volume: 85 start-page: 1013 year: 2013 ident: 10.1016/j.saa.2024.124738_b0055 article-title: In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy publication-title: Anal. Chem. doi: 10.1021/ac302841f – volume: 12 start-page: 129 year: 1989 ident: 10.1016/j.saa.2024.124738_b0185 article-title: Blood Glucose Measurement by Infrared Spectroscopy publication-title: Int. J. Artif. Organs. doi: 10.1177/039139888901200211 |
SSID | ssj0001820 ssib047304432 |
Score | 2.4390962 |
Snippet | [Display omitted]
•The accuracy of noninvasive blood-glucose test is improved to meet FDA standards.•Hypothenar is the optimal body-spot for collecting... Mid-infrared spectral analysis of glucose in subcutaneous interstitial fluid has been widely employed as a noninvasive alternative to the standard... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 124738 |
SubjectTerms | ATR-FTIR Blood glucose Blood Glucose - analysis Humans Male Noninvasive Regression Analysis Spectrophotometry, Infrared - methods Spectroscopy, Fourier Transform Infrared - methods Support Vector Machine Support vector regression |
Title | Optimization of mid-infrared noninvasive blood-glucose prediction model by support vector regression coupled with different spectral features |
URI | https://dx.doi.org/10.1016/j.saa.2024.124738 https://www.ncbi.nlm.nih.gov/pubmed/38945006 |
Volume | 321 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQVUUvFaXQAi3yoSeksBtnktjH1apo26pbJIrELbInDtoKlij7I_XCG_SdO-MkUC576C2ObMfxTGYm429mhPjkHaihow8wNs5GoJyOtLFVpFJMSMGmHI_OaItpNrmCr9fp9ZYY97EwDKvsZH8r04O07u4Mut0c1LPZ4DJONOkWlTIK0gxD8DpAzlx-9vAE8-AE5eGnS2cR9-5PNgPGa2E59ZCCM9JyIURlo276R_Gc74rXncUoR-2i3ogtP98TO-O-UNueeBlQnLh4K_78IAFw10VWyvtK3s3KiFioYZS5nLPndW0Zry6f4dVl3fBxTRgUKuNI91suVjWb5nId3Pqy8TctYnYu8X5V39J87MKVfYGVpQwxmw2ttPIhWehiX1ydf_45nkRdvYWI6JIsI5ubvELIQduMdFjqS5U5Y3OSAk5BBYCV8qAr7bMhgrVl7g0YhUprQPRxciC26VX8eyE9el06RG08gkE0SaltylexrVCXh2LY73SBXTJyrolxW_Sos18FEadg4hQtcQ7F6eOQus3Esakz9OQrnrFTQZpi07B3Lakfn0D2HKQkmY7-b8Jj8YpbHLwYpx_E9rJZ-Y9kxSzdSWDTE_Fi9OXbZEqt6cX3vyNg9XI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFaKXqlBoaQv40BNS2I0zSexjtSpa3gdA4hbZE6faCpYou4vUS_9B_3NnnITHZQ-9RYntOB57von9zYwQ37wDNXS0AGPjbATK6UgbW0UqxYQANmV_dGZbXGTjGzi5TW9XxKj3hWFaZaf7W50etHV3Z9CN5qCeTAZXcaIJW1TKLEgzZOf1N0DLl9MYHP555nlwhPLw16WziIv3R5uB5DWzHHtIwSHBXPBRWQpOL5Dn6L1415mM8nvbqw2x4qebYn3UZ2rbFGuBxomzD-LvJWmA-861Uj5U8n5SRjSHGqaZyylvvT5aJqzLV4R1WTd8XhMqhdQ40v2Ws0XNtrl8DPv6svE_W8rsVOLDor6j9ngPV_YZVuYyOG021NPKh2ihsy1xc_TjejSOuoQLEQkmmUc2N3mFkIO2GYFY6kuVOWNzUgNOQQWAlfKgK-2zIYK1Ze4NGIVKa0D0cbItVulT_CchPXpdOkRtPIJBNEmpbcpXsa1Qlzti2I90gV00ck6KcVf0tLNfBQmnYOEUrXB2xMFTlboNxbGsMPTiK17Np4KgYlm1j62on95ABh2kpJo-_1-D-2J9fH1-VpwdX5x-EW_5CXsyxulXsTpvFn6XTJq52wtT9h_5VvX0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+mid-infrared+noninvasive+blood-glucose+prediction+model+by+support+vector+regression+coupled+with+different+spectral+features&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Song%2C+Liying&rft.au=Han%2C+Zhiqiang&rft.au=Lau%2C+Woon-Ming&rft.date=2024-11-15&rft.issn=1386-1425&rft.volume=321&rft.spage=124738&rft_id=info:doi/10.1016%2Fj.saa.2024.124738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_saa_2024_124738 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon |