Drag reduction effect of ultraviolet laser-fabricated superhydrophobic surface
Superhydrophobic (SH) surface has been found effective for drag reduction in wall-bounded turbulence for decades, especially the metallic durable SH surfaces are believed very promising for improving the velocity and voyage of marine vehicles. We present stainless steel SH surfaces with U-groove pat...
Saved in:
Published in | Surface engineering Vol. 36; no. 12; pp. 1307 - 1314 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
Taylor & Francis
01.12.2020
SAGE Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Superhydrophobic (SH) surface has been found effective for drag reduction in wall-bounded turbulence for decades, especially the metallic durable SH surfaces are believed very promising for improving the velocity and voyage of marine vehicles. We present stainless steel SH surfaces with U-groove patterns that fabricated by ultraviolet laser texturing and coating modifier treatment. The drag-reducing effects of the SH surfaces are tested by a self-built gravity sliding speed improving evaluation device. The results show that the different drag-reduction performance of the SH surfaces can be achieved by adjusting the line spacing of the crossing U-groove patterns. With the line spacing equalling to 80 μm, the ultraviolet laser textured stainless steel SH surface acquires the static contact angle of 161.5° and the dynamic sliding angle of only 2°, which leads to the maximum speed improving rate of 29.7%. |
---|---|
AbstractList | Superhydrophobic (SH) surface has been found effective for drag reduction in wall-bounded turbulence for decades, especially the metallic durable SH surfaces are believed very promising for improving the velocity and voyage of marine vehicles. We present stainless steel SH surfaces with U-groove patterns that fabricated by ultraviolet laser texturing and coating modifier treatment. The drag-reducing effects of the SH surfaces are tested by a self-built gravity sliding speed improving evaluation device. The results show that the different drag-reduction performance of the SH surfaces can be achieved by adjusting the line spacing of the crossing U-groove patterns. With the line spacing equalling to 80 μm, the ultraviolet laser textured stainless steel SH surface acquires the static contact angle of 161.5° and the dynamic sliding angle of only 2°, which leads to the maximum speed improving rate of 29.7%. |
Author | Cao, Yu Xue, Wei Zhao, Xiuju Yang, Huan Xue, Yao He, An Li, Fengping |
Author_xml | – sequence: 1 givenname: Xiuju surname: Zhao fullname: Zhao, Xiuju organization: Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University – sequence: 2 givenname: Yao surname: Xue fullname: Xue, Yao organization: Intelligent Manufacturing Institute of Laser and Optoelectronic, Wenzhou University – sequence: 3 givenname: Huan surname: Yang fullname: Yang, Huan organization: Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University – sequence: 4 givenname: Wei surname: Xue fullname: Xue, Wei organization: Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University – sequence: 5 givenname: Fengping surname: Li fullname: Li, Fengping organization: Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University – sequence: 6 givenname: An orcidid: 0000-0002-8684-0996 surname: He fullname: He, An organization: Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University – sequence: 7 givenname: Yu orcidid: 0000-0003-2139-2114 surname: Cao fullname: Cao, Yu email: yucao@wzu.edu.cn organization: Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University |
BookMark | eNqFkE1Lw0AQhhepYFv9CUL-QOp-JZviRamfUPSi52Wz2Wm3pNkymyj99ya0XjzY08DwPi8zz4SMmtA4Qq4ZnTFa0BvKc0ULKWecsmLGspzOGTsjY6akSPlcyhEZD5l0CF2QSYwbSjlTRTYmbw9oVgm6qrOtD03iAJxtkwBJV7dovnyoXZvUJjpMwZTorWldlcRu53C9rzDs1qH0tl8gGOsuyTmYOrqr45ySz6fHj8VLunx_fl3cL1MrMtGmRjHHhHJiXgihoKxKKwTnZZWBcrlUlEvgRTUHUCKXLGOskpQrAAsCBOViSm4PvRZDjOhAW9-a4YP-aF9rRvWgRv-q0YMafVTT09kfeod-a3B_kuMHLpqV05vQYdM_eRK6O0C-gYBb8x2wrnRr9nVAQNNYH7X4v-IH--yMAQ |
CitedBy_id | crossref_primary_10_1007_s10853_023_08217_9 crossref_primary_10_1080_02670844_2020_1840757 crossref_primary_10_1016_j_surfcoat_2021_127257 crossref_primary_10_1007_s11431_023_2573_1 crossref_primary_10_1007_s11998_022_00618_w crossref_primary_10_1002_admi_202101616 crossref_primary_10_1016_j_apsusc_2023_156403 crossref_primary_10_1016_j_applthermaleng_2023_121691 crossref_primary_10_1063_5_0075171 crossref_primary_10_1016_j_surfin_2023_103429 crossref_primary_10_1080_02670844_2020_1780673 crossref_primary_10_1021_acs_jpcc_1c07428 |
Cites_doi | 10.1007/BF00404822 10.1002/maco.200905451 10.1016/j.jmatprotec.2016.08.024 10.1021/acsami.8b05410 10.1063/1.3081420 10.1016/j.expthermflusci.2015.08.003 10.1017/S0022112007008221 10.1142/S0217984918500355 10.1007/s00170-017-0323-0 10.1360/N972014-00530 10.1039/c2sm26517f 10.1016/j.apsusc.2018.01.046 10.1063/1.4826983 10.1016/j.colsurfa.2018.07.011 10.1016/S1001-6058(15)60507-8 10.1088/1674-1056/23/3/038201 10.1242/bio.016899 10.1007/s10404-007-0245-5 10.1016/S1672-6529(11)60140-6 10.1016/j.ultras.2012.06.008 10.1017/S0022112096004673 10.1371/journal.pone.0077252 10.1002/maco.201709878 10.1140/epje/i2014-14019-0 10.1039/C6SM00436A 10.1007/s10853-018-2554-3 10.1063/1.2739525 10.1016/j.oceaneng.2014.02.015 10.1002/adfm.201203683 10.1126/science.1188765 10.1103/PhysRevLett.119.134501 10.20964/2018.07.29 10.1021/ie50320a024 10.1021/jp984327m 10.1039/C6RA17655K 10.1021/acs.langmuir.8b01100 10.1017/jfm.2013.96 10.1039/tf9444000546 |
ContentType | Journal Article |
Copyright | 2019 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute 2019 2019 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute |
Copyright_xml | – notice: 2019 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute 2019 – notice: 2019 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute |
DBID | AAYXX CITATION |
DOI | 10.1080/02670844.2018.1560911 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1743-2944 |
EndPage | 1314 |
ExternalDocumentID | 10_1080_02670844_2018_1560911 10.1080_02670844.2018.1560911 1560911 |
Genre | Research Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1609209; 51375348 – fundername: Zhejiang Provincial Natural Science Foundation grantid: LR15E050003; LQ18F050006 |
GroupedDBID | 002 0BK 0R~ 123 1~B 29Q 4.4 8WZ A6W AAJMT AATAA ABCCY ABDBF ABFIM ABJNI ABKLS ABPNF ABXYU ACFOO ACGFS ACOXC ACTIO ACUHS ACUIR ADCVX ADGTB ADVBO ADYCX AENEX AEYOC AGDLA AGKLV AIJEM AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARTOV AWYRJ BLEHA BPACV CCCUG CS3 DGEBU DKSSO DU5 E01 EAP EBS EMK EPL ESX FHBDP H13 HCLVR HZ~ I-F IPNFZ J8X KYCEM LJTGL M4V M4Z MV1 P2P P75 P7B RIG ROSJB SCNPE SFC TDBHL TEN TFL TFT TFW TTHFI TUS AAGLT AAQXI ABRHV ABUJY ABUNW ACTTO ACVGN ADEBD ADUKL ADUMR ADXEU AEAXR AEHZU AEXNY AEZBV AFION AGVKY AGWUF AHDMH AKHJE ALKDR ALRRR ALXIB AMATQ BGSSV BWMZZ CYRSC DAOYK EJD FETWF IFELN M46 NUSFT O9- OPCYK Q1R SAUOL TAJZE ZE2 AAYXX AJGYC CITATION |
ID | FETCH-LOGICAL-c353t-a71e137e398337fbdbc3322bd5f7e647024f28d9ff73641511d4027ffcf3f3023 |
ISSN | 0267-0844 |
IngestDate | Tue Jul 01 05:17:43 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Tue Jun 17 22:30:46 EDT 2025 Wed Dec 25 09:07:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | drag reduction laser texturing Superhydrophobic surface stainless steel |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-a71e137e398337fbdbc3322bd5f7e647024f28d9ff73641511d4027ffcf3f3023 |
ORCID | 0000-0003-2139-2114 0000-0002-8684-0996 |
PageCount | 8 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_02670844_2018_1560911 sage_journals_10_1080_02670844_2018_1560911 crossref_citationtrail_10_1080_02670844_2018_1560911 crossref_primary_10_1080_02670844_2018_1560911 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 12/1/2020 20201200 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 12/1/2020 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | Surface engineering |
PublicationYear | 2020 |
Publisher | Taylor & Francis SAGE Publications |
Publisher_xml | – name: Taylor & Francis – name: SAGE Publications |
References | Bixler, Bhushan 2013; 23 Gu, Zhao, Zheng 2014; 81 Ou, Fang, Zhao 2018; 34 Pu, Li, Huang 2016; 5 Chu 2008; 5 Walsh, Anders 1989; 46 Nosonovsky 2007; 126 Wang, Tang, Cai 2018; 555 Song, Wang, Wei 2018; 32 Xiang, Huang, Lv 2017; 119 Cassie, Baxter 1944; 40 Mohammadi, Floryan 2013; 25 Zhang, Huang 2014; 28 van Gils, Narezo Guzman, Sun 2013; 722 Wang, Wang, He 2011; 62 Bechert, Bruse, Hage 1997; 338 Song, Xie, Ding 2018; 13 Dou, Wang, Wu 2018; 69 Zhang, Xia, Kim 2012; 8 McHale, Shirtcliffe, Evans 2009; 94 Frohnapfel, JovanoviĆ, Delgado 2007; 590 Luo, Wang, Green 2015; 27 Guan, Liu, Jiang 2015; 69 Lv, Shao, Gao 2016; 6 Lee, Jeong, Shung 2013; 53 Tuo, Chen, Zhang 2018; 446 Ahmmed, Kietzig 2016; 12 Ren, Wan, Wang 2018; 53 Tang, Huang, Yu 2017; 239 Marusic, Mathis, Hutchins 2010; 329 Cao, Li, Ma 2018; 10 Dou, Wang, Chen 2012; 9 Battiato 2014; 37 Wenzel 1936; 28 Lum, Chandler, Weeks 1999; 103 Wan, Wang, Wang 2018 Brands, Kliner, Lipowsky 2013; 8 Huang, Wang 2014; 59 Ke-Ke, Yue, Zhong-Hao 2014; 23 CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 Zhang K (CIT0019) 2014; 28 CIT0028 CIT0009 CIT0008 |
References_xml | – volume: 40 start-page: 546 year: 1944 end-page: 551 article-title: Wettability of porous surfaces publication-title: Trans Faraday Soc – volume: 6 start-page: 93419 issue: 96 year: 2016 end-page: 93427 article-title: Fabrication and corrosion resistance properties of super-hydrophobic coatings on iron and steel substrates by creating micro-/nano-structures and modifying rough surfaces publication-title: RSC Adv – volume: 9 start-page: 457 issue: 4 year: 2012 end-page: 464 article-title: Bionic research on fish scales for drag reduction publication-title: J Bionic Eng – volume: 69 start-page: 45 year: 2015 end-page: 57 article-title: Experimental and theoretical investigations on the flow resistance reduction and slip flow in super-hydrophobic micro tubes publication-title: Exp Therm Fluid Sci – volume: 32 start-page: 1850035 issue: 03 year: 2018 article-title: Experimental study of microbubble drag reduction on an axisymmetric body publication-title: Mod Phys Lett B – volume: 8 start-page: 11217 issue: 44 year: 2012 end-page: 11231 article-title: Recent developments in superhydrophobic surfaces with unique structural and functional properties publication-title: Soft Matter – volume: 25 start-page: 113601 issue: 11 year: 2013 article-title: Groove optimization for drag reduction publication-title: Phys Fluids – volume: 10 start-page: 20995 issue: 24 year: 2018 end-page: 21000 article-title: Is superhydrophobicity equal to underwater superaerophilicity: regulating the gas behavior on superaerophilic surface via hydrophilic defects publication-title: ACS Appl Mater Interfaces – volume: 338 start-page: 59 year: 1997 end-page: 87 article-title: Experiments on drag-reducing surfaces and their optimization with an adjustable geometry publication-title: J Fluid Mech – volume: 34 start-page: 5807 issue: 20 year: 2018 end-page: 5812 article-title: Influence of hydrostatic pressure on the corrosion behavior of superhydrophobic surfaces on bare and oxidized aluminum substrates publication-title: Langmuir – volume: 69 start-page: 978 issue: 8 year: 2018 end-page: 984 article-title: Strong acid resistance from electrochemical deposition of WO on super-hydrophobic CuO-coated copper surface publication-title: Mater Corros – volume: 103 start-page: 4570 issue: 22 year: 1999 end-page: 4577 article-title: Hydrophobicity at small and large length scales publication-title: J Phys Chem B – volume: 37 start-page: 19 issue: 3 year: 2014 article-title: Effective medium theory for drag-reducing micro-patterned surfaces in turbulent flows publication-title: The Eur Phys J E – volume: 28 start-page: 988 issue: 8 year: 1936 end-page: 994 article-title: Resistance of solid surfaces to wetting by water publication-title: Ind Eng Chem – year: 2018 article-title: Construction and characterization of micro/nano-topography on titanium alloy formed by micro-milling and anodic oxidation publication-title: The Int J Adv Manuf Technol – volume: 23 start-page: 038201 issue: 3 year: 2014 article-title: Residual stress induced wetting variation on electric brush-plated Cu film publication-title: Chin Phys B – volume: 722 start-page: 317 year: 2013 end-page: 347 article-title: The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow publication-title: J Fluid Mech – volume: 590 start-page: 107 year: 2007 end-page: 116 article-title: Experimental investigations of turbulent drag reduction by surface-embedded grooves publication-title: J Fluid Mech – volume: 59 start-page: 3066 issue: 31 year: 2014 end-page: 3071 article-title: Thermodynamic stability of Cassie state under pressure publication-title: Chin Sci Bull – volume: 12 start-page: 4912 issue: 22 year: 2016 end-page: 4922 article-title: Drag reduction on laser-patterned hierarchical superhydrophobic surfaces publication-title: Soft Matter – volume: 81 start-page: 50 year: 2014 end-page: 57 article-title: Experimental and numerical investigation on drag reduction of non-smooth bionic jet surface publication-title: Ocean Eng – volume: 239 start-page: 178 year: 2017 end-page: 186 article-title: Simple fabrication of large-area corrosion resistant superhydrophobic surface with high mechanical strength property on TiAl-based composite publication-title: J Mater Process Technol – volume: 119 start-page: 134501 issue: 13 year: 2017 article-title: Ultimate stable underwater superhydrophobic state publication-title: Phys Rev Lett – volume: 62 start-page: 320 issue: 4 year: 2011 end-page: 325 article-title: Corrosion behavior of hydrophobic titanium oxide film pre-treated in hydrogen peroxide solution publication-title: Mater Corros – volume: 13 start-page: 6190 issue: 7 year: 2018 end-page: 6200 article-title: Corrosion resistance of super-hydrophobic coating on AZ31B Mg alloy publication-title: Int J Electrochem Sci – volume: 446 start-page: 230 year: 2018 end-page: 235 article-title: One-step hydrothermal method to fabricate drag reduction superhydrophobic surface on aluminum foil publication-title: Appl Surf Sci – volume: 8 start-page: e77252 issue: 10 year: 2013 article-title: New insights into the microvascular mechanisms of drag reducing polymers: effect on the cell-free layer publication-title: Plos One – volume: 329 start-page: 193 issue: 5988 year: 2010 end-page: 196 article-title: Predictive model for wall-bounded turbulent flow publication-title: Science – volume: 27 start-page: 473 issue: 4 year: 2015 end-page: 487 article-title: Advances of drag-reducing surface technologies in turbulence based on boundary layer control publication-title: J Hydrodyn – volume: 46 start-page: 255 issue: 3 year: 1989 end-page: 262 article-title: Riblet/LEBU research at NASA Langley publication-title: Appl Sci Res – volume: 126 start-page: 224701 issue: 22 year: 2007 article-title: Model for solid-liquid and solid-solid friction of rough surfaces with adhesion hysteresis publication-title: J Chem Phys – volume: 28 start-page: 281 issue: 4 year: 2014 end-page: 285 article-title: Wetting behavior of superhydrophobic materials under hydraulic pressure publication-title: Chin J Mater Res – volume: 94 start-page: 064104 issue: 6 year: 2009 article-title: Terminal velocity and drag reduction measurements on superhydrophobic spheres publication-title: Appl Phys Lett – volume: 53 start-page: 12679 issue: 18 year: 2018 end-page: 12691 article-title: Morphologically modified surface with hierarchical micro-/nano-structures for enhanced bioactivity of titanium implants publication-title: J Mater Sci – volume: 5 start-page: 273 issue: 2 year: 2008 end-page: 279 article-title: Effects of shear rate and small periodic corrugation on the slip velocity in microscopic domain publication-title: Microfluid Nanofluidics – volume: 555 start-page: 290 year: 2018 end-page: 295 article-title: Scalable superhydrophobic coating with controllable wettability and investigations of its drag reduction publication-title: Colloids Surf, A – volume: 53 start-page: 249 issue: 1 year: 2013 end-page: 254 article-title: Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect publication-title: Ultrasonics – volume: 5 start-page: 389 issue: 4 year: 2016 end-page: 396 article-title: Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface publication-title: Biol Open – volume: 23 start-page: 4507 issue: 36 year: 2013 end-page: 4528 article-title: Fluid drag reduction with Shark-Skin Riblet inspired microstructured surfaces publication-title: Adv Funct Mater – ident: CIT0011 doi: 10.1007/BF00404822 – ident: CIT0032 doi: 10.1002/maco.200905451 – ident: CIT0033 doi: 10.1016/j.jmatprotec.2016.08.024 – ident: CIT0017 doi: 10.1021/acsami.8b05410 – ident: CIT0025 doi: 10.1063/1.3081420 – ident: CIT0022 doi: 10.1016/j.expthermflusci.2015.08.003 – ident: CIT0010 doi: 10.1017/S0022112007008221 – ident: CIT0015 doi: 10.1142/S0217984918500355 – ident: CIT0027 doi: 10.1007/s00170-017-0323-0 – ident: CIT0021 doi: 10.1360/N972014-00530 – ident: CIT0004 doi: 10.1039/c2sm26517f – ident: CIT0023 doi: 10.1016/j.apsusc.2018.01.046 – ident: CIT0009 doi: 10.1063/1.4826983 – ident: CIT0024 doi: 10.1016/j.colsurfa.2018.07.011 – ident: CIT0003 doi: 10.1016/S1001-6058(15)60507-8 – ident: CIT0034 doi: 10.1088/1674-1056/23/3/038201 – ident: CIT0008 doi: 10.1242/bio.016899 – ident: CIT0036 doi: 10.1007/s10404-007-0245-5 – ident: CIT0005 doi: 10.1016/S1672-6529(11)60140-6 – ident: CIT0002 doi: 10.1016/j.ultras.2012.06.008 – ident: CIT0012 doi: 10.1017/S0022112096004673 – ident: CIT0013 doi: 10.1371/journal.pone.0077252 – volume: 28 start-page: 281 issue: 4 year: 2014 ident: CIT0019 publication-title: Chin J Mater Res – ident: CIT0030 doi: 10.1002/maco.201709878 – ident: CIT0014 doi: 10.1140/epje/i2014-14019-0 – ident: CIT0026 doi: 10.1039/C6SM00436A – ident: CIT0028 doi: 10.1007/s10853-018-2554-3 – ident: CIT0035 doi: 10.1063/1.2739525 – ident: CIT0006 doi: 10.1016/j.oceaneng.2014.02.015 – ident: CIT0007 doi: 10.1002/adfm.201203683 – ident: CIT0001 doi: 10.1126/science.1188765 – ident: CIT0020 doi: 10.1103/PhysRevLett.119.134501 – ident: CIT0029 doi: 10.20964/2018.07.29 – ident: CIT0037 doi: 10.1021/ie50320a024 – ident: CIT0039 doi: 10.1021/jp984327m – ident: CIT0031 doi: 10.1039/C6RA17655K – ident: CIT0018 doi: 10.1021/acs.langmuir.8b01100 – ident: CIT0016 doi: 10.1017/jfm.2013.96 – ident: CIT0038 doi: 10.1039/tf9444000546 |
SSID | ssj0021785 |
Score | 2.3390028 |
Snippet | Superhydrophobic (SH) surface has been found effective for drag reduction in wall-bounded turbulence for decades, especially the metallic durable SH surfaces... |
SourceID | crossref sage informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1307 |
SubjectTerms | drag reduction laser texturing stainless steel Superhydrophobic surface |
Title | Drag reduction effect of ultraviolet laser-fabricated superhydrophobic surface |
URI | https://www.tandfonline.com/doi/abs/10.1080/02670844.2018.1560911 https://journals.sagepub.com/doi/full/10.1080/02670844.2018.1560911 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa29rIdhj2xdg_osFvgwLYsyzq264pgwHpZi2Unw7KlNUMRB6592H79SEl27Kxo112MgIkkJ_xMUQz5kZAP2M5BFPAgcZkWQQIOaZCZkAecScWzTEehxuLkL2fp4iL5vOTLbUzXVpe0al7-vrGu5H-0CjLQK1bJ3kOzw6QggNegX7iChuH6Tzo-aYofswbJV60WXW4Gun_dVdsU9j_3dgbusW4CUyjbEAj8y-tuo5vLX1VTby5rtSpB0JiinOQEfXWimd7SFY5CzDa8ulx1P7teuOxsYPR7UQ9mxAeiF90Wf_5T3_RqHGyIx4kbzibFYFfDzFE2zrWzmchyGksv80bVsZr04IlHJhI2TTHabiPmikj_MuU-9xEWxPUwCS-bY9m39MZ5Qp29s6UNiYZRz4Dqp8lxmtxP85Dsx3C4AOu4f3R8cnw6HNQjYVu5Dl-2r_xCTvab7mfi00wYbyf5gdZlOX9KnvizBj1ywHlGHuj1c_J4xED5gpwhhOgAIeogRGtDRxCiuxCiuxCiHkIvycXpp_OPi8C32AhKxlkbFCLSEROayYwxYVSlSgYmXlXcCJ0mAjw4E2cVBvZZCr5eFFVJGAtjSsMM9pt6RfbW9Vq_JlTqyjAtlYS3kSVOpaWQSvOQ8UywJD0gSf8j5aXnn8c2KFf5rUo6IPNh2MYRsNw1QI41kLc28mVcm5qc3TF2hurK_TN-fftKh_e9tTfk0fahekv22qbT78CnbdV7D8E_A0eSRQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drag+reduction+effect+of+ultraviolet+laser-fabricated+superhydrophobic+surface&rft.jtitle=Surface+engineering&rft.au=Zhao%2C+Xiuju&rft.au=Xue%2C+Yao&rft.au=Yang%2C+Huan&rft.au=Xue%2C+Wei&rft.date=2020-12-01&rft.issn=0267-0844&rft.eissn=1743-2944&rft.volume=36&rft.issue=12&rft.spage=1307&rft.epage=1314&rft_id=info:doi/10.1080%2F02670844.2018.1560911&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02670844_2018_1560911 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-0844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-0844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-0844&client=summon |