Mechanisms of Heavy Metal Immobilisation using Geopolymerisation Techniques – A review
Every year, substantial amount of waste materials containing toxic substances is produced throughout the world, which causes serious damage to the environment and poses threat to human health. Among available techniques of immobilisation of toxic elements in harmful by-products, geopolymerisation is...
Saved in:
Published in | Journal of Advanced Concrete Technology Vol. 16; no. 3; pp. 124 - 135 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japan Concrete Institute
23.03.2018
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Every year, substantial amount of waste materials containing toxic substances is produced throughout the world, which causes serious damage to the environment and poses threat to human health. Among available techniques of immobilisation of toxic elements in harmful by-products, geopolymerisation is considered as an effective approach to deal with many environmental issues. Geopolymer binders have long been recognised to have great potential in immobilisation of hazardous wastes due to its advantages over Portland cement based binders. A profound knowledge of how hazardous elements are immobilised by geopolymer binders is necessary for achieving effective waste management strategies. This paper provides some important aspects of geopolymer materials regarding the immobilisation mechanisms and factors influencing the immobilisation efficiency, which are necessary to carry out further research on addressing the hazardous waste immobilisation. |
---|---|
AbstractList | Every year, substantial amount of waste materials containing toxic substances is produced throughout the world, which causes serious damage to the environment and poses threat to human health. Among available techniques of immobilisation of toxic elements in harmful by-products, geopolymerisation is considered as an effective approach to deal with many environmental issues. Geopolymer binders have long been recognised to have great potential in immobilisation of hazardous wastes due to its advantages over Portland cement based binders. A profound knowledge of how hazardous elements are immobilised by geopolymer binders is necessary for achieving effective waste management strategies. This paper provides some important aspects of geopolymer materials regarding the immobilisation mechanisms and factors influencing the immobilisation efficiency, which are necessary to carry out further research on addressing the hazardous waste immobilisation. |
Author | Gowripalan, Nadarajah Vu, Tran Huyen |
Author_xml | – sequence: 1 fullname: Vu, Tran Huyen organization: School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW, Australia – sequence: 2 fullname: Gowripalan, Nadarajah organization: School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW, Australia |
BookMark | eNp1kM1KAzEUhYNUsFZXvkDApUzNz7SZ2QilaFtocVPBXchk7tSUmUlN0kp3voNv6JM4_bELwdW93Hzn3JtziVq1rQGhG0q6nPbo_VLp0KX9LmXxGWpTHouIp5S39n0_SgiNL9Cl90tCuOBCtNHrDPSbqo2vPLYFHoPabPEMgirxpKpsZkrjVTC2xmtv6gUegV3ZcluB-53PG4PavK_B4-_PLzzADjYGPq7QeaFKD9fH2kEvT4_z4TiaPo8mw8E00rzHQ6Q4ZwpEykTRXJpnvSwHEdOC9DmhiWqqYjpJRKKzgoHOVKHTNGdEUJ3kKi14B90efFfO7o4IcmnXrm5WSkYYo5T1YtFQdwdKO-u9g0KunKmU20pK5C46uYtO0r5somto-ofWJux_G5wy5T-ah4Nm6YNawMlfuWB0CSeWHwWnhyZ-J6HmP2EujUc |
CitedBy_id | crossref_primary_10_1016_j_cemconres_2024_107678 crossref_primary_10_1016_j_envres_2022_115002 crossref_primary_10_1007_s11356_024_33698_9 crossref_primary_10_1016_j_envres_2022_114873 crossref_primary_10_3390_ma13194263 crossref_primary_10_3390_buildings13020354 crossref_primary_10_1016_j_cemconcomp_2022_104679 crossref_primary_10_1007_s11270_022_05845_w crossref_primary_10_1016_j_scitotenv_2019_06_095 crossref_primary_10_1016_j_jclepro_2022_130399 crossref_primary_10_3390_min11121317 crossref_primary_10_1016_j_jece_2020_104194 crossref_primary_10_1080_00219592_2023_2222780 crossref_primary_10_1007_s10163_020_01020_7 crossref_primary_10_1016_j_wasman_2025_02_026 crossref_primary_10_1111_jace_20131 crossref_primary_10_3390_ma11091521 crossref_primary_10_1007_s10904_019_01215_y crossref_primary_10_3390_min14080763 crossref_primary_10_1016_j_conbuildmat_2021_125813 crossref_primary_10_1016_j_jenvman_2019_05_120 crossref_primary_10_1016_j_jclepro_2023_136053 crossref_primary_10_1016_j_conbuildmat_2021_123491 crossref_primary_10_3151_jact_17_728 crossref_primary_10_1039_D4RA00617H crossref_primary_10_1016_j_conbuildmat_2019_07_112 crossref_primary_10_1016_j_jenvman_2023_119287 crossref_primary_10_53623_tasp_v4i1_398 crossref_primary_10_1016_j_scitotenv_2023_162842 crossref_primary_10_3390_ma14237456 crossref_primary_10_1016_j_jece_2023_109379 crossref_primary_10_4028_www_scientific_net_MSF_1007_65 crossref_primary_10_1007_s11837_024_07049_5 crossref_primary_10_1016_j_conbuildmat_2022_127828 crossref_primary_10_1016_j_jclepro_2023_135873 crossref_primary_10_3390_su15010689 crossref_primary_10_1007_s10853_023_08653_7 crossref_primary_10_1007_s13399_024_05434_3 crossref_primary_10_3390_cryst12070900 crossref_primary_10_1016_j_cemconcomp_2021_104377 crossref_primary_10_1016_j_nxmate_2025_100502 crossref_primary_10_1016_j_jenvman_2024_121956 crossref_primary_10_1007_s10706_024_02876_4 crossref_primary_10_1016_j_jenvman_2022_115742 crossref_primary_10_1039_D1EW00081K crossref_primary_10_1111_ijac_14028 crossref_primary_10_1016_j_conbuildmat_2024_136141 crossref_primary_10_1016_j_jclepro_2020_122957 crossref_primary_10_3390_min14100997 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000734 crossref_primary_10_29039_2413_1873_2024_35_81_87 crossref_primary_10_3390_ma17020463 crossref_primary_10_3390_su14084438 crossref_primary_10_3390_su132313455 crossref_primary_10_1007_s11356_024_34234_5 crossref_primary_10_1088_1755_1315_1098_1_012059 crossref_primary_10_1016_j_scitotenv_2019_135289 crossref_primary_10_1016_j_conbuildmat_2022_128023 crossref_primary_10_3390_molecules27082577 crossref_primary_10_1016_j_conbuildmat_2021_125929 crossref_primary_10_1016_j_crcon_2022_03_003 crossref_primary_10_1016_j_jobe_2020_101684 crossref_primary_10_1016_j_jclepro_2019_119240 crossref_primary_10_1016_j_clema_2022_100043 crossref_primary_10_1007_s10967_022_08454_3 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000623 crossref_primary_10_3390_polym17050670 crossref_primary_10_1016_j_jclepro_2022_134984 crossref_primary_10_1016_j_pnucene_2024_105213 |
Cites_doi | 10.1016/j.fuel.2008.01.021 10.1016/S0304-3894(96)01805-5 10.1146/annurev-matsci-070813-113515 10.1021/es00173a018 10.1016/j.pce.2014.01.001 10.1016/S0008-8846(97)00162-2 10.1016/j.jhazmat.2012.01.081 10.1016/j.jnoncrysol.2012.05.032 10.1080/10643380490443281 10.1016/j.clay.2015.04.023 10.1016/j.jnucmat.2005.06.006 10.1016/j.compositesb.2016.12.024 10.3989/mc.2014.00314 10.1061/41165(397)132 10.1016/j.chemosphere.2010.02.018 10.1016/j.mechmat.2016.09.012 10.1111/jace.12840 10.1680/adcr.2004.16.4.137 10.1016/j.jhazmat.2008.01.053 10.1007/978-94-007-7672-2_4 10.1016/j.msea.2011.01.005 10.1107/S160057671303197X 10.1080/08827500802498199 10.1089/hwm.1988.5.129 10.1007/978-94-007-7672-2_3 10.1016/S0956-053X(97)00004-4 10.3390/su7022189 10.1007/s10853-006-0637-z 10.1016/S0892-6875(01)00002-4 10.1016/S0008-8846(02)00963-8 10.1007/978-3-7643-8340-4_6 10.1016/S0008-8846(02)00964-X 10.1016/j.minpro.2015.03.002 10.1016/j.cemconres.2008.01.006 10.1016/j.jece.2016.03.038 10.1016/0008-8846(96)00118-4 10.1007/978-94-007-7672-2_5 10.1016/j.cemconres.2007.08.018 10.1016/j.jhazmat.2006.01.065 10.1016/S0883-2927(03)00151-3 10.1016/j.matlet.2005.10.019 10.1007/BF01912193 10.1016/j.jhazmat.2006.09.033 10.1016/j.conbuildmat.2013.08.047 10.1007/s11663-998-0032-z 10.1016/0022-3093(94)90252-6 10.1016/j.conbuildmat.2016.12.139 10.1617/s11527-013-0211-5 10.1016/j.conbuildmat.2015.10.172 10.1186/1467-4866-8-4 10.1016/j.clay.2011.11.027 10.1016/S0008-8846(97)00101-4 |
ContentType | Journal Article |
Copyright | 2017 by Japan Concrete Institute Copyright Japan Science and Technology Agency 2018 |
Copyright_xml | – notice: 2017 by Japan Concrete Institute – notice: Copyright Japan Science and Technology Agency 2018 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.3151/jact.16.124 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-3913 |
EndPage | 135 |
ExternalDocumentID | 10_3151_jact_16_124 article_jact_16_3_16_124_article_char_en |
GroupedDBID | 5GY ACIWK ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD JSF JSH KQ8 OK1 P2P RJT RZJ AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c353t-a332ae7927f391db5bde741f063018af06a2c8878cbf2ecbafc99d2071c8da9f3 |
ISSN | 1346-8014 |
IngestDate | Mon Jun 30 10:10:10 EDT 2025 Thu Apr 24 23:11:42 EDT 2025 Tue Jul 01 01:31:04 EDT 2025 Wed Apr 05 07:13:56 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-a332ae7927f391db5bde741f063018af06a2c8878cbf2ecbafc99d2071c8da9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jact/16/3/16_124/_article/-char/en |
PQID | 2022112547 |
PQPubID | 1996343 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2022112547 crossref_primary_10_3151_jact_16_124 crossref_citationtrail_10_3151_jact_16_124 jstage_primary_article_jact_16_3_16_124_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018/03/23 |
PublicationDateYYYYMMDD | 2018-03-23 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018/03/23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Advanced Concrete Technology |
PublicationTitleAlternate | ACT |
PublicationYear | 2018 |
Publisher | Japan Concrete Institute Japan Science and Technology Agency |
Publisher_xml | – name: Japan Concrete Institute – name: Japan Science and Technology Agency |
References | 52) Rickard, W. D. A., Temuujin, J. and van Riessen, A., (2012). “Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition.” Journal of Non-Crystalline Solids, 358(15), 1830-1839. 5) Conner, J. R., (1990). “Chemical fixation and solidification of hazardous wastes”. Van Nostrand Reinhold, New York, 692, f5. 70) Zheng, L., Wang, W. and Shi, Y., (2010). “The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer.” Chemosphere, 79, 665-671. 25) Glukhovsky, V. D., (1959). “Soil silicates”. Gosstroyizdat, Kiev, 154-157. 24) Glasser, F. P., (1997). “Fundamental aspect of cement solidification and stabilization.” Journal of Hazardous Material, 52, 151-170. 41) Palomo, A. and López de la Fuente, J. I., (2003). “Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes - Part I. Stabilisation of boron.” Cement and Concrete Research, 33(2), 281-288. 27) Guo, B., Pan, D., Liu, B., Volinsky, A. A., Fincan, M., Du, J. and Zhang, S., (2017). “Immobilization mechanism of Pb in fly ash-based geopolymer.” Construction and Building Materials, 134, 123-130. 15) Duxson, P., Provis, J. L., Lukey, G. C. and van Deventer, J. S. J., (2007). “The role of inorganic polymer technology in the development of green concrete.” Cement and Concrete Research, 37(12), 1590-1597. 11) Dimas, D. D., Giannopoulou, I. P. and Panias, D., (2009). “Utilization of alumina red mud for synthesis of inorganic polymeric materials.” Mineral Processing and Extractive Metallurgy Review, 30(3), 211-239. 63) Waijarean, N., Asavapisit, S. and Sombatsompop, K., (2014). “Strength and microstructure of water treatment residue-based geopolymers containing heavy metals.” Construction and Building Materials, 50, 486-491. 65) Ye, N., Yang, J., Ke, X., Zhu, J., Li, Y., Xiang, C. and Xiao, B., (2014). “Synthesis and characterization of geopolymer from bayer red mud with thermal pretreatment.” Journal of the American Ceramic Society, 97(5), 1652-1660. 13) Donatello, S., Fernández-Jiménez, A. and Palomo, A., (2012). “An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements.” Journal of Hazardous Materials, 213-214, 207-215. 39) Palacios, M. and Palomo, A., (2004). “Alkali-activated fly ash matrices for lead immobilisation: a comparison of different leaching tests.” Advances in Cement Research, 16(4), 137-144. 9) Davidovits, J., (2005). “Geopolymer chemistry and sustainable development. The poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry.” 2005 Geopolymer Conference, 9-15. (in Saint-Quentin, France 59) Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. and Sutton, D. J., (2012). “Heavy metals toxicity and the environment.” EXS, 101, 133-164. 23) Garcia-lodeiro, I., Palomo, A., Fernández-jiménez, A. and Macphee, D. E., (2011). “Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O.” Cement and Concrete Research, 41, 923-931. 34) Malviya, R. and Chaudhary, R., (2006). “Factors affecting hazardous waste solidification/stabilization: A review.” Journal of Hazardous Materials, 137(1), 267-276. 14) Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A. and van Deventer, J. S. J., (2007). “Geopolymer technology: the current state of the art.” Journal of Materials Science, 42, 2917-2933. 58) Steins, P., Poulesquen, A., Frizon, F., Diat, O., Jestin, J., Causse, J. and Rossignol, S., (2014). “Effect of aging and alkali activator on the porous structure of a geopolymer.” Journal of Applied Crystallography, 47(1), 316-324. 55) Shi, C. and Spence, R., (2004). “Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes.” Critical Reviews in Environmental Science and Technology, 34(4), 391-417. 66) Yunsheng, Z., Wei, S., Qianli, C. and Lin, C., (2007). “Synthesis and heavy metal immobilization behaviors of slag based geopolymer.” Journal of Hazardous Materials, 143(1-2), 206-213. 20) Fernández-Jiménez, A. and Palomo, A., (2003). “Characterisation of fly ashes. Potential reactivity as alkaline cements.” Fuel, 82, 2259-2265. 35) Neupane, K., (2016). “Fly ash and GGBFS based powder-activated geopolymer binders: A viable sustainable alternative of portland cement in concrete industry.” Mechanics of Materials, 103, 110-122. 43) Pera, J., Boumaza, R. and Ambroise, J., (1997). “Development of a pozzolanic pigment from red mud.” Cement and Concrete Research, 27(10), 1513-1522. 50) Provis, J. L. and Bernal, S. A., (2014b). “Geopolymers and Related Alkali-Activated Materials.” Annual Review of Materials Research, 44(3), 3-29. 16) Eary, L. E. and Rai, D., (1988). “Chromate removal from aqueous wastes by reduction with ferrous ion.” Environmental Science & Technology, 22(8), 972-977. 32) Lan, Y., Deng, B., Kim, C. and Thornton, E. C., (2007). “Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions.” Geochemical Transactions, 8, 4. 19) Fernandez-Jimenez, A., MacPhee, D. E., Lachowski, E. E. and Palomo, A., (2005). “Immobilization of cesium in alkaline activated fly ash matrix.” Journal of Nuclear Materials, 346(2-3), 185-193. 4) Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H. and Yang, S. F., (2012). “The heavy metal adsorption characteristics on metakaolin-based geopolymer.” Applied Clay Science, 56, 90-96. 61) van Jaarsveld, J. G. S., van Deventer, J. S. J. and Schwartzman, A., (1999). “The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics.” Minerals Engineering, 12(1), 75-91. 36) Nikolić, V., Komljenović, M., Džunuzović, N., Ivanović, T. and Miladinović, Z., (2017). “Immobilization of hexavalent chromium by fly ash-based geopolymers.” Composites Part B, 112(1), 213-223. 53) Rickard, W. D. A., Williams, R., Temuujin, J. and van Riessen, A., (2011). “Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications.” Materials Science and Engineering A, 528, 3390-3397. 57) Singh, M., Upadhayay, S. N. and Prasad, P. M., (1997). “Preparation of iron rich cements using red mud.” Cement and Concrete Research, 27(7), 1037-1046. 49) Provis, J. L. and Bernal, S. A., (2014a). “Binder Chemistry - Blended Systems and Intermediate Ca Content.” In: J. L. Provis and J. S. J. van Deventer Eds. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. Dordrecht: Springer Netherlands, 125-144. 22) Galiano, Y. L., Salihoglu, G., Pereira, C. F. and Parapar, J. V., (2011). “Study on the Immobilization of Cr (VI) and Cr (III) in geopolymers based on coal combustion fly ash.” World of Coal Ash (WOCA) Conference, 12. (in Denver, CO, USA). 40) Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O. and Fernández-Jiménez, A., (2014). “A review on alkaline activation: new analytical perspectives.” Materiales de Construcción, 64(315), e022. 47) Power, G., Gräfe, M. and Klauber, C., (2011). “Bauxite residue issues: I. Current management, disposal and storage practices.” Hydrometallurgy, 108(1-2), 33-45. 67) Zhang, J., Provis, J. L., Feng, D. and van Deventer, J. S. J., (2008). “Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+.” Journal of Hazardous Materials, 157, 587-598. 30) Kresic, N., (2006). “Hydrogeology and groundwater modeling.” CRC press. 18) Environmental Protection Agency, (2011). “Background information for the Leaching environmental Assessment Framework (LEAF) test methods.” Washington, D.C., USA.: Environmental Protection Agency, EPA/600/R-10/170. 2) Bishop, P. L., (1988). “Leaching of inorganic hazardous constituents from stabilized/solidified hazardous wastes.” Hazardous Waste and Hazardous Materials, 5(2), 129-143. 8) Davidovits, J., (2002). “Environmentally driven geopolymer cement applications”. Geopolymer 2002 Conference, 1-9. (in Melbourne, Australia 56) Singh, M., Upadhayay, S. N. and Prasad, P. M., (1996). “Preparation of special cements from red mud.” Waste Management, 16(8), 665-670. 38) Omotoso, O. E., Ivey, D. and Mikulab, R., (1996). “Quantitative X-ray diffraction analysis of chromium(III) doped tricalcium silicate pastes.” Cement and Concrete Research, 26(9), 1369-1379. 1) Bernal, S. A., Provis, J. L., Fernández-Jiménez, A., Krivenko, P. V., Kavalerova, E., Palacios, M. and Shi, C., (2014). “Binder chemistry - High calcium alkali activated materials.” In: J. L. Provis and J. S. J. van Deventer Eds. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. Dordrecht: Springer Netherlands, 59-91. 64) Xu, J. Z., Zhou, Y. L., Chang, Q. and Qu, H. Q., (2006). “Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers.” Materials Letters, 60(6), 820-822. 10) Davis, P. J., Deshpande, R., Smith, D. M., Brinker, C. J. and Assink, R. A., (1994). “Pore structure evolution in silica gel during aging/drying. IV. Varying pore fluid pH.” Journal of Non-Crystalline Solids, 167(3), 295-306. 26) Gu, H., Wang, N., Yang, Y., Zhao, C. and Cui, S., (2017). “Features of distribution of uranium and thorium in red mud.” Physicochemical Problems of Mineral Processing, 53(1), 110-120. 69) Zhang, Z. H., Zhu, H. J., Zhou, C. H. and Wang, H., (2016). “Geopolymer from kaolin in China: An overview.” Applied Clay Science, 119, 31-41. 17) El-Eswed, B. I., Yousef, R. I., Alshaaer, M., Hamadneh, I., Al-Gharabli, S. I. and Khalili, F., (2015). “Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers.” International Journal of Mineral Processing, 137, 34-42. 31) Kriven, W. M., Bell, J. L. and Gordon, M., (2008). “Microstructure and nanoporosity of asset geopolymers.” Ceramic Engineering and Science Proceedings, 27, 491-503. 46) Portland Cement Associatio, (1991). “Solidification and Stabilization of Wastes Using Portland Cemen 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 68 25 69 26 27 28 29 70 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 1) Bernal, S. A., Provis, J. L., Fernández-Jiménez, A., Krivenko, P. V., Kavalerova, E., Palacios, M. and Shi, C., (2014). “Binder chemistry - High calcium alkali activated materials.” In: J. L. Provis and J. S. J. van Deventer Eds. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. Dordrecht: Springer Netherlands, 59-91. – reference: 6) Davidovits, J., (1991). “Geopolymers: Inorganic polymeric new materials.” Journal of Thermal Analysis, 37(8), 1633-1656. – reference: 42) Palomo, A. and Palacios, M., (2003). “Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes - Part II. Stabilisation of chromium and lead.” Cement and Concrete Research, 33(2), 289-295. – reference: 38) Omotoso, O. E., Ivey, D. and Mikulab, R., (1996). “Quantitative X-ray diffraction analysis of chromium(III) doped tricalcium silicate pastes.” Cement and Concrete Research, 26(9), 1369-1379. – reference: 14) Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A. and van Deventer, J. S. J., (2007). “Geopolymer technology: the current state of the art.” Journal of Materials Science, 42, 2917-2933. – reference: 33) Lloyd, N. and Rangan, V., (2009). “Geopolymer concrete - Sustainable cementless concrete.” Tenth ACI International Conferenceenth ACI International Conference, 33-53. (in Seville, Spain) – reference: 59) Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. and Sutton, D. J., (2012). “Heavy metals toxicity and the environment.” EXS, 101, 133-164. – reference: 13) Donatello, S., Fernández-Jiménez, A. and Palomo, A., (2012). “An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements.” Journal of Hazardous Materials, 213-214, 207-215. – reference: 21) Fernández Pereira, C., Luna, Y., Querol, X., Antenucci, D. and Vale, J., (2009). “Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers.” Fuel, 88, 1185-1193. – reference: 5) Conner, J. R., (1990). “Chemical fixation and solidification of hazardous wastes”. Van Nostrand Reinhold, New York, 692, f5. – reference: 55) Shi, C. and Spence, R., (2004). “Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes.” Critical Reviews in Environmental Science and Technology, 34(4), 391-417. – reference: 62) Vespa, M., Dähn, R. and Wieland, E., (2014). “Competition behaviour of metal uptake in cementitious systems: An XRD and EXAFS investigation of Nd- and Zn-loaded 11A tobermorite.” Physics and Chemistry of the Earth, 70-71, 32-38. – reference: 52) Rickard, W. D. A., Temuujin, J. and van Riessen, A., (2012). “Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition.” Journal of Non-Crystalline Solids, 358(15), 1830-1839. – reference: 25) Glukhovsky, V. D., (1959). “Soil silicates”. Gosstroyizdat, Kiev, 154-157. – reference: 60) van Jaarsveld, J. G. S., van Deventer, J. S. J. and Lorenzen, L., (1998). “Factors affecting the immobilization of metals in geopolymerized flyash.” Metallurgical and Materials Transactions B, 29(1), 283-291. – reference: 10) Davis, P. J., Deshpande, R., Smith, D. M., Brinker, C. J. and Assink, R. A., (1994). “Pore structure evolution in silica gel during aging/drying. IV. Varying pore fluid pH.” Journal of Non-Crystalline Solids, 167(3), 295-306. – reference: 34) Malviya, R. and Chaudhary, R., (2006). “Factors affecting hazardous waste solidification/stabilization: A review.” Journal of Hazardous Materials, 137(1), 267-276. – reference: 17) El-Eswed, B. I., Yousef, R. I., Alshaaer, M., Hamadneh, I., Al-Gharabli, S. I. and Khalili, F., (2015). “Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers.” International Journal of Mineral Processing, 137, 34-42. – reference: 27) Guo, B., Pan, D., Liu, B., Volinsky, A. A., Fincan, M., Du, J. and Zhang, S., (2017). “Immobilization mechanism of Pb in fly ash-based geopolymer.” Construction and Building Materials, 134, 123-130. – reference: 29) Jang, J. G. and Lee, H. K., (2016). “Effect of fly ash characteristics on delayed high-strength development of geopolymers.” Construction and Building Materials, 102, 260-269. – reference: 22) Galiano, Y. L., Salihoglu, G., Pereira, C. F. and Parapar, J. V., (2011). “Study on the Immobilization of Cr (VI) and Cr (III) in geopolymers based on coal combustion fly ash.” World of Coal Ash (WOCA) Conference, 12. (in Denver, CO, USA). – reference: 43) Pera, J., Boumaza, R. and Ambroise, J., (1997). “Development of a pozzolanic pigment from red mud.” Cement and Concrete Research, 27(10), 1513-1522. – reference: 45) Phair, J. W., van Deventer, J. S. J. and Smith, J. D., (2004). “Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based geopolymers.” Applied Geochemistry, 19(3), 423-434. – reference: 40) Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O. and Fernández-Jiménez, A., (2014). “A review on alkaline activation: new analytical perspectives.” Materiales de Construcción, 64(315), e022. – reference: 48) Provis, J. L., (2014). “Geopolymers and other alkali activated materials: why, how, and what?.” Materials and Structures, 47(1-2), 11-25. – reference: 46) Portland Cement Associatio, (1991). “Solidification and Stabilization of Wastes Using Portland Cement.” The United States of America: Report 7355. – reference: 28) He, J. and Zhang, G., (2011). “Geopolymerization of red mud and fly ash for civil infrastructure applications.” Geo-Frontiers Congress 2011. (in Dallas, Texas, USA) – reference: 37) Nikolići, I., Đurović, D., Tadić, M., Blečić, D. and Radmilović, V., (2013). “Immobilization of zinc from metallurgical waste and water solutions using geopolymerization technolog.” The 16th International Conference on Heavy Metals in the Environment, 1, 4. (in Rome, Italy) – reference: 8) Davidovits, J., (2002). “Environmentally driven geopolymer cement applications”. Geopolymer 2002 Conference, 1-9. (in Melbourne, Australia) – reference: 63) Waijarean, N., Asavapisit, S. and Sombatsompop, K., (2014). “Strength and microstructure of water treatment residue-based geopolymers containing heavy metals.” Construction and Building Materials, 50, 486-491. – reference: 30) Kresic, N., (2006). “Hydrogeology and groundwater modeling.” CRC press. – reference: 32) Lan, Y., Deng, B., Kim, C. and Thornton, E. C., (2007). “Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions.” Geochemical Transactions, 8, 4. – reference: 2) Bishop, P. L., (1988). “Leaching of inorganic hazardous constituents from stabilized/solidified hazardous wastes.” Hazardous Waste and Hazardous Materials, 5(2), 129-143. – reference: 19) Fernandez-Jimenez, A., MacPhee, D. E., Lachowski, E. E. and Palomo, A., (2005). “Immobilization of cesium in alkaline activated fly ash matrix.” Journal of Nuclear Materials, 346(2-3), 185-193. – reference: 49) Provis, J. L. and Bernal, S. A., (2014a). “Binder Chemistry - Blended Systems and Intermediate Ca Content.” In: J. L. Provis and J. S. J. van Deventer Eds. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. Dordrecht: Springer Netherlands, 125-144. – reference: 23) Garcia-lodeiro, I., Palomo, A., Fernández-jiménez, A. and Macphee, D. E., (2011). “Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O.” Cement and Concrete Research, 41, 923-931. – reference: 64) Xu, J. Z., Zhou, Y. L., Chang, Q. and Qu, H. Q., (2006). “Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers.” Materials Letters, 60(6), 820-822. – reference: 39) Palacios, M. and Palomo, A., (2004). “Alkali-activated fly ash matrices for lead immobilisation: a comparison of different leaching tests.” Advances in Cement Research, 16(4), 137-144. – reference: 65) Ye, N., Yang, J., Ke, X., Zhu, J., Li, Y., Xiang, C. and Xiao, B., (2014). “Synthesis and characterization of geopolymer from bayer red mud with thermal pretreatment.” Journal of the American Ceramic Society, 97(5), 1652-1660. – reference: 26) Gu, H., Wang, N., Yang, Y., Zhao, C. and Cui, S., (2017). “Features of distribution of uranium and thorium in red mud.” Physicochemical Problems of Mineral Processing, 53(1), 110-120. – reference: 36) Nikolić, V., Komljenović, M., Džunuzović, N., Ivanović, T. and Miladinović, Z., (2017). “Immobilization of hexavalent chromium by fly ash-based geopolymers.” Composites Part B, 112(1), 213-223. – reference: 31) Kriven, W. M., Bell, J. L. and Gordon, M., (2008). “Microstructure and nanoporosity of asset geopolymers.” Ceramic Engineering and Science Proceedings, 27, 491-503. – reference: 53) Rickard, W. D. A., Williams, R., Temuujin, J. and van Riessen, A., (2011). “Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications.” Materials Science and Engineering A, 528, 3390-3397. – reference: 35) Neupane, K., (2016). “Fly ash and GGBFS based powder-activated geopolymer binders: A viable sustainable alternative of portland cement in concrete industry.” Mechanics of Materials, 103, 110-122. – reference: 58) Steins, P., Poulesquen, A., Frizon, F., Diat, O., Jestin, J., Causse, J. and Rossignol, S., (2014). “Effect of aging and alkali activator on the porous structure of a geopolymer.” Journal of Applied Crystallography, 47(1), 316-324. – reference: 68) Zhang, J., Provis, J. L., Feng, D. and van Deventer, J. S. J., (2008). “The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers.” Cement and Concrete Research, 38, 681-688. – reference: 18) Environmental Protection Agency, (2011). “Background information for the Leaching environmental Assessment Framework (LEAF) test methods.” Washington, D.C., USA.: Environmental Protection Agency, EPA/600/R-10/170. – reference: 66) Yunsheng, Z., Wei, S., Qianli, C. and Lin, C., (2007). “Synthesis and heavy metal immobilization behaviors of slag based geopolymer.” Journal of Hazardous Materials, 143(1-2), 206-213. – reference: 3) Chen, J., Wang, Y., Wang, H., Zhou, S., Wu, H. and Lei, X., (2016). “Detoxification/immobilization of hexavalent chromium using metakaolin-based geopolymer coupled with ferrous chloride.” Journal of Environmental Chemical Engineering, 4(2), 2084-2089. – reference: 51) Provis, J. L., Fernández-Jiménez, A., Kamseu, E., Leonelli, C. and Palomo, A., (2014). “Binder chemistry-low-calcium alkali-activated materials.” In: J. L. Provis and J. S. J. van Deventer Eds. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. Dordrecht: Springer Netherlands, 93-123. – reference: 41) Palomo, A. and López de la Fuente, J. I., (2003). “Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes - Part I. Stabilisation of boron.” Cement and Concrete Research, 33(2), 281-288. – reference: 69) Zhang, Z. H., Zhu, H. J., Zhou, C. H. and Wang, H., (2016). “Geopolymer from kaolin in China: An overview.” Applied Clay Science, 119, 31-41. – reference: 11) Dimas, D. D., Giannopoulou, I. P. and Panias, D., (2009). “Utilization of alumina red mud for synthesis of inorganic polymeric materials.” Mineral Processing and Extractive Metallurgy Review, 30(3), 211-239. – reference: 4) Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H. and Yang, S. F., (2012). “The heavy metal adsorption characteristics on metakaolin-based geopolymer.” Applied Clay Science, 56, 90-96. – reference: 44) Phair, J. W. and van Deventer, J. S. J., (2001). “Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers.” Minerals Engineering, 14(3), 289-304. – reference: 57) Singh, M., Upadhayay, S. N. and Prasad, P. M., (1997). “Preparation of iron rich cements using red mud.” Cement and Concrete Research, 27(7), 1037-1046. – reference: 61) van Jaarsveld, J. G. S., van Deventer, J. S. J. and Schwartzman, A., (1999). “The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics.” Minerals Engineering, 12(1), 75-91. – reference: 54) Science Communication Unit of University of the West of England, (2013). “Soil contamination: impacts on human health.” Bristol, England: European Commission DG Environment. – reference: 9) Davidovits, J., (2005). “Geopolymer chemistry and sustainable development. The poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry.” 2005 Geopolymer Conference, 9-15. (in Saint-Quentin, France) – reference: 70) Zheng, L., Wang, W. and Shi, Y., (2010). “The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer.” Chemosphere, 79, 665-671. – reference: 50) Provis, J. L. and Bernal, S. A., (2014b). “Geopolymers and Related Alkali-Activated Materials.” Annual Review of Materials Research, 44(3), 3-29. – reference: 67) Zhang, J., Provis, J. L., Feng, D. and van Deventer, J. S. J., (2008). “Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+.” Journal of Hazardous Materials, 157, 587-598. – reference: 24) Glasser, F. P., (1997). “Fundamental aspect of cement solidification and stabilization.” Journal of Hazardous Material, 52, 151-170. – reference: 16) Eary, L. E. and Rai, D., (1988). “Chromate removal from aqueous wastes by reduction with ferrous ion.” Environmental Science & Technology, 22(8), 972-977. – reference: 56) Singh, M., Upadhayay, S. N. and Prasad, P. M., (1996). “Preparation of special cements from red mud.” Waste Management, 16(8), 665-670. – reference: 47) Power, G., Gräfe, M. and Klauber, C., (2011). “Bauxite residue issues: I. Current management, disposal and storage practices.” Hydrometallurgy, 108(1-2), 33-45. – reference: 20) Fernández-Jiménez, A. and Palomo, A., (2003). “Characterisation of fly ashes. Potential reactivity as alkaline cements.” Fuel, 82, 2259-2265. – reference: 12) Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A. and Paul, D., (2015). “Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes.” Sustainability, 7(2), 2189-2212. – reference: 15) Duxson, P., Provis, J. L., Lukey, G. C. and van Deventer, J. S. J., (2007). “The role of inorganic polymer technology in the development of green concrete.” Cement and Concrete Research, 37(12), 1590-1597. – reference: 7) Davidovits, J., (1994). “Properties of geopolymer cements.” First International Conference on Alkaline Cements and Concretes, 131-149. (in Kiev, Ukraine) – ident: 21 doi: 10.1016/j.fuel.2008.01.021 – ident: 24 doi: 10.1016/S0304-3894(96)01805-5 – ident: 50 doi: 10.1146/annurev-matsci-070813-113515 – ident: 16 doi: 10.1021/es00173a018 – ident: 62 doi: 10.1016/j.pce.2014.01.001 – ident: 43 doi: 10.1016/S0008-8846(97)00162-2 – ident: 13 doi: 10.1016/j.jhazmat.2012.01.081 – ident: 31 – ident: 52 doi: 10.1016/j.jnoncrysol.2012.05.032 – ident: 9 – ident: 26 – ident: 55 doi: 10.1080/10643380490443281 – ident: 22 – ident: 69 doi: 10.1016/j.clay.2015.04.023 – ident: 5 – ident: 19 doi: 10.1016/j.jnucmat.2005.06.006 – ident: 36 doi: 10.1016/j.compositesb.2016.12.024 – ident: 40 doi: 10.3989/mc.2014.00314 – ident: 28 doi: 10.1061/41165(397)132 – ident: 70 doi: 10.1016/j.chemosphere.2010.02.018 – ident: 35 doi: 10.1016/j.mechmat.2016.09.012 – ident: 65 doi: 10.1111/jace.12840 – ident: 30 – ident: 54 – ident: 39 doi: 10.1680/adcr.2004.16.4.137 – ident: 67 doi: 10.1016/j.jhazmat.2008.01.053 – ident: 51 doi: 10.1007/978-94-007-7672-2_4 – ident: 61 – ident: 53 doi: 10.1016/j.msea.2011.01.005 – ident: 58 doi: 10.1107/S160057671303197X – ident: 11 doi: 10.1080/08827500802498199 – ident: 8 – ident: 2 doi: 10.1089/hwm.1988.5.129 – ident: 23 – ident: 18 – ident: 1 doi: 10.1007/978-94-007-7672-2_3 – ident: 56 doi: 10.1016/S0956-053X(97)00004-4 – ident: 12 doi: 10.3390/su7022189 – ident: 14 doi: 10.1007/s10853-006-0637-z – ident: 44 doi: 10.1016/S0892-6875(01)00002-4 – ident: 41 doi: 10.1016/S0008-8846(02)00963-8 – ident: 37 – ident: 59 doi: 10.1007/978-3-7643-8340-4_6 – ident: 33 – ident: 42 doi: 10.1016/S0008-8846(02)00964-X – ident: 17 doi: 10.1016/j.minpro.2015.03.002 – ident: 68 doi: 10.1016/j.cemconres.2008.01.006 – ident: 3 doi: 10.1016/j.jece.2016.03.038 – ident: 38 doi: 10.1016/0008-8846(96)00118-4 – ident: 49 doi: 10.1007/978-94-007-7672-2_5 – ident: 7 – ident: 47 – ident: 20 – ident: 15 doi: 10.1016/j.cemconres.2007.08.018 – ident: 34 doi: 10.1016/j.jhazmat.2006.01.065 – ident: 45 doi: 10.1016/S0883-2927(03)00151-3 – ident: 64 doi: 10.1016/j.matlet.2005.10.019 – ident: 6 doi: 10.1007/BF01912193 – ident: 66 doi: 10.1016/j.jhazmat.2006.09.033 – ident: 63 doi: 10.1016/j.conbuildmat.2013.08.047 – ident: 60 doi: 10.1007/s11663-998-0032-z – ident: 10 doi: 10.1016/0022-3093(94)90252-6 – ident: 27 doi: 10.1016/j.conbuildmat.2016.12.139 – ident: 48 doi: 10.1617/s11527-013-0211-5 – ident: 29 doi: 10.1016/j.conbuildmat.2015.10.172 – ident: 32 doi: 10.1186/1467-4866-8-4 – ident: 46 – ident: 4 doi: 10.1016/j.clay.2011.11.027 – ident: 57 doi: 10.1016/S0008-8846(97)00101-4 – ident: 25 |
SSID | ssj0037377 |
Score | 2.408881 |
SecondaryResourceType | review_article |
Snippet | Every year, substantial amount of waste materials containing toxic substances is produced throughout the world, which causes serious damage to the environment... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 124 |
SubjectTerms | Hazardous wastes Heavy metals Immobilization Portland cements Toxic wastes Waste management |
Title | Mechanisms of Heavy Metal Immobilisation using Geopolymerisation Techniques – A review |
URI | https://www.jstage.jst.go.jp/article/jact/16/3/16_124/_article/-char/en https://www.proquest.com/docview/2022112547 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Advanced Concrete Technology, 2018/03/23, Vol.16(3), pp.124-135 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZg4QAHxK8oLMiHPRGlKHacxMcK7W6B7SKkFPUW2Y6zsIIWtSmonHgH3nCfZMd24qR0hYBLWjkjK5oZj8fj-WYQOqhiRoVKeBgxxcOY8SwUCYtCKUueVJRIYuHRk9NkPI3fzNisC2VbdEkth-rHlbiS_5EqjIFcDUr2HyTrJ4UB-A_yhSdIGJ5_JeOJNrjdT6svNh9jrMW3TTDRBt74Gj7CpL26XJ1gbSMCx9p0RNiYO5pmPG8ruK6CNuuBgqlYdhcGu36rzxqAkzS4nLUO6p3wvNkB7aa23uh58GHtQ86iFEtxLj4Gx4vvYK5MXmU_7hBZIJ6DBrs9AfbyzgCZIH93FxCMLG60Z1ZpbMoeO7joULdjYN64Q6J6W5z0dI72DGvkkNa_G3wKDottNKDqYZQMG6rtstqn74qj6clJkR_O8uvoBoHzhGl18fa9v26iKbUtOv1nOiCnmfxlb-ot1-XmOXjvZ7tbuPVL8rvoTiMYPHLacQ9d0_P76HavzOQDNOv0BC8qbPUEWz3B23qCrZ7gHT3BnZ7gi5-_8Ag7DXmIpkeH-atx2HTUCBVltA4FpUTolJO0As6XkslSg0tZmcJrUSbgVxAF206mZEW0kqJSnJcE3FCVlYJX9BHamy_m-jHCOpGVVJrKOEviigtJIy24IpoRpiJFB-hFy6xCNeXmTdeTzwUcOw1nC8PZIkoK4OwAHXjir67KytVkqeO6J2qWnieiDaV_YbCLYCoGaL8VU9Es4FVBwH-F4waL0yd_fv0U3epWwD7aq5dr_Qx80Vo-t3p0CWflkr4 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Heavy+Metal+Immobilisation+using+Geopolymerisation+Techniques+%E2%80%93+A+review&rft.jtitle=Journal+of+advanced+concrete+technology&rft.au=Tran%2C+Huyen+Vu&rft.au=Nadarajah+Gowripalan&rft.date=2018-03-23&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1346-8014&rft.eissn=1347-3913&rft.volume=16&rft.issue=3&rft.spage=124&rft_id=info:doi/10.3151%2Fjact.16.124&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon |