Quantitative Determination of 3D-Printing and Surface-Treatment Conditions for Direct-Printed Microfluidic Devices

We report a quantitative and systematic method for determining 3D-printing and surface-treatment conditions that can help improve the optical quality of direct-printed microfluidic devices. Digital light processing (DLP)-stereolithography (SLA) printing was extensively studied in microfluidics owing...

Full description

Saved in:
Bibliographic Details
Published inBiochip journal Vol. 16; no. 1; pp. 82 - 98
Main Authors Namgung, Hyun, Kaba, Abdi Mirgissa, Oh, Hyeonkyu, Jeon, Hyunjin, Yoon, Jeonghwan, Lee, Haseul, Kim, Dohyun
Format Journal Article
LanguageEnglish
Published Seoul The Korean BioChip Society (KBCS) 01.03.2022
Springer Nature B.V
한국바이오칩학회
Subjects
Online AccessGet full text
ISSN1976-0280
2092-7843
DOI10.1007/s13206-022-00048-1

Cover

Loading…
Abstract We report a quantitative and systematic method for determining 3D-printing and surface-treatment conditions that can help improve the optical quality of direct-printed microfluidic devices. Digital light processing (DLP)-stereolithography (SLA) printing was extensively studied in microfluidics owing to the rapid, one-step, cleanroom-free, maskless, and high-definition microfabrication of 3D-microfluidic devices. However, optical imaging or detection for bioassays in DLP-SLA-printed microfluidic devices are limited by the translucence of photopolymerized resins. Various approaches, including mechanical abrasions, chemical etching, polymer coatings, and printing on transparent glass/plastic slides, were proposed to address this limitation. However, the effects of these methods have not been analyzed quantitatively or systematically. For the first time, we propose quantitative and methodological determination of 3D-printing and surface-treatment conditions, based on optical-resolution analysis using USAF 1951 resolution test targets and a fluorescence microbead slide through 3D-printed coverslip chips. The key printing parameters (resin type, build orientation, layer thickness, and layer offset) and surface-treatment parameters (grit number for sanding, polishing time with alumina slurry, and type of refractive-index-matching coatings) were determined in a step-wise manner. As a result, we achieved marked improvements in resolution (from 80.6 to 645.1 lp/mm) and contrast (from 3.30 to 27.63% for 645.1 lp/mm resolution). Furthermore, images of the fluorescence microbeads were qualitatively analyzed to evaluate the proposed 3D-printing and surface-treatment approach for fluorescence imaging applications. Finally, the proposed method was validated by fabricating an acoustic micromixer chip and fluorescently visualizing cavitation microstreaming that emanated from an oscillating bubble captured inside the chip. We expect that our approach for enhancing optical quality will be widely used in the rapid manufacturing of 3D-microfluidic chips for optical assays.
AbstractList We report a quantitative and systematic method for determining 3D-printing and surface-treatment conditions that can help improve the optical quality of direct-printed microfluidic devices. Digital light processing (DLP)-stereolithography (SLA) printing was extensively studied in microfluidics owing to the rapid, one-step, cleanroom-free, maskless, and high-definition microfabrication of 3D-microfluidic devices. However, optical imaging or detection for bioassays in DLP-SLA-printed microfluidic devices are limited by the translucence of photopolymerized resins. Various approaches, including mechanical abrasions, chemical etching, polymer coatings, and printing on transparent glass/plastic slides, were proposed to address this limitation. However, the effects of these methods have not been analyzed quantitatively or systematically. For the first time, we propose quantitative and methodological determination of 3D-printing and surface-treatment conditions, based on optical-resolution analysis using USAF 1951 resolution test targets and a fluorescence microbead slide through 3D-printed coverslip chips. The key printing parameters (resin type, build orientation, layer thickness, and layer offset) and surface-treatment parameters (grit number for sanding, polishing time with alumina slurry, and type of refractive-index-matching coatings) were determined in a step-wise manner. As a result, we achieved marked improvements in resolution (from 80.6 to 645.1 lp/mm) and contrast (from 3.30 to 27.63% for 645.1 lp/mm resolution). Furthermore, images of the fluorescence microbeads were qualitatively analyzed to evaluate the proposed 3D-printing and surface-treatment approach for fluorescence imaging applications. Finally, the proposed method was validated by fabricating an acoustic micromixer chip and fluorescently visualizing cavitation microstreaming that emanated from an oscillating bubble captured inside the chip. We expect that our approach for enhancing optical quality will be widely used in the rapid manufacturing of 3D-microfluidic chips for optical assays.
We report a quantitative and systematic method for determining 3D-printing and surface-treatment conditions that can help improve the optical quality of direct-printed microfluidic devices. Digital light processing (DLP)-stereolithography (SLA) printing was extensively studied in microfluidics owing to the rapid, one-step, cleanroom-free, maskless, and high-definition microfabrication of 3D-microfluidic devices. However, optical imaging or detection for bioassays in DLP-SLA-printed microfluidic devices are limited by the translucence of photopolymerized resins. Various approaches, including mechanical abrasions, chemical etching, polymer coatings, and printing on transparent glass/plastic slides, were proposed to address this limitation. However, the effects of these methods have not been analyzed quantitatively or systematically. For the first time, we propose quantitative and methodological determination of 3D-printing and surface-treatment conditions, based on optical-resolution analysis using USAF 1951 resolution test targets and a fluorescence microbead slide through 3D-printed coverslip chips. The key printing parameters (resin type, build orientation, layer thickness, and layer offset) and surfacetreatment parameters (grit number for sanding, polishing time with alumina slurry, and type of refractive-index-matching coatings) were determined in a step-wise manner. As a result, we achieved marked improvements in resolution (from 80.6 to 645.1 lp/mm) and contrast (from 3.30 to 27.63% for 645.1 lp/mm resolution). Furthermore, images of the fluorescence microbeads were qualitatively analyzed to evaluate the proposed 3D-printing and surface-treatment approach for fluorescence imaging applications. Finally, the proposed method was validated by fabricating an acoustic micromixer chip and fluorescently visualizing cavitation microstreaming that emanated from an oscillating bubble captured inside the chip. We expect that our approach for enhancing optical quality will be widely used in the rapid manufacturing of 3D-microfluidic chips for optical assays. KCI Citation Count: 0
Author Jeon, Hyunjin
Lee, Haseul
Namgung, Hyun
Oh, Hyeonkyu
Yoon, Jeonghwan
Kim, Dohyun
Kaba, Abdi Mirgissa
Author_xml – sequence: 1
  givenname: Hyun
  surname: Namgung
  fullname: Namgung, Hyun
  organization: Department of Mechanical Engineering, Myongji University
– sequence: 2
  givenname: Abdi Mirgissa
  surname: Kaba
  fullname: Kaba, Abdi Mirgissa
  organization: Department of Mechanical Engineering, Myongji University
– sequence: 3
  givenname: Hyeonkyu
  surname: Oh
  fullname: Oh, Hyeonkyu
  organization: Department of Mechanical Engineering, Myongji University
– sequence: 4
  givenname: Hyunjin
  surname: Jeon
  fullname: Jeon, Hyunjin
  organization: Department of Mechanical Engineering, Myongji University
– sequence: 5
  givenname: Jeonghwan
  surname: Yoon
  fullname: Yoon, Jeonghwan
  organization: Department of Mechanical Engineering, Myongji University
– sequence: 6
  givenname: Haseul
  surname: Lee
  fullname: Lee, Haseul
  organization: Department of Mechanical Engineering, Myongji University
– sequence: 7
  givenname: Dohyun
  orcidid: 0000-0003-1833-9259
  surname: Kim
  fullname: Kim, Dohyun
  email: dohyun.kim@mju.ac.kr
  organization: Department of Mechanical Engineering, Myongji University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002821647$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU1vGyEQhlGVSnXd_IGekHrqgWaAXS8cI7tpI6Xql3tGhAWLxIZ0YCP13xd7I1XqIacR4nmGGd7X5Czl5Al5y-EDBxguCpcCVgyEYADQKcZfkIUALdigOnlGFlwPx2sFr8h5KXcNAil5L9SC4PfJphqrrfHR042vHg8xtVNONAcqN-wbxgakHbVppD8nDNZ5tkVv68GnStc5jfGIFxoy0k1E7-os-ZF-iQ5z2E9xjK51f4zOlzfkZbD74s-f6pL8uvq4XX9mN18_Xa8vb5iTvazMCrkC4Zy6hW5QIfRdr7UC0Xdi5RwEx4H30lneD6NS1o5BB66CHtWt6rwMcknez30TBnPvosk2nuoum3s0lz-210brjov23JK8m9kHzL8nX6q5yxOmNp4RmusVcD6IRqmZakuVgj4Yd_q5nCrauDcczDEQMwdiWiDmFIjhTRX_qQ8YDxb_PC_JWSoNTjuP_6Z6xvoLVgWfVA
CitedBy_id crossref_primary_10_1038_s41378_023_00607_y
crossref_primary_10_1007_s13206_023_00100_8
crossref_primary_10_1088_2631_7990_ad2e14
crossref_primary_10_1002_biot_202400550
crossref_primary_10_1016_j_aca_2022_339842
crossref_primary_10_1021_acsomega_2c06817
crossref_primary_10_3390_bios14060301
crossref_primary_10_3390_mi13101722
Cites_doi 10.1109/JMEMS.2018.2869327
10.1002/anie.201504382
10.1016/j.procir.2020.05.177
10.1039/C9LC00160C
10.1039/C6LC00163G
10.3390/polym11020292
10.1039/C5LC00685F
10.1021/ac4041857
10.1038/s41570-018-0058-y
10.1063/1.4898632
10.3390/s17102271
10.1007/s13206-021-00032-1
10.1039/C5LC00126A
10.1039/b201952c
10.1007/s10462-020-09876-9
10.1039/C3LC51360B
10.1039/C5RA23855B
10.1007/s10043-016-0212-z
10.1007/978-3-030-58960-8_3
10.1039/C9LC01130G
10.1016/j.trac.2020.116151
10.1039/D0LC00767F
10.1007/s00216-017-0398-3
10.1039/C7LC00397H
10.1039/c2lc40424a
10.1016/j.trac.2018.03.016
10.1002/admt.201900427
10.3390/ma12121970
10.2144/02334bi01
10.1016/j.bios.2021.113159
10.3390/mi9020091
10.1088/1758-5090/8/2/022001
10.1108/RPJ-03-2019-0074
10.1146/annurev-anchem-091619-102649
10.1002/adma.201800001
10.1021/acs.analchem.5b01202
10.1007/s42242-020-00112-5
10.1016/j.bios.2012.01.028
10.1080/15599612.2010.513720
10.1063/1.4927379
10.3390/pharmaceutics13122134
10.1039/C6LC01238H
10.1021/ac0353029
10.1021/acs.analchem.7b00136
10.1002/elan.201600043
10.1016/j.snb.2016.11.098
10.1108/13552540910925072
10.1039/C8LC00001H
10.1016/B978-0-12-420138-5.00002-1
10.1016/j.snb.2021.130511
10.1146/annurev-bioeng-092618-020341
10.1039/C9LC00637K
10.1117/1.OE.57.4.041412
10.1039/C8PY00157J
10.1039/D1LC00149C
10.1016/j.sna.2004.12.011
10.1039/c2lc40203c
10.1002/admt.201800359
10.1039/C6LC00153J
10.1016/j.snb.2019.126692
10.1016/j.apmt.2017.02.004
10.3390/ma10010064
10.1002/adem.201901109
10.1039/C8LC00995C
10.1007/s13206-019-4205-4
10.1088/1361-6439/abd9a9
10.1016/j.jclepro.2016.07.182
10.1039/C6LC00284F
10.1016/j.bios.2017.10.001
10.1002/jbio.201500108
10.1016/j.nucengdes.2014.12.019
10.1039/D0LC00114G
10.1021/acsami.9b22272
10.1089/3dp.2018.0088
10.1016/j.sna.2021.112730
10.1039/b903687c
10.1016/j.trac.2018.06.013
10.1021/ac403397r
10.3390/mi9030115
10.1007/s10404-016-1715-4
10.1039/C9LC00535H
10.1039/C6AY01671E
10.1016/j.matdes.2021.109767
10.1016/j.cie.2016.06.015
10.1021/acsami.9b14692
ContentType Journal Article
Copyright The Korean BioChip Society 2022
The Korean BioChip Society 2022.
Copyright_xml – notice: The Korean BioChip Society 2022
– notice: The Korean BioChip Society 2022.
DBID AAYXX
CITATION
8FE
8FG
8FH
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ACYCR
DOI 10.1007/s13206-022-00048-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
AUTh Library subscriptions: ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Korean Citation Index
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2092-7843
EndPage 98
ExternalDocumentID oai_kci_go_kr_ARTI_9941235
10_1007_s13206_022_00048_1
GeographicLocations United States--US
South Korea
GeographicLocations_xml – name: South Korea
– name: United States--US
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2019R1F1A1043885; 2021R1F1A1045386
  funderid: http://dx.doi.org/10.13039/501100003725
GroupedDBID ---
-EM
06D
0R~
0VY
1N0
203
23N
2KG
2VQ
30V
4.4
406
408
40D
5GY
8TC
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
M7P
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P9N
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
8FH
ABRTQ
AZQEC
DWQXO
GNUQQ
LK8
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
AAFGU
AAPBV
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
SQXTU
ID FETCH-LOGICAL-c353t-a23602cc8b0478ff545998025426cc0fc10153ca157d88aadf9f18f9d8b84e3f3
IEDL.DBID AGYKE
ISSN 1976-0280
IngestDate Tue Nov 21 21:11:30 EST 2023
Fri Jul 25 11:02:37 EDT 2025
Tue Jul 01 01:29:47 EDT 2025
Thu Apr 24 23:02:44 EDT 2025
Fri Feb 21 02:47:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Microfluidic chip
Microfabrication
Optical resolution
DLP-SLA 3D printing
Surface treatment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-a23602cc8b0478ff545998025426cc0fc10153ca157d88aadf9f18f9d8b84e3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
https://doi.org/10.1007/s13206-022-00048-1
ORCID 0000-0003-1833-9259
PQID 2919601172
PQPubID 2043955
PageCount 17
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9941235
proquest_journals_2919601172
crossref_citationtrail_10_1007_s13206_022_00048_1
crossref_primary_10_1007_s13206_022_00048_1
springer_journals_10_1007_s13206_022_00048_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
20220301
2022-03
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Biochip journal
PublicationTitleAbbrev BioChip J
PublicationYear 2022
Publisher The Korean BioChip Society (KBCS)
Springer Nature B.V
한국바이오칩학회
Publisher_xml – name: The Korean BioChip Society (KBCS)
– name: Springer Nature B.V
– name: 한국바이오칩학회
References Yuan, Kowsari, Panjwani, Chen, Wang, Zhang, Ng, Alvarado, Ge (CR49) 2019; 11
De Vellis, Gritsenko, Lin, Wu, Zhang, Pan, Xue, Xu (CR80) 2017; 243
Beckwith, Borenstein, Velásquez-García (CR26) 2018; 27
Kotz, Risch, Helmer, Rapp (CR71) 2018; 9
Liu, Yang, Pindera, Athavale, Grodzinski (CR79) 2002; 2
Brunet, Labelle, Wong, Gervais (CR66) 2017; 17
Xiao, Li, Jia, Surjadi, Li, Lin, Gao, Chirarattananon, Lu (CR22) 2021; 206
Ching, Toh, Hashimoto (CR52) 2020; 22
Amin, Knowlton, Hart, Yenilmez, Ghaderinezhad, Katebifar, Messina, Khademhosseini, Tasoglu (CR5) 2016; 8
Kim, Bohjanen, Bhattacharjee, Folch (CR50) 2019; 19
Okabe, Chen, Purohit, Corn, Lee (CR78) 2012; 35
CR38
Yazdi, Popma, Wong, Nguyen, Pan, Xu (CR11) 2016; 20
Au, Lee, Folch (CR25) 2014; 14
Vallejo-Melgarejo, Reifenberger, Newell, Narváez-Tovar, Garcia-Bravo (CR35) 2019; 25
Lim, Kim, Lim, Choi, Woo (CR18) 2020; 14
Zhang, Ng, Chen, Zhang, Panjwani, Kowsari, Yang, Ge (CR89) 2019; 4
CR72
Lee, Bhattacharjee, Folch (CR44) 2018; 18
van der Linden, Popov, Pontoni (CR34) 2020; 20
Abramowitz, Spring, Keller, Davidson (CR90) 2002; 33
Palenzuela, Pumera (CR94) 2018; 103
Zhu, Skommer, Macdonald, Friedrich, Kaslin, Wlodkowic (CR86) 2015; 9
Chan, Tan, Wu (CR12) 2017; 17
Mostafa, Nobes, Qureshi (CR32) 2020; 92
Sirjani, Migas, Cragg, Dymond (CR40) 2020; 33
Kaba, Jeon, Park, Yi, Baek, Park, Kim (CR77) 2021; 346
Dixit, Kadimisetty, Rusling (CR4) 2018; 106
Bhattacharjee, Parra-Cabrera, Kim, Kuo, Folch (CR29) 2018; 30
He, Xue, Fu (CR37) 2014; 4
Waheed, Cabot, Macdonald, Lewis, Guijt, Paull, Breadmore (CR2) 2016; 16
CR7
Griffiths, Howarth, De Almeida-Rowbotham, Rees, Kerton (CR61) 2016; 139
Arnold, Monsees, Hey, Schweyen (CR69) 2019; 12
Wiklund, Green, Ohlin (CR76) 2012; 12
Salafi, Zeming, Lim, Raman, Seah, Tan, Zhang (CR47) 2019; 4
Capel, Rimington, Lewis, Christie (CR13) 2018; 2
CR43
O'Neill, Ben Azouz, Vazquez, Liu, Marczak, Slouka, Chang, Diamond, Brabazon (CR36) 2014; 8
Gojzewski, Guo, Grzelachowska, Ridwan, Hempenius, Grijpma, Vancso (CR58) 2020; 12
CR85
Jeon, Mirgissa, Baek, Rhee, Kim (CR74) 2021; 326
Tzivelekis, Selby, Batet, Madadi, Dalgarno (CR24) 2021; 31
Urrios, Parra-Cabrera, Bhattacharjee, Gonzalez-Suarez, Rigat-Brugarolas, Nallapatti, Samitier, DeForest, Posas, Garcia-Cordero (CR28) 2016; 16
Scott, Potsaid, Wen (CR45) 2010; 4
Shallan, Smejkal, Corban, Guijt, Breadmore (CR70) 2014; 86
Nielsen, Beauchamp, Nordin, Woolley (CR15) 2020; 13
Moussus, Meier (CR67) 2021; 21
Menon, Póczos, Feinberg, Washburn (CR64) 2019; 6
Ong, Ching, Chong, Arora, Li, Hashimoto, DasGupta, Yuen, Toh (CR54) 2019; 19
Macdonald, Cabot, Smejkal, Guijt, Paull, Breadmore (CR14) 2017; 89
Beauchamp, Nordin, Woolley (CR16) 2017; 409
Rasouli, Tabrizian (CR92) 2019; 19
Carve, Wlodkowic (CR83) 2018; 9
Song, Choi, Seong, Kim (CR42) 2015; 284
Choi, Wicker, Cho, Ha, Lee (CR88) 2009; 15
Naderi, Bhattacharjee, Folch (CR6) 2019; 21
CR55
Hashmi, Yu, Reilly-Collette, Heiman, Xu (CR75) 2012; 12
Au, Huynh, Horowitz, Folch (CR3) 2016; 55
Gross, Anderson, Meisel, McNitt, Spence (CR39) 2015; 87
Tang, Vaze, Rusling (CR41) 2017; 17
Kheireddine, Perumal, Smith, Nicolau, Wachsmann-Hogiu (CR46) 2019; 19
Aladese, Jeong (CR19) 2021; 15
Fraser, Kinghorn, Dirkzwager, Liang, Cheung, Lim, Shiu, Tang, Andrew, Manitta (CR65) 2018; 100
Bertana, De Pasquale, Ferrero, Scaltrito, Catania, Nicosia, Marasso, Cocuzza, Perrucci (CR60) 2019; 11
Park, Lee, Han, Lee, Lee, Park (CR53) 2021; 181
Li, Dey, Kim (CR51) 2019; 296
Zhang, Xiao (CR82) 2018; 9
Liu, Yang, Lenigk, Bonanno, Grodzinski (CR93) 2004; 76
He, Wu, Fu, Gao, Qiu (CR21) 2016; 28
Cafieri, Monies, Mongeau, Bes (CR62) 2016; 98
Goh, Sing, Yeong (CR63) 2021; 54
Mehta, Rath (CR10) 2021; 4
Brennen (CR73) 2014
Gross, Erkal, Lockwood, Chen, Spence (CR1) 2014; 86
Piironen, Haapala, Talman, Järvinen, Sikanen (CR87) 2020; 20
Jagannadh, Murthy, Srinivasan, Gorthi (CR48) 2016; 9
Riahi (CR68) 2016; 23
Chen, Mehl, Munshi, Townsend, Spence, Martin (CR27) 2016; 8
Vandenberghe, Boyd (CR59) 2004
Skliutas, Kasetaite, Jonušauskas, Ostrauskaite, Malinauskas (CR56) 2018; 57
Lee, An, Chua (CR84) 2017; 7
Kowsari, Zhang, Panjwani, Chen, Hingorani, Akbari, Fang, Ge (CR31) 2018; 24
Conde, Keraite, Ongaro, Kersaudy-Kerhoas (CR81) 2020; 20
Wang, Pumera (CR9) 2021; 135
Sun, Fang, Wu, Zhang (CR33) 2005; 121
Bhattacharjee, Urrios, Kang, Folch (CR8) 2016; 16
Monzón, Ortega, Hernández, Paz, Ortega (CR30) 2017; 10
Au, Bhattacharjee, Horowitz, Chang, Folch (CR17) 2015; 15
Kara, Vassiliadou, Ongoren, Keeble, Hing, Lalatsa, Serrano (CR23) 2021; 13
Ho, Ng, Li, Yoon (CR20) 2015; 15
Ahmed, Mao, Shi, Juluri, Huang (CR91) 2009; 9
Gong, Beauchamp, Perry, Woolley, Nordin (CR57) 2015; 5
L Wang (48_CR9) 2021; 135
48_CR55
VK Jagannadh (48_CR48) 2016; 9
C Arnold (48_CR69) 2019; 12
Y Okabe (48_CR78) 2012; 35
48_CR7
M Abramowitz (48_CR90) 2002; 33
C Sun (48_CR33) 2005; 121
LA Fraser (48_CR65) 2018; 100
J Zhang (48_CR82) 2018; 9
N Bhattacharjee (48_CR8) 2016; 16
J-Y Lee (48_CR84) 2017; 7
F Zhu (48_CR86) 2015; 9
HN Chan (48_CR12) 2017; 17
E Skliutas (48_CR56) 2018; 57
BC Gross (48_CR1) 2014; 86
NP Macdonald (48_CR14) 2017; 89
R Xiao (48_CR22) 2021; 206
AK Au (48_CR17) 2015; 15
M Wiklund (48_CR76) 2012; 12
AK Au (48_CR25) 2014; 14
T Ching (48_CR52) 2020; 22
AK Au (48_CR3) 2016; 55
48_CR43
M Riahi (48_CR68) 2016; 23
AI Shallan (48_CR70) 2014; 86
S Waheed (48_CR2) 2016; 16
K Kowsari (48_CR31) 2018; 24
48_CR85
PF O'Neill (48_CR36) 2014; 8
M Carve (48_CR83) 2018; 9
C Chen (48_CR27) 2016; 8
E Sirjani (48_CR40) 2020; 33
CLM Palenzuela (48_CR94) 2018; 103
D Ahmed (48_CR91) 2009; 9
AJ Capel (48_CR13) 2018; 2
AM Kaba (48_CR77) 2021; 346
LJY Ong (48_CR54) 2019; 19
A Menon (48_CR64) 2019; 6
A Hashmi (48_CR75) 2012; 12
A De Vellis (48_CR80) 2017; 243
CMB Ho (48_CR20) 2015; 15
N Bhattacharjee (48_CR29) 2018; 30
GD Goh (48_CR63) 2021; 54
48_CR38
A Naderi (48_CR6) 2019; 21
Z Li (48_CR51) 2019; 296
R Amin (48_CR5) 2016; 8
C Scott (48_CR45) 2010; 4
V Bertana (48_CR60) 2019; 11
48_CR72
AR Brunet (48_CR66) 2017; 17
C Dixit (48_CR4) 2018; 106
H Gojzewski (48_CR58) 2020; 12
JW Choi (48_CR88) 2009; 15
M Monzón (48_CR30) 2017; 10
BC Gross (48_CR39) 2015; 87
J Park (48_CR53) 2021; 181
MR Rasouli (48_CR92) 2019; 19
C Tzivelekis (48_CR24) 2021; 31
S Kheireddine (48_CR46) 2019; 19
YT Kim (48_CR50) 2019; 19
M Moussus (48_CR67) 2021; 21
CE Brennen (48_CR73) 2014
YF Zhang (48_CR89) 2019; 4
H Gong (48_CR57) 2015; 5
C Tang (48_CR41) 2017; 17
AJ Conde (48_CR81) 2020; 20
RH Liu (48_CR93) 2004; 76
AL Beckwith (48_CR26) 2018; 27
Y He (48_CR21) 2016; 28
S Cafieri (48_CR62) 2016; 98
MJ Beauchamp (48_CR16) 2017; 409
AD Aladese (48_CR19) 2021; 15
KG Mostafa (48_CR32) 2020; 92
LD Vallejo-Melgarejo (48_CR35) 2019; 25
Y He (48_CR37) 2014; 4
F Kotz (48_CR71) 2018; 9
V Mehta (48_CR10) 2021; 4
JW Lim (48_CR18) 2020; 14
RH Liu (48_CR79) 2002; 2
K Piironen (48_CR87) 2020; 20
AV Nielsen (48_CR15) 2020; 13
L Vandenberghe (48_CR59) 2004
T Salafi (48_CR47) 2019; 4
C Yuan (48_CR49) 2019; 11
H Jeon (48_CR74) 2021; 326
A Urrios (48_CR28) 2016; 16
AA Yazdi (48_CR11) 2016; 20
MS Song (48_CR42) 2015; 284
A Kara (48_CR23) 2021; 13
PJEM van der Linden (48_CR34) 2020; 20
Y-S Lee (48_CR44) 2018; 18
C Griffiths (48_CR61) 2016; 139
References_xml – volume: 20
  start-page: 50
  year: 2016
  ident: CR11
  article-title: 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications
  publication-title: Microfluid. Nanofluid.
– volume: 12
  start-page: 4216
  year: 2012
  end-page: 4227
  ident: CR75
  article-title: Oscillating bubbles: a versatile tool for lab on a chip applications
  publication-title: Lab Chip
– volume: 35
  start-page: 37
  year: 2012
  end-page: 43
  ident: CR78
  article-title: Piezoelectrically driven vertical cavity acoustic transducers for the convective transport and rapid detection of DNA and protein binding to DNA microarrays with SPR imaging—a parametric study
  publication-title: Biosens. Bioelectron.
– volume: 27
  start-page: 1009
  year: 2018
  end-page: 1022
  ident: CR26
  article-title: Monolithic, 3D-printed microfluidic platform for recapitulation of dynamic tumor microenvironments
  publication-title: J. Microelectromech. Syst.
– volume: 206
  start-page: 109767
  year: 2021
  ident: CR22
  article-title: 3D printing of dual phase-strengthened microlattices for lightweight micro aerial vehicles
  publication-title: Mater. Des.
– volume: 8
  start-page: 6005
  year: 2016
  end-page: 6012
  ident: CR27
  article-title: 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review
  publication-title: Anal. Methods
– volume: 20
  start-page: 741
  year: 2020
  end-page: 748
  ident: CR81
  article-title: Versatile hybrid acoustic micromixer with demonstration of circulating cell-free DNA extraction from sub-ml plasma samples
  publication-title: Lab Chip
– volume: 13
  start-page: 2134
  year: 2021
  ident: CR23
  article-title: Engineering 3D printed microfluidic chips for the fabrication of nanomedicines
  publication-title: Pharmaceutics
– volume: 21
  start-page: 325
  year: 2019
  end-page: 364
  ident: CR6
  article-title: Digital manufacturing for microfluidics
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 16
  start-page: 1720
  year: 2016
  end-page: 1742
  ident: CR8
  article-title: The upcoming 3D-printing revolution in microfluidics
  publication-title: Lab Chip
– volume: 20
  start-page: 4128
  year: 2020
  end-page: 4140
  ident: CR34
  article-title: Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer
  publication-title: Lab Chip
– volume: 17
  start-page: 484
  year: 2017
  end-page: 489
  ident: CR41
  article-title: Automated 3D-printed unibody immunoarray for chemiluminescence detection of cancer biomarker proteins
  publication-title: Lab Chip
– volume: 121
  start-page: 113
  year: 2005
  end-page: 120
  ident: CR33
  article-title: Projection micro-stereolithography using digital micro-mirror dynamic mask
  publication-title: Sens. Actuators A Phys.
– volume: 19
  start-page: 3316
  year: 2019
  end-page: 3325
  ident: CR92
  article-title: An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles
  publication-title: Lab Chip
– volume: 409
  start-page: 4311
  year: 2017
  end-page: 4319
  ident: CR16
  article-title: Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices
  publication-title: Anal. Bioanal. Chem.
– volume: 10
  start-page: 64
  year: 2017
  ident: CR30
  article-title: Anisotropy of photopolymer parts made by digital light processing
  publication-title: Materials
– volume: 55
  start-page: 3862
  year: 2016
  end-page: 3881
  ident: CR3
  article-title: 3D-printed microfluidics
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 3627
  year: 2015
  end-page: 3637
  ident: CR20
  article-title: 3D printed microfluidics for biological applications
  publication-title: Lab Chip
– volume: 11
  start-page: 40662
  year: 2019
  end-page: 40668
  ident: CR49
  article-title: Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 1900427
  year: 2019
  ident: CR89
  article-title: Miniature pneumatic actuators for soft robots by high-resolution multimaterial 3D printing
  publication-title: Adv. Mater. Technol.
– volume: 16
  start-page: 2287
  year: 2016
  end-page: 2294
  ident: CR28
  article-title: 3D-printing of transparent bio-microfluidic devices in PEG-DA
  publication-title: Lab Chip
– volume: 4
  start-page: 1
  year: 2014
  end-page: 7
  ident: CR37
  article-title: Fabrication of low cost soft tissue prostheses with the desktop 3D printer
  publication-title: Sci. Rep.
– volume: 15
  start-page: 1
  year: 2021
  end-page: 21
  ident: CR19
  article-title: Recent developments in 3D printing of droplet-based microfluidics
  publication-title: Biochip J.
– volume: 5
  start-page: 106621
  year: 2015
  end-page: 106632
  ident: CR57
  article-title: Optical approach to resin formulation for 3D printed microfluidics
  publication-title: RSC Adv.
– volume: 89
  start-page: 3858
  year: 2017
  end-page: 3866
  ident: CR14
  article-title: Comparing microfluidic performance of three-dimensional (3D) printing platforms
  publication-title: Anal. Chem.
– volume: 24
  start-page: 627
  year: 2018
  end-page: 638
  ident: CR31
  article-title: Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing
  publication-title: Addit. Manuf.
– volume: 33
  start-page: 101094
  year: 2020
  ident: CR40
  article-title: 3D printed UV/VIS detection systems constructed from transparent filaments and immobilised enzymes
  publication-title: Addit. Manuf.
– volume: 326
  start-page: 112730
  year: 2021
  ident: CR74
  article-title: Excitation-frequency determination based on electromechanical impedance spectroscopy for a laser-microfabricated cavitation microstreaming micromixer
  publication-title: Sens. Actuators A Phys.
– volume: 14
  start-page: 169
  year: 2020
  end-page: 178
  ident: CR18
  article-title: Portable pumpless 3D-printed chip for on-site colorimetric screening of Hg 2+ in lake water
  publication-title: Biochip J.
– volume: 135
  start-page: 116151
  year: 2021
  ident: CR9
  article-title: Recent advances of 3D printing in analytical chemistry: focus on microfluidic, separation, and extraction devices
  publication-title: Trends Anal. Chem.
– volume: 23
  start-page: 442
  year: 2016
  end-page: 447
  ident: CR68
  article-title: Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology
  publication-title: Opt. Rev.
– volume: 19
  start-page: 2178
  year: 2019
  end-page: 2191
  ident: CR54
  article-title: Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions
  publication-title: Lab Chip
– volume: 87
  start-page: 6335
  year: 2015
  end-page: 6341
  ident: CR39
  article-title: Polymer coatings in 3D-printed fluidic device channels for improved cellular adherence prior to electrical lysis
  publication-title: Anal. Chem.
– volume: 9
  start-page: 586
  year: 2016
  end-page: 595
  ident: CR48
  article-title: Automated quantitative cytological analysis using portable microfluidic microscopy
  publication-title: J. Biophotonics
– volume: 57
  start-page: 041412
  year: 2018
  ident: CR56
  article-title: Photosensitive naturally derived resins toward optical 3-D printing
  publication-title: Opt. Eng.
– ident: CR85
– volume: 4
  start-page: 1
  year: 2021
  end-page: 33
  ident: CR10
  article-title: 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare
  publication-title: Bio-Des. Manuf.
– volume: 15
  start-page: 59
  year: 2009
  end-page: 70
  ident: CR88
  article-title: Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography
  publication-title: Rapid Prototyp. J.
– volume: 139
  start-page: 74
  year: 2016
  end-page: 85
  ident: CR61
  article-title: A design of experiments approach for the optimisation of energy and waste during the production of parts manufactured by 3D printing
  publication-title: J. Clean. Prod.
– volume: 9
  start-page: 2738
  year: 2009
  end-page: 2741
  ident: CR91
  article-title: A millisecond micromixer via single-bubble-based acoustic streaming
  publication-title: Lab Chip
– volume: 33
  start-page: 772
  year: 2002
  end-page: 781
  ident: CR90
  article-title: Basic principles of microscope objectives
  publication-title: Biotechniques
– volume: 12
  start-page: 1970
  year: 2019
  ident: CR69
  article-title: Surface quality of 3D-printed models as a function of various printing parameters
  publication-title: Materials
– volume: 9
  start-page: 115
  year: 2018
  ident: CR71
  article-title: Highly fluorinated methacrylates for optical 3D printing of microfluidic devices
  publication-title: Micromachines
– volume: 92
  start-page: 187
  year: 2020
  end-page: 193
  ident: CR32
  article-title: Investigation of light-induced surface roughness in projection micro-stereolithography additive manufacturing (PµSLA)
  publication-title: Procedia CIRP
– volume: 9
  start-page: 046502
  year: 2015
  ident: CR86
  article-title: Three-dimensional printed millifluidic devices for zebrafish embryo tests
  publication-title: Biomicrofluidics
– volume: 106
  start-page: 37
  year: 2018
  end-page: 52
  ident: CR4
  article-title: 3D-printed miniaturized fluidic tools in chemistry and biology
  publication-title: Trends Anal. Chem.
– year: 2014
  ident: CR73
  publication-title: Cavitation and Bubble Dynamics
– volume: 16
  start-page: 1993
  year: 2016
  end-page: 2013
  ident: CR2
  article-title: 3D printed microfluidic devices: enablers and barriers
  publication-title: Lab Chip
– ident: CR43
– volume: 86
  start-page: 3240
  year: 2014
  end-page: 3253
  ident: CR1
  article-title: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences
  publication-title: Anal. Chem.
– volume: 4
  start-page: 285
  year: 2010
  end-page: 305
  ident: CR45
  article-title: Wide field scanning telescope using MEMS deformable mirrors
  publication-title: Int. J. Optomechatron.
– ident: CR72
– volume: 76
  start-page: 1824
  year: 2004
  end-page: 1831
  ident: CR93
  article-title: Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection
  publication-title: Anal. Chem.
– volume: 2
  start-page: 422
  year: 2018
  end-page: 436
  ident: CR13
  article-title: 3D printing for chemical, pharmaceutical and biological applications
  publication-title: Nat. Rev. Chem.
– volume: 21
  start-page: 2557
  year: 2021
  end-page: 2564
  ident: CR67
  article-title: A 3D-printed Arabidopsis thaliana root imaging platform
  publication-title: Lab Chip
– volume: 4
  start-page: 1800359
  year: 2019
  ident: CR47
  article-title: Portable smartphone-based platform for real-time particle detection in microfluidics
  publication-title: Adv. Mater. Technol.
– volume: 17
  start-page: 2713
  year: 2017
  end-page: 2739
  ident: CR12
  article-title: Point-of-care testing: applications of 3D printing
  publication-title: Lab Chip
– volume: 25
  start-page: 1684
  year: 2019
  end-page: 1694
  ident: CR35
  article-title: Characterization of 3D-printed lenses and diffraction gratings made by DLP additive manufacturing
  publication-title: Rapid Prototyp. J.
– volume: 9
  start-page: 91
  year: 2018
  ident: CR83
  article-title: 3D-printed chips: Compatibility of additive manufacturing photopolymeric substrata with biological applications
  publication-title: Micromachines
– volume: 20
  start-page: 2372
  year: 2020
  end-page: 2382
  ident: CR87
  article-title: Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices
  publication-title: Lab Chip
– volume: 100
  start-page: 591
  year: 2018
  end-page: 596
  ident: CR65
  article-title: A portable microfluidic aptamer-tethered enzyme capture (APTEC) biosensor for malaria diagnosis
  publication-title: Biosens. Bioelectron.
– volume: 2
  start-page: 151
  year: 2002
  end-page: 157
  ident: CR79
  article-title: Bubble-induced acoustic micromixing
  publication-title: Lab Chip
– volume: 12
  start-page: 2438
  year: 2012
  end-page: 2451
  ident: CR76
  article-title: Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices
  publication-title: Lab Chip
– volume: 98
  start-page: 434
  year: 2016
  end-page: 445
  ident: CR62
  article-title: Plunge milling time optimization via mixed-integer nonlinear programming
  publication-title: Comput. Ind. Eng.
– volume: 54
  start-page: 63
  year: 2021
  end-page: 94
  ident: CR63
  article-title: A review on machine learning in 3D printing: applications, potential, and challenges
  publication-title: Artif. Intell. Rev.
– volume: 17
  start-page: 2271
  year: 2017
  ident: CR66
  article-title: Reconfigurable microfluidic magnetic valve arrays: towards a radiotherapy-compatible spheroid culture platform for the combinatorial screening of cancer therapies
  publication-title: Sensors
– volume: 8
  start-page: 052112
  year: 2014
  ident: CR36
  article-title: Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications
  publication-title: Biomicrofluidics
– volume: 346
  start-page: 130511
  year: 2021
  ident: CR77
  article-title: Cavitation-microstreaming-based lysis and DNA extraction using a laser-machined polycarbonate microfluidic chip
  publication-title: Sens. Actuators B Chem.
– volume: 19
  start-page: 3086
  year: 2019
  end-page: 3093
  ident: CR50
  article-title: Partitioning of hydrogels in 3D-printed microchannels
  publication-title: Lab Chip
– volume: 181
  start-page: 113159
  year: 2021
  ident: CR53
  article-title: Pushbutton-activated microfluidic dropenser for droplet digital PCR
  publication-title: Biosens. Bioelectron.
– volume: 86
  start-page: 3124
  year: 2014
  end-page: 3130
  ident: CR70
  article-title: Cost-effective three-dimensional printing of visibly transparent microchips within minutes
  publication-title: Anal. Chem.
– volume: 22
  start-page: 1901109
  year: 2020
  ident: CR52
  article-title: Fabrication of complex 3D fluidic networks via modularized stereolithography
  publication-title: Adv. Eng. Mater.
– volume: 11
  start-page: 292
  year: 2019
  ident: CR60
  article-title: 3D printing with the commercial UV-curable standard blend resin: optimized process parameters towards the fabrication of tiny functional parts
  publication-title: Polymers
– year: 2004
  ident: CR59
  publication-title: Convex Optimization
– ident: CR38
– volume: 7
  start-page: 120
  year: 2017
  end-page: 133
  ident: CR84
  article-title: Fundamentals and applications of 3D printing for novel materials
  publication-title: Appl. Mater. Today
– volume: 296
  start-page: 126692
  year: 2019
  ident: CR51
  article-title: Microfluidic single valve oscillator for blood plasma filtration
  publication-title: Sens. Actuators B Chem.
– volume: 18
  start-page: 1207
  year: 2018
  end-page: 1214
  ident: CR44
  article-title: 3D-printed Quake-style microvalves and micropumps
  publication-title: Lab Chip
– volume: 103
  start-page: 110
  year: 2018
  end-page: 118
  ident: CR94
  article-title: (Bio) Analytical chemistry enabled by 3D printing: sensors and biosensors
  publication-title: Trends Anal. Chem.
– volume: 8
  start-page: 022001
  year: 2016
  ident: CR5
  article-title: 3D-printed microfluidic devices
  publication-title: Biofabrication
– ident: CR55
– volume: 13
  start-page: 45
  year: 2020
  end-page: 65
  ident: CR15
  article-title: 3D printed microfluidics
  publication-title: Annu. Rev. Anal. Chem.
– volume: 15
  start-page: 1934
  year: 2015
  end-page: 1941
  ident: CR17
  article-title: 3D-printed microfluidic automation
  publication-title: Lab Chip
– ident: CR7
– volume: 30
  start-page: 1800001
  year: 2018
  ident: CR29
  article-title: Desktop-stereolithography 3D-printing of a poly (dimethylsiloxane)-based material with sylgard-184 properties
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1658
  year: 2016
  end-page: 1678
  ident: CR21
  article-title: Developments of 3D printing microfluidics and applications in chemistry and biology: a review
  publication-title: Electroanalysis
– volume: 6
  start-page: 181
  year: 2019
  end-page: 189
  ident: CR64
  article-title: Optimization of silicone 3D printing with hierarchical machine learning
  publication-title: 3D Print. Addit. Manuf.
– volume: 243
  start-page: 298
  year: 2017
  end-page: 302
  ident: CR80
  article-title: Drastic sensing enhancement using acoustic bubbles for surface-based microfluidic sensors
  publication-title: Sens. Actuators B Chem.
– volume: 31
  start-page: 035005
  year: 2021
  ident: CR24
  article-title: Microfluidic chip fabrication and performance analysis of 3D printed material for use in microfluidic nucleic acid amplification applications
  publication-title: J. Micromech. Microeng.
– volume: 284
  start-page: 185
  year: 2015
  end-page: 191
  ident: CR42
  article-title: Matching-index-of-refraction of transparent 3D printing models for flow visualization
  publication-title: Nucl. Eng. Des.
– volume: 19
  start-page: 825
  year: 2019
  end-page: 836
  ident: CR46
  article-title: Dual-phone illumination-imaging system for high resolution and large field of view multi-modal microscopy
  publication-title: Lab Chip
– volume: 14
  start-page: 1294
  year: 2014
  end-page: 1301
  ident: CR25
  article-title: Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices
  publication-title: Lab Chip
– volume: 12
  start-page: 8908
  year: 2020
  end-page: 8914
  ident: CR58
  article-title: Layer-by-layer printing of photopolymers in 3D: How weak is the interface?
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 1530
  year: 2018
  end-page: 1540
  ident: CR82
  article-title: 3D printing of photopolymers
  publication-title: Polym. Chem.
– volume: 27
  start-page: 1009
  year: 2018
  ident: 48_CR26
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2018.2869327
– ident: 48_CR55
– volume: 55
  start-page: 3862
  year: 2016
  ident: 48_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201504382
– volume: 92
  start-page: 187
  year: 2020
  ident: 48_CR32
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2020.05.177
– volume: 19
  start-page: 2178
  year: 2019
  ident: 48_CR54
  publication-title: Lab Chip
  doi: 10.1039/C9LC00160C
– volume: 16
  start-page: 1720
  year: 2016
  ident: 48_CR8
  publication-title: Lab Chip
  doi: 10.1039/C6LC00163G
– volume: 11
  start-page: 292
  year: 2019
  ident: 48_CR60
  publication-title: Polymers
  doi: 10.3390/polym11020292
– volume: 15
  start-page: 3627
  year: 2015
  ident: 48_CR20
  publication-title: Lab Chip
  doi: 10.1039/C5LC00685F
– volume: 86
  start-page: 3124
  year: 2014
  ident: 48_CR70
  publication-title: Anal. Chem.
  doi: 10.1021/ac4041857
– volume: 2
  start-page: 422
  year: 2018
  ident: 48_CR13
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0058-y
– volume: 8
  start-page: 052112
  year: 2014
  ident: 48_CR36
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4898632
– volume: 17
  start-page: 2271
  year: 2017
  ident: 48_CR66
  publication-title: Sensors
  doi: 10.3390/s17102271
– volume: 15
  start-page: 1
  year: 2021
  ident: 48_CR19
  publication-title: Biochip J.
  doi: 10.1007/s13206-021-00032-1
– volume: 15
  start-page: 1934
  year: 2015
  ident: 48_CR17
  publication-title: Lab Chip
  doi: 10.1039/C5LC00126A
– volume: 2
  start-page: 151
  year: 2002
  ident: 48_CR79
  publication-title: Lab Chip
  doi: 10.1039/b201952c
– volume: 54
  start-page: 63
  year: 2021
  ident: 48_CR63
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09876-9
– volume: 14
  start-page: 1294
  year: 2014
  ident: 48_CR25
  publication-title: Lab Chip
  doi: 10.1039/C3LC51360B
– volume: 5
  start-page: 106621
  year: 2015
  ident: 48_CR57
  publication-title: RSC Adv.
  doi: 10.1039/C5RA23855B
– volume: 23
  start-page: 442
  year: 2016
  ident: 48_CR68
  publication-title: Opt. Rev.
  doi: 10.1007/s10043-016-0212-z
– ident: 48_CR7
  doi: 10.1007/978-3-030-58960-8_3
– volume: 20
  start-page: 741
  year: 2020
  ident: 48_CR81
  publication-title: Lab Chip
  doi: 10.1039/C9LC01130G
– volume: 135
  start-page: 116151
  year: 2021
  ident: 48_CR9
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2020.116151
– volume: 20
  start-page: 4128
  year: 2020
  ident: 48_CR34
  publication-title: Lab Chip
  doi: 10.1039/D0LC00767F
– volume: 409
  start-page: 4311
  year: 2017
  ident: 48_CR16
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-017-0398-3
– volume: 17
  start-page: 2713
  year: 2017
  ident: 48_CR12
  publication-title: Lab Chip
  doi: 10.1039/C7LC00397H
– volume: 12
  start-page: 4216
  year: 2012
  ident: 48_CR75
  publication-title: Lab Chip
  doi: 10.1039/c2lc40424a
– volume: 103
  start-page: 110
  year: 2018
  ident: 48_CR94
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.03.016
– volume: 4
  start-page: 1900427
  year: 2019
  ident: 48_CR89
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900427
– volume: 12
  start-page: 1970
  year: 2019
  ident: 48_CR69
  publication-title: Materials
  doi: 10.3390/ma12121970
– volume: 24
  start-page: 627
  year: 2018
  ident: 48_CR31
  publication-title: Addit. Manuf.
– volume: 33
  start-page: 772
  year: 2002
  ident: 48_CR90
  publication-title: Biotechniques
  doi: 10.2144/02334bi01
– ident: 48_CR43
– volume: 181
  start-page: 113159
  year: 2021
  ident: 48_CR53
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113159
– volume: 9
  start-page: 91
  year: 2018
  ident: 48_CR83
  publication-title: Micromachines
  doi: 10.3390/mi9020091
– ident: 48_CR85
– volume: 8
  start-page: 022001
  year: 2016
  ident: 48_CR5
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/2/022001
– volume: 25
  start-page: 1684
  year: 2019
  ident: 48_CR35
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-03-2019-0074
– volume: 13
  start-page: 45
  year: 2020
  ident: 48_CR15
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-091619-102649
– volume: 30
  start-page: 1800001
  year: 2018
  ident: 48_CR29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800001
– volume: 87
  start-page: 6335
  year: 2015
  ident: 48_CR39
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b01202
– volume: 4
  start-page: 1
  year: 2021
  ident: 48_CR10
  publication-title: Bio-Des. Manuf.
  doi: 10.1007/s42242-020-00112-5
– volume: 35
  start-page: 37
  year: 2012
  ident: 48_CR78
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.01.028
– volume: 4
  start-page: 285
  year: 2010
  ident: 48_CR45
  publication-title: Int. J. Optomechatron.
  doi: 10.1080/15599612.2010.513720
– volume: 9
  start-page: 046502
  year: 2015
  ident: 48_CR86
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4927379
– volume: 13
  start-page: 2134
  year: 2021
  ident: 48_CR23
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13122134
– volume: 17
  start-page: 484
  year: 2017
  ident: 48_CR41
  publication-title: Lab Chip
  doi: 10.1039/C6LC01238H
– volume: 76
  start-page: 1824
  year: 2004
  ident: 48_CR93
  publication-title: Anal. Chem.
  doi: 10.1021/ac0353029
– volume: 89
  start-page: 3858
  year: 2017
  ident: 48_CR14
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b00136
– volume: 28
  start-page: 1658
  year: 2016
  ident: 48_CR21
  publication-title: Electroanalysis
  doi: 10.1002/elan.201600043
– volume: 243
  start-page: 298
  year: 2017
  ident: 48_CR80
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.11.098
– ident: 48_CR38
– volume-title: Convex Optimization
  year: 2004
  ident: 48_CR59
– volume: 4
  start-page: 1
  year: 2014
  ident: 48_CR37
  publication-title: Sci. Rep.
– volume: 15
  start-page: 59
  year: 2009
  ident: 48_CR88
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540910925072
– volume: 18
  start-page: 1207
  year: 2018
  ident: 48_CR44
  publication-title: Lab Chip
  doi: 10.1039/C8LC00001H
– ident: 48_CR72
  doi: 10.1016/B978-0-12-420138-5.00002-1
– volume: 346
  start-page: 130511
  year: 2021
  ident: 48_CR77
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.130511
– volume: 21
  start-page: 325
  year: 2019
  ident: 48_CR6
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-092618-020341
– volume: 19
  start-page: 3316
  year: 2019
  ident: 48_CR92
  publication-title: Lab Chip
  doi: 10.1039/C9LC00637K
– volume: 57
  start-page: 041412
  year: 2018
  ident: 48_CR56
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.57.4.041412
– volume: 9
  start-page: 1530
  year: 2018
  ident: 48_CR82
  publication-title: Polym. Chem.
  doi: 10.1039/C8PY00157J
– volume: 21
  start-page: 2557
  year: 2021
  ident: 48_CR67
  publication-title: Lab Chip
  doi: 10.1039/D1LC00149C
– volume: 121
  start-page: 113
  year: 2005
  ident: 48_CR33
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2004.12.011
– volume: 12
  start-page: 2438
  year: 2012
  ident: 48_CR76
  publication-title: Lab Chip
  doi: 10.1039/c2lc40203c
– volume: 4
  start-page: 1800359
  year: 2019
  ident: 48_CR47
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800359
– volume: 16
  start-page: 2287
  year: 2016
  ident: 48_CR28
  publication-title: Lab Chip
  doi: 10.1039/C6LC00153J
– volume: 296
  start-page: 126692
  year: 2019
  ident: 48_CR51
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.126692
– volume: 7
  start-page: 120
  year: 2017
  ident: 48_CR84
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2017.02.004
– volume: 10
  start-page: 64
  year: 2017
  ident: 48_CR30
  publication-title: Materials
  doi: 10.3390/ma10010064
– volume: 22
  start-page: 1901109
  year: 2020
  ident: 48_CR52
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201901109
– volume: 19
  start-page: 825
  year: 2019
  ident: 48_CR46
  publication-title: Lab Chip
  doi: 10.1039/C8LC00995C
– volume: 14
  start-page: 169
  year: 2020
  ident: 48_CR18
  publication-title: Biochip J.
  doi: 10.1007/s13206-019-4205-4
– volume: 31
  start-page: 035005
  year: 2021
  ident: 48_CR24
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/abd9a9
– volume: 139
  start-page: 74
  year: 2016
  ident: 48_CR61
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.07.182
– volume-title: Cavitation and Bubble Dynamics
  year: 2014
  ident: 48_CR73
– volume: 16
  start-page: 1993
  year: 2016
  ident: 48_CR2
  publication-title: Lab Chip
  doi: 10.1039/C6LC00284F
– volume: 100
  start-page: 591
  year: 2018
  ident: 48_CR65
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.10.001
– volume: 9
  start-page: 586
  year: 2016
  ident: 48_CR48
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201500108
– volume: 33
  start-page: 101094
  year: 2020
  ident: 48_CR40
  publication-title: Addit. Manuf.
– volume: 284
  start-page: 185
  year: 2015
  ident: 48_CR42
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2014.12.019
– volume: 20
  start-page: 2372
  year: 2020
  ident: 48_CR87
  publication-title: Lab Chip
  doi: 10.1039/D0LC00114G
– volume: 12
  start-page: 8908
  year: 2020
  ident: 48_CR58
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b22272
– volume: 6
  start-page: 181
  year: 2019
  ident: 48_CR64
  publication-title: 3D Print. Addit. Manuf.
  doi: 10.1089/3dp.2018.0088
– volume: 326
  start-page: 112730
  year: 2021
  ident: 48_CR74
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2021.112730
– volume: 9
  start-page: 2738
  year: 2009
  ident: 48_CR91
  publication-title: Lab Chip
  doi: 10.1039/b903687c
– volume: 106
  start-page: 37
  year: 2018
  ident: 48_CR4
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.06.013
– volume: 86
  start-page: 3240
  year: 2014
  ident: 48_CR1
  publication-title: Anal. Chem.
  doi: 10.1021/ac403397r
– volume: 9
  start-page: 115
  year: 2018
  ident: 48_CR71
  publication-title: Micromachines
  doi: 10.3390/mi9030115
– volume: 20
  start-page: 50
  year: 2016
  ident: 48_CR11
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-016-1715-4
– volume: 19
  start-page: 3086
  year: 2019
  ident: 48_CR50
  publication-title: Lab Chip
  doi: 10.1039/C9LC00535H
– volume: 8
  start-page: 6005
  year: 2016
  ident: 48_CR27
  publication-title: Anal. Methods
  doi: 10.1039/C6AY01671E
– volume: 206
  start-page: 109767
  year: 2021
  ident: 48_CR22
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109767
– volume: 98
  start-page: 434
  year: 2016
  ident: 48_CR62
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.06.015
– volume: 11
  start-page: 40662
  year: 2019
  ident: 48_CR49
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14692
SSID ssj0000331528
Score 2.2773325
Snippet We report a quantitative and systematic method for determining 3D-printing and surface-treatment conditions that can help improve the optical quality of...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 82
SubjectTerms 3-D printers
Aluminum oxide
Biomedical Engineering and Bioengineering
Biotechnology
Cavitation
Chemical etching
Chemistry
Chemistry and Materials Science
Cleanrooms
Devices
Etching
Fluorescence
High definition
Lithography
Manufacturing
Microfluidic devices
Microfluidics
Microspheres
Nanoparticles
Optics
Original Article
Parameters
Polymer coatings
Polymers
Printing
Quality improvement
Rapid manufacturing
Resins
Sanding
Slurries
Thickness
Three dimensional printing
Translucence
User training
생물공학
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS-wwEA9-XN5FFJW3fhHEmwY3SVvTk4i6foCiqOAtpEnnsSit1t3_35m0dfGBnnpok8LMZD4y85thbO8IKPBxQXitUpFAoUUhTS5M5rLYjkTFqsqb2-zyKbl-Tp-7C7ePrqyy14lRUYfa0x35ocpRVqiBmTp-exc0NYqyq90IjXm2KNHSkJyb0cXXHctQazRPEQ2HVldQFrHDzbToOa0onMZoLEKrhfxmm-arBr65nf9lSqMBGi2zpc5z5Cctq1fYXFmtsuZ-6qqIE0Otxc_62haiNq-B6zNxh7tRaTN3VeAP0wacL8VjX17OT2vKWZPscXRfeasB20Vl4DdUrgev03EYe9w9apU19jQ6fzy9FN0YBaR_qifCKZ0NlfemoE48AOgzYYxFKHiVeT8Ej6cy1d7J9CgY41yAHKSBPJjCJKUGvc4Wqroq_zKeZcPSFT7JAWQii8zoAIA-RMgL5TAyGjDZE9D6rsc4jbp4tbPuyER0i0S3kehWDtj-15q3tsPGr1_vIl_six9baoxNz3-1fWksuv9XNs8Twv4O2FbPNtsdyQ87E6ABO-hZOXv98y83ft9tk_1RUYaoLm2LLUyaabmNjsqk2InS-Am30uFp
  priority: 102
  providerName: ProQuest
Title Quantitative Determination of 3D-Printing and Surface-Treatment Conditions for Direct-Printed Microfluidic Devices
URI https://link.springer.com/article/10.1007/s13206-022-00048-1
https://www.proquest.com/docview/2919601172
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002821647
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX BioChip Journal, 2022, 16(1), , pp.82-98
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5dBeKBQqtgVkVb0Vo42dBOe4XVhoKxBtWQlOlh8xWi3KVmFz6a_v2Im7AgESp0iJH4lnPI_MN2OAz4fOOz7KUsNZRlOnOdWJKKjIVR7KkbCAqjw7z08n6fer7KpLCruLaPcYkgySepnsxpn3ftF5CpnQFH2e1QzHFT1YHZ5c_1j-WxlwjmopZMGhtqU-etjlyzw-0D2dtFLV7p65-SBCGhTP-C1M4iu3eJPZQbPQB-bvg2qOL_2mdVjrLFEybFlnA16V1Tt4PYoHwG1C_bNRVchBQ4lIjiJuxlOSzB3hR_QCJ_OwaaIqS343tVOmpJcRuk5Gcx8P93xN0DQmrXRtO5WWnHkooLttpnZqcPQgsbZgMj6-HJ3S7ogGpG3GF1Qxng-YMUL7Kj_OoT2G_pvPsGe5MQNncMdn3KgkO7RCKGVd4RLhCiu0SEvu-HvoVfOq3AaS54NSaZMWziVponPBrXNon9hCM4VeVx-SSCRpuvrl_hiNW7msvOxXU-JqyrCaMunDl_99_rTVO55t_QlpL2dmKn3RbX-9mctZLdG1-CaLIvV5xX3Yiawhu-1-J1mBgsxX12N92I-UXj5-esoPL2v-Ed6wwCweA7cDvUXdlLtoFC30HqyI8cletxPw-vX4_OIX3p2w4T9bpwKB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9QwDLa22wO8IBAgbowRIXiCiGvSdukDQmO36Y7tTgNu0t5CmjTotKkd3Z0Qf2q_cXba7jQk9ranPrRxK9t17NifDfB2x1PgYxy3UiQ89rnkeaQyrlKThnYkIlRVTqbp6CT-epqcrsFVh4WhssrOJgZD7SpLZ-QfRYa6Qg3MxOeL35ymRlF2tRuh0ajFYfH3D4Zsl5_GQ5TvOyEO9md7I95OFcDPSeSCGyHTgbBW5dSYxnt0ITDkIFC4SK0deItKmkhromTHKWWM85mPlM-cylVcSC-R7jpsxIRo7cHGl_3p8febU52BlLghBvwd7vOc8pYtUqfB60lBATzGfwHMzaNbu-F6Wftbju4_udmw5R08hketr8p2G-V6AmtF-RTqb0tTBmQa2kk27KppSL6s8kwO-TFSo2JqZkrHfixrb2zBZ11BO9urKEtO2s7QYWaNzW0WFY5NqEDQny_nbm6RerBjz-DkXlj8HHplVRYvgKXpoDC5jTPvozjKUyWd9-i1uCwXBmOxPkQdA7Vtu5rTcI1zverHTEzXyHQdmK6jPry_WXPR9PS48-k3KBd9ZueaWnHT9Velz2qNAcdYZ1lMaOM-bHVi060RuNQrle3Dh06Uq9v_f-Xm3dRew4PRbHKkj8bTw5fwUAR9oqq4Legt6mXxCt2kRb7d6iaDn_f9O1wD3J8fRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELf4kIAXBAy0DgYW4o1ZNHYSnEfUUgEbCASVeLMcOzdVRSkK7f-_OyehY2JIPOUhtiP5zveRu9_PjB2dAiU-1gunZCJiyJXII50Jndo00JHI0FV5fZNeDOOrx-TxLxR_6HZvS5I1poFYmsrpybOHkznwTUnKhDGRCqhogfnPMprjiDR9KM9e_7J0lUIHFfBw6HcF1REb5Mz7y7zxTotlBW8Cz39qpcEFDTbYehM78rNa2JtsoSi32GqvvbLtC6vuZrYMqDG0YbzfdrrQ3vMJcNUXt7gyNTpzW3p-P6vAukI8tM3mvDehCjZpIsdgltf2sJ5UeH5NzXvwNBv5kcPVg43ZZsPB-UPvQjSXKqA0EjUVVqq0K53TOfHyAGAEhRkXYeJl6lwXHJ7RRDkbJadea2s9ZBBpyLzOdVwoUDtsqZyUxVfG07Rb2NzFGUAUR3mqlQfAiMJnubSYJ3VY1G6mcQ3jOF188WTmXMkkAIMCMEEAJuqw49c5zzXfxoejD1FGZuxGhmiy6fl7YsaVwWTg0mRZTEjgDttrRWiaA_piZIamh_jwZIf9aMU6f_3_T3773PADtnLbH5hflzc_d9maDKpGDWx7bGlazYrvGNFM8_2gtH8AI2zpPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Determination+of+3D-Printing+and+Surface-Treatment+Conditions+for+Direct-Printed+Microfluidic+Devices&rft.jtitle=Biochip+journal&rft.au=Namgung%2C+Hyun&rft.au=Kaba%2C+Abdi+Mirgissa&rft.au=Oh%2C+Hyeonkyu&rft.au=Jeon%2C+Hyunjin&rft.date=2022-03-01&rft.pub=The+Korean+BioChip+Society+%28KBCS%29&rft.issn=1976-0280&rft.eissn=2092-7843&rft.volume=16&rft.issue=1&rft.spage=82&rft.epage=98&rft_id=info:doi/10.1007%2Fs13206-022-00048-1&rft.externalDocID=10_1007_s13206_022_00048_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-0280&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-0280&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-0280&client=summon