Mechanisms of Heavy Metal Immobilisation using Geopolymerisation Techniques – A review

Every year, substantial amount of waste materials containing toxic substances is produced throughout the world, which causes serious damage to the environment and poses threat to human health. Among available techniques of immobilisation of toxic elements in harmful by-products, geopolymerisation is...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Concrete Technology Vol. 16; no. 3; pp. 124 - 135
Main Authors Vu, Tran Huyen, Gowripalan, Nadarajah
Format Journal Article
LanguageEnglish
Published Tokyo Japan Concrete Institute 23.03.2018
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Every year, substantial amount of waste materials containing toxic substances is produced throughout the world, which causes serious damage to the environment and poses threat to human health. Among available techniques of immobilisation of toxic elements in harmful by-products, geopolymerisation is considered as an effective approach to deal with many environmental issues. Geopolymer binders have long been recognised to have great potential in immobilisation of hazardous wastes due to its advantages over Portland cement based binders. A profound knowledge of how hazardous elements are immobilised by geopolymer binders is necessary for achieving effective waste management strategies. This paper provides some important aspects of geopolymer materials regarding the immobilisation mechanisms and factors influencing the immobilisation efficiency, which are necessary to carry out further research on addressing the hazardous waste immobilisation.
AbstractList Every year, substantial amount of waste materials containing toxic substances is produced throughout the world, which causes serious damage to the environment and poses threat to human health. Among available techniques of immobilisation of toxic elements in harmful by-products, geopolymerisation is considered as an effective approach to deal with many environmental issues. Geopolymer binders have long been recognised to have great potential in immobilisation of hazardous wastes due to its advantages over Portland cement based binders. A profound knowledge of how hazardous elements are immobilised by geopolymer binders is necessary for achieving effective waste management strategies. This paper provides some important aspects of geopolymer materials regarding the immobilisation mechanisms and factors influencing the immobilisation efficiency, which are necessary to carry out further research on addressing the hazardous waste immobilisation.
Author Gowripalan, Nadarajah
Vu, Tran Huyen
Author_xml – sequence: 1
  fullname: Vu, Tran Huyen
  organization: School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW, Australia
– sequence: 2
  fullname: Gowripalan, Nadarajah
  organization: School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW, Australia
BookMark eNp1kM1KAzEUhYNUsFZXvkDApUzNz7SZ2QilaFtocVPBXchk7tSUmUlN0kp3voNv6JM4_bELwdW93Hzn3JtziVq1rQGhG0q6nPbo_VLp0KX9LmXxGWpTHouIp5S39n0_SgiNL9Cl90tCuOBCtNHrDPSbqo2vPLYFHoPabPEMgirxpKpsZkrjVTC2xmtv6gUegV3ZcluB-53PG4PavK_B4-_PLzzADjYGPq7QeaFKD9fH2kEvT4_z4TiaPo8mw8E00rzHQ6Q4ZwpEykTRXJpnvSwHEdOC9DmhiWqqYjpJRKKzgoHOVKHTNGdEUJ3kKi14B90efFfO7o4IcmnXrm5WSkYYo5T1YtFQdwdKO-u9g0KunKmU20pK5C46uYtO0r5somto-ofWJux_G5wy5T-ah4Nm6YNawMlfuWB0CSeWHwWnhyZ-J6HmP2EujUc
CitedBy_id crossref_primary_10_1016_j_cemconres_2024_107678
crossref_primary_10_1016_j_envres_2022_115002
crossref_primary_10_1007_s11356_024_33698_9
crossref_primary_10_1016_j_envres_2022_114873
crossref_primary_10_3390_ma13194263
crossref_primary_10_3390_buildings13020354
crossref_primary_10_1016_j_cemconcomp_2022_104679
crossref_primary_10_1007_s11270_022_05845_w
crossref_primary_10_1016_j_scitotenv_2019_06_095
crossref_primary_10_1016_j_jclepro_2022_130399
crossref_primary_10_3390_min11121317
crossref_primary_10_1016_j_jece_2020_104194
crossref_primary_10_1080_00219592_2023_2222780
crossref_primary_10_1007_s10163_020_01020_7
crossref_primary_10_1016_j_wasman_2025_02_026
crossref_primary_10_1111_jace_20131
crossref_primary_10_3390_ma11091521
crossref_primary_10_1007_s10904_019_01215_y
crossref_primary_10_3390_min14080763
crossref_primary_10_1016_j_conbuildmat_2021_125813
crossref_primary_10_1016_j_jenvman_2019_05_120
crossref_primary_10_1016_j_jclepro_2023_136053
crossref_primary_10_1016_j_conbuildmat_2021_123491
crossref_primary_10_3151_jact_17_728
crossref_primary_10_1039_D4RA00617H
crossref_primary_10_1016_j_conbuildmat_2019_07_112
crossref_primary_10_1016_j_jenvman_2023_119287
crossref_primary_10_53623_tasp_v4i1_398
crossref_primary_10_1016_j_scitotenv_2023_162842
crossref_primary_10_3390_ma14237456
crossref_primary_10_1016_j_jece_2023_109379
crossref_primary_10_4028_www_scientific_net_MSF_1007_65
crossref_primary_10_1007_s11837_024_07049_5
crossref_primary_10_1016_j_conbuildmat_2022_127828
crossref_primary_10_1016_j_jclepro_2023_135873
crossref_primary_10_3390_su15010689
crossref_primary_10_1007_s10853_023_08653_7
crossref_primary_10_1007_s13399_024_05434_3
crossref_primary_10_3390_cryst12070900
crossref_primary_10_1016_j_cemconcomp_2021_104377
crossref_primary_10_1016_j_nxmate_2025_100502
crossref_primary_10_1016_j_jenvman_2024_121956
crossref_primary_10_1007_s10706_024_02876_4
crossref_primary_10_1016_j_jenvman_2022_115742
crossref_primary_10_1039_D1EW00081K
crossref_primary_10_1111_ijac_14028
crossref_primary_10_1016_j_conbuildmat_2024_136141
crossref_primary_10_1016_j_jclepro_2020_122957
crossref_primary_10_3390_min14100997
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000734
crossref_primary_10_29039_2413_1873_2024_35_81_87
crossref_primary_10_3390_ma17020463
crossref_primary_10_3390_su14084438
crossref_primary_10_3390_su132313455
crossref_primary_10_1007_s11356_024_34234_5
crossref_primary_10_1088_1755_1315_1098_1_012059
crossref_primary_10_1016_j_scitotenv_2019_135289
crossref_primary_10_1016_j_conbuildmat_2022_128023
crossref_primary_10_3390_molecules27082577
crossref_primary_10_1016_j_conbuildmat_2021_125929
crossref_primary_10_1016_j_crcon_2022_03_003
crossref_primary_10_1016_j_jobe_2020_101684
crossref_primary_10_1016_j_jclepro_2019_119240
crossref_primary_10_1016_j_clema_2022_100043
crossref_primary_10_1007_s10967_022_08454_3
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000623
crossref_primary_10_3390_polym17050670
crossref_primary_10_1016_j_jclepro_2022_134984
crossref_primary_10_1016_j_pnucene_2024_105213
Cites_doi 10.1016/j.fuel.2008.01.021
10.1016/S0304-3894(96)01805-5
10.1146/annurev-matsci-070813-113515
10.1021/es00173a018
10.1016/j.pce.2014.01.001
10.1016/S0008-8846(97)00162-2
10.1016/j.jhazmat.2012.01.081
10.1016/j.jnoncrysol.2012.05.032
10.1080/10643380490443281
10.1016/j.clay.2015.04.023
10.1016/j.jnucmat.2005.06.006
10.1016/j.compositesb.2016.12.024
10.3989/mc.2014.00314
10.1061/41165(397)132
10.1016/j.chemosphere.2010.02.018
10.1016/j.mechmat.2016.09.012
10.1111/jace.12840
10.1680/adcr.2004.16.4.137
10.1016/j.jhazmat.2008.01.053
10.1007/978-94-007-7672-2_4
10.1016/j.msea.2011.01.005
10.1107/S160057671303197X
10.1080/08827500802498199
10.1089/hwm.1988.5.129
10.1007/978-94-007-7672-2_3
10.1016/S0956-053X(97)00004-4
10.3390/su7022189
10.1007/s10853-006-0637-z
10.1016/S0892-6875(01)00002-4
10.1016/S0008-8846(02)00963-8
10.1007/978-3-7643-8340-4_6
10.1016/S0008-8846(02)00964-X
10.1016/j.minpro.2015.03.002
10.1016/j.cemconres.2008.01.006
10.1016/j.jece.2016.03.038
10.1016/0008-8846(96)00118-4
10.1007/978-94-007-7672-2_5
10.1016/j.cemconres.2007.08.018
10.1016/j.jhazmat.2006.01.065
10.1016/S0883-2927(03)00151-3
10.1016/j.matlet.2005.10.019
10.1007/BF01912193
10.1016/j.jhazmat.2006.09.033
10.1016/j.conbuildmat.2013.08.047
10.1007/s11663-998-0032-z
10.1016/0022-3093(94)90252-6
10.1016/j.conbuildmat.2016.12.139
10.1617/s11527-013-0211-5
10.1016/j.conbuildmat.2015.10.172
10.1186/1467-4866-8-4
10.1016/j.clay.2011.11.027
10.1016/S0008-8846(97)00101-4
ContentType Journal Article
Copyright 2017 by Japan Concrete Institute
Copyright Japan Science and Technology Agency 2018
Copyright_xml – notice: 2017 by Japan Concrete Institute
– notice: Copyright Japan Science and Technology Agency 2018
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
DOI 10.3151/jact.16.124
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-3913
EndPage 135
ExternalDocumentID 10_3151_jact_16_124
article_jact_16_3_16_124_article_char_en
GroupedDBID 5GY
ACIWK
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c353t-a332ae7927f391db5bde741f063018af06a2c8878cbf2ecbafc99d2071c8da9f3
ISSN 1346-8014
IngestDate Mon Jun 30 10:10:10 EDT 2025
Thu Apr 24 23:11:42 EDT 2025
Tue Jul 01 01:31:04 EDT 2025
Wed Apr 05 07:13:56 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-a332ae7927f391db5bde741f063018af06a2c8878cbf2ecbafc99d2071c8da9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jact/16/3/16_124/_article/-char/en
PQID 2022112547
PQPubID 1996343
PageCount 12
ParticipantIDs proquest_journals_2022112547
crossref_primary_10_3151_jact_16_124
crossref_citationtrail_10_3151_jact_16_124
jstage_primary_article_jact_16_3_16_124_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018/03/23
PublicationDateYYYYMMDD 2018-03-23
PublicationDate_xml – month: 03
  year: 2018
  text: 2018/03/23
  day: 23
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Advanced Concrete Technology
PublicationTitleAlternate ACT
PublicationYear 2018
Publisher Japan Concrete Institute
Japan Science and Technology Agency
Publisher_xml – name: Japan Concrete Institute
– name: Japan Science and Technology Agency
References 52) Rickard, W. D. A., Temuujin, J. and van Riessen, A., (2012). “Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition.” Journal of Non-Crystalline Solids, 358(15), 1830-1839.
5) Conner, J. R., (1990). “Chemical fixation and solidification of hazardous wastes”. Van Nostrand Reinhold, New York, 692, f5.
70) Zheng, L., Wang, W. and Shi, Y., (2010). “The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer.” Chemosphere, 79, 665-671.
25) Glukhovsky, V. D., (1959). “Soil silicates”. Gosstroyizdat, Kiev, 154-157.
24) Glasser, F. P., (1997). “Fundamental aspect of cement solidification and stabilization.” Journal of Hazardous Material, 52, 151-170.
41) Palomo, A. and López de la Fuente, J. I., (2003). “Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes - Part I. Stabilisation of boron.” Cement and Concrete Research, 33(2), 281-288.
27) Guo, B., Pan, D., Liu, B., Volinsky, A. A., Fincan, M., Du, J. and Zhang, S., (2017). “Immobilization mechanism of Pb in fly ash-based geopolymer.” Construction and Building Materials, 134, 123-130.
15) Duxson, P., Provis, J. L., Lukey, G. C. and van Deventer, J. S. J., (2007). “The role of inorganic polymer technology in the development of green concrete.” Cement and Concrete Research, 37(12), 1590-1597.
11) Dimas, D. D., Giannopoulou, I. P. and Panias, D., (2009). “Utilization of alumina red mud for synthesis of inorganic polymeric materials.” Mineral Processing and Extractive Metallurgy Review, 30(3), 211-239.
63) Waijarean, N., Asavapisit, S. and Sombatsompop, K., (2014). “Strength and microstructure of water treatment residue-based geopolymers containing heavy metals.” Construction and Building Materials, 50, 486-491.
65) Ye, N., Yang, J., Ke, X., Zhu, J., Li, Y., Xiang, C. and Xiao, B., (2014). “Synthesis and characterization of geopolymer from bayer red mud with thermal pretreatment.” Journal of the American Ceramic Society, 97(5), 1652-1660.
13) Donatello, S., Fernández-Jiménez, A. and Palomo, A., (2012). “An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements.” Journal of Hazardous Materials, 213-214, 207-215.
39) Palacios, M. and Palomo, A., (2004). “Alkali-activated fly ash matrices for lead immobilisation: a comparison of different leaching tests.” Advances in Cement Research, 16(4), 137-144.
9) Davidovits, J., (2005). “Geopolymer chemistry and sustainable development. The poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry.” 2005 Geopolymer Conference, 9-15. (in Saint-Quentin, France
59) Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. and Sutton, D. J., (2012). “Heavy metals toxicity and the environment.” EXS, 101, 133-164.
23) Garcia-lodeiro, I., Palomo, A., Fernández-jiménez, A. and Macphee, D. E., (2011). “Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O.” Cement and Concrete Research, 41, 923-931.
34) Malviya, R. and Chaudhary, R., (2006). “Factors affecting hazardous waste solidification/stabilization: A review.” Journal of Hazardous Materials, 137(1), 267-276.
14) Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A. and van Deventer, J. S. J., (2007). “Geopolymer technology: the current state of the art.” Journal of Materials Science, 42, 2917-2933.
58) Steins, P., Poulesquen, A., Frizon, F., Diat, O., Jestin, J., Causse, J. and Rossignol, S., (2014). “Effect of aging and alkali activator on the porous structure of a geopolymer.” Journal of Applied Crystallography, 47(1), 316-324.
55) Shi, C. and Spence, R., (2004). “Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes.” Critical Reviews in Environmental Science and Technology, 34(4), 391-417.
66) Yunsheng, Z., Wei, S., Qianli, C. and Lin, C., (2007). “Synthesis and heavy metal immobilization behaviors of slag based geopolymer.” Journal of Hazardous Materials, 143(1-2), 206-213.
20) Fernández-Jiménez, A. and Palomo, A., (2003). “Characterisation of fly ashes. Potential reactivity as alkaline cements.” Fuel, 82, 2259-2265.
35) Neupane, K., (2016). “Fly ash and GGBFS based powder-activated geopolymer binders: A viable sustainable alternative of portland cement in concrete industry.” Mechanics of Materials, 103, 110-122.
43) Pera, J., Boumaza, R. and Ambroise, J., (1997). “Development of a pozzolanic pigment from red mud.” Cement and Concrete Research, 27(10), 1513-1522.
50) Provis, J. L. and Bernal, S. A., (2014b). “Geopolymers and Related Alkali-Activated Materials.” Annual Review of Materials Research, 44(3), 3-29.
16) Eary, L. E. and Rai, D., (1988). “Chromate removal from aqueous wastes by reduction with ferrous ion.” Environmental Science & Technology, 22(8), 972-977.
32) Lan, Y., Deng, B., Kim, C. and Thornton, E. C., (2007). “Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions.” Geochemical Transactions, 8, 4.
19) Fernandez-Jimenez, A., MacPhee, D. E., Lachowski, E. E. and Palomo, A., (2005). “Immobilization of cesium in alkaline activated fly ash matrix.” Journal of Nuclear Materials, 346(2-3), 185-193.
4) Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H. and Yang, S. F., (2012). “The heavy metal adsorption characteristics on metakaolin-based geopolymer.” Applied Clay Science, 56, 90-96.
61) van Jaarsveld, J. G. S., van Deventer, J. S. J. and Schwartzman, A., (1999). “The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics.” Minerals Engineering, 12(1), 75-91.
36) Nikolić, V., Komljenović, M., Džunuzović, N., Ivanović, T. and Miladinović, Z., (2017). “Immobilization of hexavalent chromium by fly ash-based geopolymers.” Composites Part B, 112(1), 213-223.
53) Rickard, W. D. A., Williams, R., Temuujin, J. and van Riessen, A., (2011). “Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications.” Materials Science and Engineering A, 528, 3390-3397.
57) Singh, M., Upadhayay, S. N. and Prasad, P. M., (1997). “Preparation of iron rich cements using red mud.” Cement and Concrete Research, 27(7), 1037-1046.
49) Provis, J. L. and Bernal, S. A., (2014a). “Binder Chemistry - Blended Systems and Intermediate Ca Content.” In: J. L. Provis and J. S. J. van Deventer Eds. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. Dordrecht: Springer Netherlands, 125-144.
22) Galiano, Y. L., Salihoglu, G., Pereira, C. F. and Parapar, J. V., (2011). “Study on the Immobilization of Cr (VI) and Cr (III) in geopolymers based on coal combustion fly ash.” World of Coal Ash (WOCA) Conference, 12. (in Denver, CO, USA).
40) Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O. and Fernández-Jiménez, A., (2014). “A review on alkaline activation: new analytical perspectives.” Materiales de Construcción, 64(315), e022.
47) Power, G., Gräfe, M. and Klauber, C., (2011). “Bauxite residue issues: I. Current management, disposal and storage practices.” Hydrometallurgy, 108(1-2), 33-45.
67) Zhang, J., Provis, J. L., Feng, D. and van Deventer, J. S. J., (2008). “Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+.” Journal of Hazardous Materials, 157, 587-598.
30) Kresic, N., (2006). “Hydrogeology and groundwater modeling.” CRC press.
18) Environmental Protection Agency, (2011). “Background information for the Leaching environmental Assessment Framework (LEAF) test methods.” Washington, D.C., USA.: Environmental Protection Agency, EPA/600/R-10/170.
2) Bishop, P. L., (1988). “Leaching of inorganic hazardous constituents from stabilized/solidified hazardous wastes.” Hazardous Waste and Hazardous Materials, 5(2), 129-143.
8) Davidovits, J., (2002). “Environmentally driven geopolymer cement applications”. Geopolymer 2002 Conference, 1-9. (in Melbourne, Australia
56) Singh, M., Upadhayay, S. N. and Prasad, P. M., (1996). “Preparation of special cements from red mud.” Waste Management, 16(8), 665-670.
38) Omotoso, O. E., Ivey, D. and Mikulab, R., (1996). “Quantitative X-ray diffraction analysis of chromium(III) doped tricalcium silicate pastes.” Cement and Concrete Research, 26(9), 1369-1379.
1) Bernal, S. A., Provis, J. L., Fernández-Jiménez, A., Krivenko, P. V., Kavalerova, E., Palacios, M. and Shi, C., (2014). “Binder chemistry - High calcium alkali activated materials.” In: J. L. Provis and J. S. J. van Deventer Eds. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. Dordrecht: Springer Netherlands, 59-91.
64) Xu, J. Z., Zhou, Y. L., Chang, Q. and Qu, H. Q., (2006). “Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers.” Materials Letters, 60(6), 820-822.
10) Davis, P. J., Deshpande, R., Smith, D. M., Brinker, C. J. and Assink, R. A., (1994). “Pore structure evolution in silica gel during aging/drying. IV. Varying pore fluid pH.” Journal of Non-Crystalline Solids, 167(3), 295-306.
26) Gu, H., Wang, N., Yang, Y., Zhao, C. and Cui, S., (2017). “Features of distribution of uranium and thorium in red mud.” Physicochemical Problems of Mineral Processing, 53(1), 110-120.
69) Zhang, Z. H., Zhu, H. J., Zhou, C. H. and Wang, H., (2016). “Geopolymer from kaolin in China: An overview.” Applied Clay Science, 119, 31-41.
17) El-Eswed, B. I., Yousef, R. I., Alshaaer, M., Hamadneh, I., Al-Gharabli, S. I. and Khalili, F., (2015). “Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers.” International Journal of Mineral Processing, 137, 34-42.
31) Kriven, W. M., Bell, J. L. and Gordon, M., (2008). “Microstructure and nanoporosity of asset geopolymers.” Ceramic Engineering and Science Proceedings, 27, 491-503.
46) Portland Cement Associatio, (1991). “Solidification and Stabilization of Wastes Using Portland Cemen
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
67
24
68
25
69
26
27
28
29
70
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 1) Bernal, S. A., Provis, J. L., Fernández-Jiménez, A., Krivenko, P. V., Kavalerova, E., Palacios, M. and Shi, C., (2014). “Binder chemistry - High calcium alkali activated materials.” In: J. L. Provis and J. S. J. van Deventer Eds. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. Dordrecht: Springer Netherlands, 59-91.
– reference: 6) Davidovits, J., (1991). “Geopolymers: Inorganic polymeric new materials.” Journal of Thermal Analysis, 37(8), 1633-1656.
– reference: 42) Palomo, A. and Palacios, M., (2003). “Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes - Part II. Stabilisation of chromium and lead.” Cement and Concrete Research, 33(2), 289-295.
– reference: 38) Omotoso, O. E., Ivey, D. and Mikulab, R., (1996). “Quantitative X-ray diffraction analysis of chromium(III) doped tricalcium silicate pastes.” Cement and Concrete Research, 26(9), 1369-1379.
– reference: 14) Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A. and van Deventer, J. S. J., (2007). “Geopolymer technology: the current state of the art.” Journal of Materials Science, 42, 2917-2933.
– reference: 33) Lloyd, N. and Rangan, V., (2009). “Geopolymer concrete - Sustainable cementless concrete.” Tenth ACI International Conferenceenth ACI International Conference, 33-53. (in Seville, Spain)
– reference: 59) Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. and Sutton, D. J., (2012). “Heavy metals toxicity and the environment.” EXS, 101, 133-164.
– reference: 13) Donatello, S., Fernández-Jiménez, A. and Palomo, A., (2012). “An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements.” Journal of Hazardous Materials, 213-214, 207-215.
– reference: 21) Fernández Pereira, C., Luna, Y., Querol, X., Antenucci, D. and Vale, J., (2009). “Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers.” Fuel, 88, 1185-1193.
– reference: 5) Conner, J. R., (1990). “Chemical fixation and solidification of hazardous wastes”. Van Nostrand Reinhold, New York, 692, f5.
– reference: 55) Shi, C. and Spence, R., (2004). “Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes.” Critical Reviews in Environmental Science and Technology, 34(4), 391-417.
– reference: 62) Vespa, M., Dähn, R. and Wieland, E., (2014). “Competition behaviour of metal uptake in cementitious systems: An XRD and EXAFS investigation of Nd- and Zn-loaded 11A tobermorite.” Physics and Chemistry of the Earth, 70-71, 32-38.
– reference: 52) Rickard, W. D. A., Temuujin, J. and van Riessen, A., (2012). “Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition.” Journal of Non-Crystalline Solids, 358(15), 1830-1839.
– reference: 25) Glukhovsky, V. D., (1959). “Soil silicates”. Gosstroyizdat, Kiev, 154-157.
– reference: 60) van Jaarsveld, J. G. S., van Deventer, J. S. J. and Lorenzen, L., (1998). “Factors affecting the immobilization of metals in geopolymerized flyash.” Metallurgical and Materials Transactions B, 29(1), 283-291.
– reference: 10) Davis, P. J., Deshpande, R., Smith, D. M., Brinker, C. J. and Assink, R. A., (1994). “Pore structure evolution in silica gel during aging/drying. IV. Varying pore fluid pH.” Journal of Non-Crystalline Solids, 167(3), 295-306.
– reference: 34) Malviya, R. and Chaudhary, R., (2006). “Factors affecting hazardous waste solidification/stabilization: A review.” Journal of Hazardous Materials, 137(1), 267-276.
– reference: 17) El-Eswed, B. I., Yousef, R. I., Alshaaer, M., Hamadneh, I., Al-Gharabli, S. I. and Khalili, F., (2015). “Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers.” International Journal of Mineral Processing, 137, 34-42.
– reference: 27) Guo, B., Pan, D., Liu, B., Volinsky, A. A., Fincan, M., Du, J. and Zhang, S., (2017). “Immobilization mechanism of Pb in fly ash-based geopolymer.” Construction and Building Materials, 134, 123-130.
– reference: 29) Jang, J. G. and Lee, H. K., (2016). “Effect of fly ash characteristics on delayed high-strength development of geopolymers.” Construction and Building Materials, 102, 260-269.
– reference: 22) Galiano, Y. L., Salihoglu, G., Pereira, C. F. and Parapar, J. V., (2011). “Study on the Immobilization of Cr (VI) and Cr (III) in geopolymers based on coal combustion fly ash.” World of Coal Ash (WOCA) Conference, 12. (in Denver, CO, USA).
– reference: 43) Pera, J., Boumaza, R. and Ambroise, J., (1997). “Development of a pozzolanic pigment from red mud.” Cement and Concrete Research, 27(10), 1513-1522.
– reference: 45) Phair, J. W., van Deventer, J. S. J. and Smith, J. D., (2004). “Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based geopolymers.” Applied Geochemistry, 19(3), 423-434.
– reference: 40) Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O. and Fernández-Jiménez, A., (2014). “A review on alkaline activation: new analytical perspectives.” Materiales de Construcción, 64(315), e022.
– reference: 48) Provis, J. L., (2014). “Geopolymers and other alkali activated materials: why, how, and what?.” Materials and Structures, 47(1-2), 11-25.
– reference: 46) Portland Cement Associatio, (1991). “Solidification and Stabilization of Wastes Using Portland Cement.” The United States of America: Report 7355.
– reference: 28) He, J. and Zhang, G., (2011). “Geopolymerization of red mud and fly ash for civil infrastructure applications.” Geo-Frontiers Congress 2011. (in Dallas, Texas, USA)
– reference: 37) Nikolići, I., Đurović, D., Tadić, M., Blečić, D. and Radmilović, V., (2013). “Immobilization of zinc from metallurgical waste and water solutions using geopolymerization technolog.” The 16th International Conference on Heavy Metals in the Environment, 1, 4. (in Rome, Italy)
– reference: 8) Davidovits, J., (2002). “Environmentally driven geopolymer cement applications”. Geopolymer 2002 Conference, 1-9. (in Melbourne, Australia)
– reference: 63) Waijarean, N., Asavapisit, S. and Sombatsompop, K., (2014). “Strength and microstructure of water treatment residue-based geopolymers containing heavy metals.” Construction and Building Materials, 50, 486-491.
– reference: 30) Kresic, N., (2006). “Hydrogeology and groundwater modeling.” CRC press.
– reference: 32) Lan, Y., Deng, B., Kim, C. and Thornton, E. C., (2007). “Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions.” Geochemical Transactions, 8, 4.
– reference: 2) Bishop, P. L., (1988). “Leaching of inorganic hazardous constituents from stabilized/solidified hazardous wastes.” Hazardous Waste and Hazardous Materials, 5(2), 129-143.
– reference: 19) Fernandez-Jimenez, A., MacPhee, D. E., Lachowski, E. E. and Palomo, A., (2005). “Immobilization of cesium in alkaline activated fly ash matrix.” Journal of Nuclear Materials, 346(2-3), 185-193.
– reference: 49) Provis, J. L. and Bernal, S. A., (2014a). “Binder Chemistry - Blended Systems and Intermediate Ca Content.” In: J. L. Provis and J. S. J. van Deventer Eds. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. Dordrecht: Springer Netherlands, 125-144.
– reference: 23) Garcia-lodeiro, I., Palomo, A., Fernández-jiménez, A. and Macphee, D. E., (2011). “Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O.” Cement and Concrete Research, 41, 923-931.
– reference: 64) Xu, J. Z., Zhou, Y. L., Chang, Q. and Qu, H. Q., (2006). “Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers.” Materials Letters, 60(6), 820-822.
– reference: 39) Palacios, M. and Palomo, A., (2004). “Alkali-activated fly ash matrices for lead immobilisation: a comparison of different leaching tests.” Advances in Cement Research, 16(4), 137-144.
– reference: 65) Ye, N., Yang, J., Ke, X., Zhu, J., Li, Y., Xiang, C. and Xiao, B., (2014). “Synthesis and characterization of geopolymer from bayer red mud with thermal pretreatment.” Journal of the American Ceramic Society, 97(5), 1652-1660.
– reference: 26) Gu, H., Wang, N., Yang, Y., Zhao, C. and Cui, S., (2017). “Features of distribution of uranium and thorium in red mud.” Physicochemical Problems of Mineral Processing, 53(1), 110-120.
– reference: 36) Nikolić, V., Komljenović, M., Džunuzović, N., Ivanović, T. and Miladinović, Z., (2017). “Immobilization of hexavalent chromium by fly ash-based geopolymers.” Composites Part B, 112(1), 213-223.
– reference: 31) Kriven, W. M., Bell, J. L. and Gordon, M., (2008). “Microstructure and nanoporosity of asset geopolymers.” Ceramic Engineering and Science Proceedings, 27, 491-503.
– reference: 53) Rickard, W. D. A., Williams, R., Temuujin, J. and van Riessen, A., (2011). “Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications.” Materials Science and Engineering A, 528, 3390-3397.
– reference: 35) Neupane, K., (2016). “Fly ash and GGBFS based powder-activated geopolymer binders: A viable sustainable alternative of portland cement in concrete industry.” Mechanics of Materials, 103, 110-122.
– reference: 58) Steins, P., Poulesquen, A., Frizon, F., Diat, O., Jestin, J., Causse, J. and Rossignol, S., (2014). “Effect of aging and alkali activator on the porous structure of a geopolymer.” Journal of Applied Crystallography, 47(1), 316-324.
– reference: 68) Zhang, J., Provis, J. L., Feng, D. and van Deventer, J. S. J., (2008). “The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers.” Cement and Concrete Research, 38, 681-688.
– reference: 18) Environmental Protection Agency, (2011). “Background information for the Leaching environmental Assessment Framework (LEAF) test methods.” Washington, D.C., USA.: Environmental Protection Agency, EPA/600/R-10/170.
– reference: 66) Yunsheng, Z., Wei, S., Qianli, C. and Lin, C., (2007). “Synthesis and heavy metal immobilization behaviors of slag based geopolymer.” Journal of Hazardous Materials, 143(1-2), 206-213.
– reference: 3) Chen, J., Wang, Y., Wang, H., Zhou, S., Wu, H. and Lei, X., (2016). “Detoxification/immobilization of hexavalent chromium using metakaolin-based geopolymer coupled with ferrous chloride.” Journal of Environmental Chemical Engineering, 4(2), 2084-2089.
– reference: 51) Provis, J. L., Fernández-Jiménez, A., Kamseu, E., Leonelli, C. and Palomo, A., (2014). “Binder chemistry-low-calcium alkali-activated materials.” In: J. L. Provis and J. S. J. van Deventer Eds. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. Dordrecht: Springer Netherlands, 93-123.
– reference: 41) Palomo, A. and López de la Fuente, J. I., (2003). “Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes - Part I. Stabilisation of boron.” Cement and Concrete Research, 33(2), 281-288.
– reference: 69) Zhang, Z. H., Zhu, H. J., Zhou, C. H. and Wang, H., (2016). “Geopolymer from kaolin in China: An overview.” Applied Clay Science, 119, 31-41.
– reference: 11) Dimas, D. D., Giannopoulou, I. P. and Panias, D., (2009). “Utilization of alumina red mud for synthesis of inorganic polymeric materials.” Mineral Processing and Extractive Metallurgy Review, 30(3), 211-239.
– reference: 4) Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H. and Yang, S. F., (2012). “The heavy metal adsorption characteristics on metakaolin-based geopolymer.” Applied Clay Science, 56, 90-96.
– reference: 44) Phair, J. W. and van Deventer, J. S. J., (2001). “Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers.” Minerals Engineering, 14(3), 289-304.
– reference: 57) Singh, M., Upadhayay, S. N. and Prasad, P. M., (1997). “Preparation of iron rich cements using red mud.” Cement and Concrete Research, 27(7), 1037-1046.
– reference: 61) van Jaarsveld, J. G. S., van Deventer, J. S. J. and Schwartzman, A., (1999). “The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics.” Minerals Engineering, 12(1), 75-91.
– reference: 54) Science Communication Unit of University of the West of England, (2013). “Soil contamination: impacts on human health.” Bristol, England: European Commission DG Environment.
– reference: 9) Davidovits, J., (2005). “Geopolymer chemistry and sustainable development. The poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry.” 2005 Geopolymer Conference, 9-15. (in Saint-Quentin, France)
– reference: 70) Zheng, L., Wang, W. and Shi, Y., (2010). “The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer.” Chemosphere, 79, 665-671.
– reference: 50) Provis, J. L. and Bernal, S. A., (2014b). “Geopolymers and Related Alkali-Activated Materials.” Annual Review of Materials Research, 44(3), 3-29.
– reference: 67) Zhang, J., Provis, J. L., Feng, D. and van Deventer, J. S. J., (2008). “Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+.” Journal of Hazardous Materials, 157, 587-598.
– reference: 24) Glasser, F. P., (1997). “Fundamental aspect of cement solidification and stabilization.” Journal of Hazardous Material, 52, 151-170.
– reference: 16) Eary, L. E. and Rai, D., (1988). “Chromate removal from aqueous wastes by reduction with ferrous ion.” Environmental Science & Technology, 22(8), 972-977.
– reference: 56) Singh, M., Upadhayay, S. N. and Prasad, P. M., (1996). “Preparation of special cements from red mud.” Waste Management, 16(8), 665-670.
– reference: 47) Power, G., Gräfe, M. and Klauber, C., (2011). “Bauxite residue issues: I. Current management, disposal and storage practices.” Hydrometallurgy, 108(1-2), 33-45.
– reference: 20) Fernández-Jiménez, A. and Palomo, A., (2003). “Characterisation of fly ashes. Potential reactivity as alkaline cements.” Fuel, 82, 2259-2265.
– reference: 12) Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A. and Paul, D., (2015). “Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes.” Sustainability, 7(2), 2189-2212.
– reference: 15) Duxson, P., Provis, J. L., Lukey, G. C. and van Deventer, J. S. J., (2007). “The role of inorganic polymer technology in the development of green concrete.” Cement and Concrete Research, 37(12), 1590-1597.
– reference: 7) Davidovits, J., (1994). “Properties of geopolymer cements.” First International Conference on Alkaline Cements and Concretes, 131-149. (in Kiev, Ukraine)
– ident: 21
  doi: 10.1016/j.fuel.2008.01.021
– ident: 24
  doi: 10.1016/S0304-3894(96)01805-5
– ident: 50
  doi: 10.1146/annurev-matsci-070813-113515
– ident: 16
  doi: 10.1021/es00173a018
– ident: 62
  doi: 10.1016/j.pce.2014.01.001
– ident: 43
  doi: 10.1016/S0008-8846(97)00162-2
– ident: 13
  doi: 10.1016/j.jhazmat.2012.01.081
– ident: 31
– ident: 52
  doi: 10.1016/j.jnoncrysol.2012.05.032
– ident: 9
– ident: 26
– ident: 55
  doi: 10.1080/10643380490443281
– ident: 22
– ident: 69
  doi: 10.1016/j.clay.2015.04.023
– ident: 5
– ident: 19
  doi: 10.1016/j.jnucmat.2005.06.006
– ident: 36
  doi: 10.1016/j.compositesb.2016.12.024
– ident: 40
  doi: 10.3989/mc.2014.00314
– ident: 28
  doi: 10.1061/41165(397)132
– ident: 70
  doi: 10.1016/j.chemosphere.2010.02.018
– ident: 35
  doi: 10.1016/j.mechmat.2016.09.012
– ident: 65
  doi: 10.1111/jace.12840
– ident: 30
– ident: 54
– ident: 39
  doi: 10.1680/adcr.2004.16.4.137
– ident: 67
  doi: 10.1016/j.jhazmat.2008.01.053
– ident: 51
  doi: 10.1007/978-94-007-7672-2_4
– ident: 61
– ident: 53
  doi: 10.1016/j.msea.2011.01.005
– ident: 58
  doi: 10.1107/S160057671303197X
– ident: 11
  doi: 10.1080/08827500802498199
– ident: 8
– ident: 2
  doi: 10.1089/hwm.1988.5.129
– ident: 23
– ident: 18
– ident: 1
  doi: 10.1007/978-94-007-7672-2_3
– ident: 56
  doi: 10.1016/S0956-053X(97)00004-4
– ident: 12
  doi: 10.3390/su7022189
– ident: 14
  doi: 10.1007/s10853-006-0637-z
– ident: 44
  doi: 10.1016/S0892-6875(01)00002-4
– ident: 41
  doi: 10.1016/S0008-8846(02)00963-8
– ident: 37
– ident: 59
  doi: 10.1007/978-3-7643-8340-4_6
– ident: 33
– ident: 42
  doi: 10.1016/S0008-8846(02)00964-X
– ident: 17
  doi: 10.1016/j.minpro.2015.03.002
– ident: 68
  doi: 10.1016/j.cemconres.2008.01.006
– ident: 3
  doi: 10.1016/j.jece.2016.03.038
– ident: 38
  doi: 10.1016/0008-8846(96)00118-4
– ident: 49
  doi: 10.1007/978-94-007-7672-2_5
– ident: 7
– ident: 47
– ident: 20
– ident: 15
  doi: 10.1016/j.cemconres.2007.08.018
– ident: 34
  doi: 10.1016/j.jhazmat.2006.01.065
– ident: 45
  doi: 10.1016/S0883-2927(03)00151-3
– ident: 64
  doi: 10.1016/j.matlet.2005.10.019
– ident: 6
  doi: 10.1007/BF01912193
– ident: 66
  doi: 10.1016/j.jhazmat.2006.09.033
– ident: 63
  doi: 10.1016/j.conbuildmat.2013.08.047
– ident: 60
  doi: 10.1007/s11663-998-0032-z
– ident: 10
  doi: 10.1016/0022-3093(94)90252-6
– ident: 27
  doi: 10.1016/j.conbuildmat.2016.12.139
– ident: 48
  doi: 10.1617/s11527-013-0211-5
– ident: 29
  doi: 10.1016/j.conbuildmat.2015.10.172
– ident: 32
  doi: 10.1186/1467-4866-8-4
– ident: 46
– ident: 4
  doi: 10.1016/j.clay.2011.11.027
– ident: 57
  doi: 10.1016/S0008-8846(97)00101-4
– ident: 25
SSID ssj0037377
Score 2.408881
SecondaryResourceType review_article
Snippet Every year, substantial amount of waste materials containing toxic substances is produced throughout the world, which causes serious damage to the environment...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124
SubjectTerms Hazardous wastes
Heavy metals
Immobilization
Portland cements
Toxic wastes
Waste management
Title Mechanisms of Heavy Metal Immobilisation using Geopolymerisation Techniques – A review
URI https://www.jstage.jst.go.jp/article/jact/16/3/16_124/_article/-char/en
https://www.proquest.com/docview/2022112547
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Concrete Technology, 2018/03/23, Vol.16(3), pp.124-135
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZg4QAHxK8oLMiHPRGlKHacxMcK7W6B7SKkFPUW2Y6zsIIWtSmonHgH3nCfZMd24qR0hYBLWjkjK5oZj8fj-WYQOqhiRoVKeBgxxcOY8SwUCYtCKUueVJRIYuHRk9NkPI3fzNisC2VbdEkth-rHlbiS_5EqjIFcDUr2HyTrJ4UB-A_yhSdIGJ5_JeOJNrjdT6svNh9jrMW3TTDRBt74Gj7CpL26XJ1gbSMCx9p0RNiYO5pmPG8ruK6CNuuBgqlYdhcGu36rzxqAkzS4nLUO6p3wvNkB7aa23uh58GHtQ86iFEtxLj4Gx4vvYK5MXmU_7hBZIJ6DBrs9AfbyzgCZIH93FxCMLG60Z1ZpbMoeO7joULdjYN64Q6J6W5z0dI72DGvkkNa_G3wKDottNKDqYZQMG6rtstqn74qj6clJkR_O8uvoBoHzhGl18fa9v26iKbUtOv1nOiCnmfxlb-ot1-XmOXjvZ7tbuPVL8rvoTiMYPHLacQ9d0_P76HavzOQDNOv0BC8qbPUEWz3B23qCrZ7gHT3BnZ7gi5-_8Ag7DXmIpkeH-atx2HTUCBVltA4FpUTolJO0As6XkslSg0tZmcJrUSbgVxAF206mZEW0kqJSnJcE3FCVlYJX9BHamy_m-jHCOpGVVJrKOEviigtJIy24IpoRpiJFB-hFy6xCNeXmTdeTzwUcOw1nC8PZIkoK4OwAHXjir67KytVkqeO6J2qWnieiDaV_YbCLYCoGaL8VU9Es4FVBwH-F4waL0yd_fv0U3epWwD7aq5dr_Qx80Vo-t3p0CWflkr4
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Heavy+Metal+Immobilisation+using+Geopolymerisation+Techniques+%E2%80%93+A+review&rft.jtitle=Journal+of+advanced+concrete+technology&rft.au=Tran%2C+Huyen+Vu&rft.au=Nadarajah+Gowripalan&rft.date=2018-03-23&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1346-8014&rft.eissn=1347-3913&rft.volume=16&rft.issue=3&rft.spage=124&rft_id=info:doi/10.3151%2Fjact.16.124&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon