Quantitative Determination of 3D-Printing and Surface-Treatment Conditions for Direct-Printed Microfluidic Devices
We report a quantitative and systematic method for determining 3D-printing and surface-treatment conditions that can help improve the optical quality of direct-printed microfluidic devices. Digital light processing (DLP)-stereolithography (SLA) printing was extensively studied in microfluidics owing...
Saved in:
Published in | Biochip journal Vol. 16; no. 1; pp. 82 - 98 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean BioChip Society (KBCS)
01.03.2022
Springer Nature B.V 한국바이오칩학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1976-0280 2092-7843 |
DOI | 10.1007/s13206-022-00048-1 |
Cover
Loading…
Abstract | We report a quantitative and systematic method for determining 3D-printing and surface-treatment conditions that can help improve the optical quality of direct-printed microfluidic devices. Digital light processing (DLP)-stereolithography (SLA) printing was extensively studied in microfluidics owing to the rapid, one-step, cleanroom-free, maskless, and high-definition microfabrication of 3D-microfluidic devices. However, optical imaging or detection for bioassays in DLP-SLA-printed microfluidic devices are limited by the translucence of photopolymerized resins. Various approaches, including mechanical abrasions, chemical etching, polymer coatings, and printing on transparent glass/plastic slides, were proposed to address this limitation. However, the effects of these methods have not been analyzed quantitatively or systematically. For the first time, we propose quantitative and methodological determination of 3D-printing and surface-treatment conditions, based on optical-resolution analysis using USAF 1951 resolution test targets and a fluorescence microbead slide through 3D-printed coverslip chips. The key printing parameters (resin type, build orientation, layer thickness, and layer offset) and surface-treatment parameters (grit number for sanding, polishing time with alumina slurry, and type of refractive-index-matching coatings) were determined in a step-wise manner. As a result, we achieved marked improvements in resolution (from 80.6 to 645.1 lp/mm) and contrast (from 3.30 to 27.63% for 645.1 lp/mm resolution). Furthermore, images of the fluorescence microbeads were qualitatively analyzed to evaluate the proposed 3D-printing and surface-treatment approach for fluorescence imaging applications. Finally, the proposed method was validated by fabricating an acoustic micromixer chip and fluorescently visualizing cavitation microstreaming that emanated from an oscillating bubble captured inside the chip. We expect that our approach for enhancing optical quality will be widely used in the rapid manufacturing of 3D-microfluidic chips for optical assays. |
---|---|
AbstractList | We report a quantitative and systematic method for determining 3D-printing and surface-treatment conditions that can help improve the optical quality of direct-printed microfluidic devices. Digital light processing (DLP)-stereolithography (SLA) printing was extensively studied in microfluidics owing to the rapid, one-step, cleanroom-free, maskless, and high-definition microfabrication of 3D-microfluidic devices. However, optical imaging or detection for bioassays in DLP-SLA-printed microfluidic devices are limited by the translucence of photopolymerized resins. Various approaches, including mechanical abrasions, chemical etching, polymer coatings, and printing on transparent glass/plastic slides, were proposed to address this limitation. However, the effects of these methods have not been analyzed quantitatively or systematically. For the first time, we propose quantitative and methodological determination of 3D-printing and surface-treatment conditions, based on optical-resolution analysis using USAF 1951 resolution test targets and a fluorescence microbead slide through 3D-printed coverslip chips. The key printing parameters (resin type, build orientation, layer thickness, and layer offset) and surface-treatment parameters (grit number for sanding, polishing time with alumina slurry, and type of refractive-index-matching coatings) were determined in a step-wise manner. As a result, we achieved marked improvements in resolution (from 80.6 to 645.1 lp/mm) and contrast (from 3.30 to 27.63% for 645.1 lp/mm resolution). Furthermore, images of the fluorescence microbeads were qualitatively analyzed to evaluate the proposed 3D-printing and surface-treatment approach for fluorescence imaging applications. Finally, the proposed method was validated by fabricating an acoustic micromixer chip and fluorescently visualizing cavitation microstreaming that emanated from an oscillating bubble captured inside the chip. We expect that our approach for enhancing optical quality will be widely used in the rapid manufacturing of 3D-microfluidic chips for optical assays. We report a quantitative and systematic method for determining 3D-printing and surface-treatment conditions that can help improve the optical quality of direct-printed microfluidic devices. Digital light processing (DLP)-stereolithography (SLA) printing was extensively studied in microfluidics owing to the rapid, one-step, cleanroom-free, maskless, and high-definition microfabrication of 3D-microfluidic devices. However, optical imaging or detection for bioassays in DLP-SLA-printed microfluidic devices are limited by the translucence of photopolymerized resins. Various approaches, including mechanical abrasions, chemical etching, polymer coatings, and printing on transparent glass/plastic slides, were proposed to address this limitation. However, the effects of these methods have not been analyzed quantitatively or systematically. For the first time, we propose quantitative and methodological determination of 3D-printing and surface-treatment conditions, based on optical-resolution analysis using USAF 1951 resolution test targets and a fluorescence microbead slide through 3D-printed coverslip chips. The key printing parameters (resin type, build orientation, layer thickness, and layer offset) and surfacetreatment parameters (grit number for sanding, polishing time with alumina slurry, and type of refractive-index-matching coatings) were determined in a step-wise manner. As a result, we achieved marked improvements in resolution (from 80.6 to 645.1 lp/mm) and contrast (from 3.30 to 27.63% for 645.1 lp/mm resolution). Furthermore, images of the fluorescence microbeads were qualitatively analyzed to evaluate the proposed 3D-printing and surface-treatment approach for fluorescence imaging applications. Finally, the proposed method was validated by fabricating an acoustic micromixer chip and fluorescently visualizing cavitation microstreaming that emanated from an oscillating bubble captured inside the chip. We expect that our approach for enhancing optical quality will be widely used in the rapid manufacturing of 3D-microfluidic chips for optical assays. KCI Citation Count: 0 |
Author | Jeon, Hyunjin Lee, Haseul Namgung, Hyun Oh, Hyeonkyu Yoon, Jeonghwan Kim, Dohyun Kaba, Abdi Mirgissa |
Author_xml | – sequence: 1 givenname: Hyun surname: Namgung fullname: Namgung, Hyun organization: Department of Mechanical Engineering, Myongji University – sequence: 2 givenname: Abdi Mirgissa surname: Kaba fullname: Kaba, Abdi Mirgissa organization: Department of Mechanical Engineering, Myongji University – sequence: 3 givenname: Hyeonkyu surname: Oh fullname: Oh, Hyeonkyu organization: Department of Mechanical Engineering, Myongji University – sequence: 4 givenname: Hyunjin surname: Jeon fullname: Jeon, Hyunjin organization: Department of Mechanical Engineering, Myongji University – sequence: 5 givenname: Jeonghwan surname: Yoon fullname: Yoon, Jeonghwan organization: Department of Mechanical Engineering, Myongji University – sequence: 6 givenname: Haseul surname: Lee fullname: Lee, Haseul organization: Department of Mechanical Engineering, Myongji University – sequence: 7 givenname: Dohyun orcidid: 0000-0003-1833-9259 surname: Kim fullname: Kim, Dohyun email: dohyun.kim@mju.ac.kr organization: Department of Mechanical Engineering, Myongji University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002821647$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU1vGyEQhlGVSnXd_IGekHrqgWaAXS8cI7tpI6Xql3tGhAWLxIZ0YCP13xd7I1XqIacR4nmGGd7X5Czl5Al5y-EDBxguCpcCVgyEYADQKcZfkIUALdigOnlGFlwPx2sFr8h5KXcNAil5L9SC4PfJphqrrfHR042vHg8xtVNONAcqN-wbxgakHbVppD8nDNZ5tkVv68GnStc5jfGIFxoy0k1E7-os-ZF-iQ5z2E9xjK51f4zOlzfkZbD74s-f6pL8uvq4XX9mN18_Xa8vb5iTvazMCrkC4Zy6hW5QIfRdr7UC0Xdi5RwEx4H30lneD6NS1o5BB66CHtWt6rwMcknez30TBnPvosk2nuoum3s0lz-210brjov23JK8m9kHzL8nX6q5yxOmNp4RmusVcD6IRqmZakuVgj4Yd_q5nCrauDcczDEQMwdiWiDmFIjhTRX_qQ8YDxb_PC_JWSoNTjuP_6Z6xvoLVgWfVA |
CitedBy_id | crossref_primary_10_1038_s41378_023_00607_y crossref_primary_10_1007_s13206_023_00100_8 crossref_primary_10_1088_2631_7990_ad2e14 crossref_primary_10_1002_biot_202400550 crossref_primary_10_1016_j_aca_2022_339842 crossref_primary_10_1021_acsomega_2c06817 crossref_primary_10_3390_bios14060301 crossref_primary_10_3390_mi13101722 |
Cites_doi | 10.1109/JMEMS.2018.2869327 10.1002/anie.201504382 10.1016/j.procir.2020.05.177 10.1039/C9LC00160C 10.1039/C6LC00163G 10.3390/polym11020292 10.1039/C5LC00685F 10.1021/ac4041857 10.1038/s41570-018-0058-y 10.1063/1.4898632 10.3390/s17102271 10.1007/s13206-021-00032-1 10.1039/C5LC00126A 10.1039/b201952c 10.1007/s10462-020-09876-9 10.1039/C3LC51360B 10.1039/C5RA23855B 10.1007/s10043-016-0212-z 10.1007/978-3-030-58960-8_3 10.1039/C9LC01130G 10.1016/j.trac.2020.116151 10.1039/D0LC00767F 10.1007/s00216-017-0398-3 10.1039/C7LC00397H 10.1039/c2lc40424a 10.1016/j.trac.2018.03.016 10.1002/admt.201900427 10.3390/ma12121970 10.2144/02334bi01 10.1016/j.bios.2021.113159 10.3390/mi9020091 10.1088/1758-5090/8/2/022001 10.1108/RPJ-03-2019-0074 10.1146/annurev-anchem-091619-102649 10.1002/adma.201800001 10.1021/acs.analchem.5b01202 10.1007/s42242-020-00112-5 10.1016/j.bios.2012.01.028 10.1080/15599612.2010.513720 10.1063/1.4927379 10.3390/pharmaceutics13122134 10.1039/C6LC01238H 10.1021/ac0353029 10.1021/acs.analchem.7b00136 10.1002/elan.201600043 10.1016/j.snb.2016.11.098 10.1108/13552540910925072 10.1039/C8LC00001H 10.1016/B978-0-12-420138-5.00002-1 10.1016/j.snb.2021.130511 10.1146/annurev-bioeng-092618-020341 10.1039/C9LC00637K 10.1117/1.OE.57.4.041412 10.1039/C8PY00157J 10.1039/D1LC00149C 10.1016/j.sna.2004.12.011 10.1039/c2lc40203c 10.1002/admt.201800359 10.1039/C6LC00153J 10.1016/j.snb.2019.126692 10.1016/j.apmt.2017.02.004 10.3390/ma10010064 10.1002/adem.201901109 10.1039/C8LC00995C 10.1007/s13206-019-4205-4 10.1088/1361-6439/abd9a9 10.1016/j.jclepro.2016.07.182 10.1039/C6LC00284F 10.1016/j.bios.2017.10.001 10.1002/jbio.201500108 10.1016/j.nucengdes.2014.12.019 10.1039/D0LC00114G 10.1021/acsami.9b22272 10.1089/3dp.2018.0088 10.1016/j.sna.2021.112730 10.1039/b903687c 10.1016/j.trac.2018.06.013 10.1021/ac403397r 10.3390/mi9030115 10.1007/s10404-016-1715-4 10.1039/C9LC00535H 10.1039/C6AY01671E 10.1016/j.matdes.2021.109767 10.1016/j.cie.2016.06.015 10.1021/acsami.9b14692 |
ContentType | Journal Article |
Copyright | The Korean BioChip Society 2022 The Korean BioChip Society 2022. |
Copyright_xml | – notice: The Korean BioChip Society 2022 – notice: The Korean BioChip Society 2022. |
DBID | AAYXX CITATION 8FE 8FG 8FH AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ACYCR |
DOI | 10.1007/s13206-022-00048-1 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database AUTh Library subscriptions: ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Korean Citation Index |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2092-7843 |
EndPage | 98 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9941235 10_1007_s13206_022_00048_1 |
GeographicLocations | United States--US South Korea |
GeographicLocations_xml | – name: South Korea – name: United States--US |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2019R1F1A1043885; 2021R1F1A1045386 funderid: http://dx.doi.org/10.13039/501100003725 |
GroupedDBID | --- -EM 06D 0R~ 0VY 1N0 203 23N 2KG 2VQ 30V 4.4 406 408 40D 5GY 8TC 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACPRK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ASPBG AVWKF AXYYD AYJHY AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI CCPQU CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y M7P NPVJJ NQJWS NU0 O9- O9J OK1 P9N PT4 R9I RLLFE ROL RSV S1Z S27 S3B SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG 8FH ABRTQ AZQEC DWQXO GNUQQ LK8 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS AAFGU AAPBV AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC SQXTU |
ID | FETCH-LOGICAL-c353t-a23602cc8b0478ff545998025426cc0fc10153ca157d88aadf9f18f9d8b84e3f3 |
IEDL.DBID | AGYKE |
ISSN | 1976-0280 |
IngestDate | Tue Nov 21 21:11:30 EST 2023 Fri Jul 25 11:02:37 EDT 2025 Tue Jul 01 01:29:47 EDT 2025 Thu Apr 24 23:02:44 EDT 2025 Fri Feb 21 02:47:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Microfluidic chip Microfabrication Optical resolution DLP-SLA 3D printing Surface treatment |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-a23602cc8b0478ff545998025426cc0fc10153ca157d88aadf9f18f9d8b84e3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 https://doi.org/10.1007/s13206-022-00048-1 |
ORCID | 0000-0003-1833-9259 |
PQID | 2919601172 |
PQPubID | 2043955 |
PageCount | 17 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9941235 proquest_journals_2919601172 crossref_citationtrail_10_1007_s13206_022_00048_1 crossref_primary_10_1007_s13206_022_00048_1 springer_journals_10_1007_s13206_022_00048_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220300 2022-03-00 20220301 2022-03 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220300 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Biochip journal |
PublicationTitleAbbrev | BioChip J |
PublicationYear | 2022 |
Publisher | The Korean BioChip Society (KBCS) Springer Nature B.V 한국바이오칩학회 |
Publisher_xml | – name: The Korean BioChip Society (KBCS) – name: Springer Nature B.V – name: 한국바이오칩학회 |
References | Yuan, Kowsari, Panjwani, Chen, Wang, Zhang, Ng, Alvarado, Ge (CR49) 2019; 11 De Vellis, Gritsenko, Lin, Wu, Zhang, Pan, Xue, Xu (CR80) 2017; 243 Beckwith, Borenstein, Velásquez-García (CR26) 2018; 27 Kotz, Risch, Helmer, Rapp (CR71) 2018; 9 Liu, Yang, Pindera, Athavale, Grodzinski (CR79) 2002; 2 Brunet, Labelle, Wong, Gervais (CR66) 2017; 17 Xiao, Li, Jia, Surjadi, Li, Lin, Gao, Chirarattananon, Lu (CR22) 2021; 206 Ching, Toh, Hashimoto (CR52) 2020; 22 Amin, Knowlton, Hart, Yenilmez, Ghaderinezhad, Katebifar, Messina, Khademhosseini, Tasoglu (CR5) 2016; 8 Kim, Bohjanen, Bhattacharjee, Folch (CR50) 2019; 19 Okabe, Chen, Purohit, Corn, Lee (CR78) 2012; 35 CR38 Yazdi, Popma, Wong, Nguyen, Pan, Xu (CR11) 2016; 20 Au, Lee, Folch (CR25) 2014; 14 Vallejo-Melgarejo, Reifenberger, Newell, Narváez-Tovar, Garcia-Bravo (CR35) 2019; 25 Lim, Kim, Lim, Choi, Woo (CR18) 2020; 14 Zhang, Ng, Chen, Zhang, Panjwani, Kowsari, Yang, Ge (CR89) 2019; 4 CR72 Lee, Bhattacharjee, Folch (CR44) 2018; 18 van der Linden, Popov, Pontoni (CR34) 2020; 20 Abramowitz, Spring, Keller, Davidson (CR90) 2002; 33 Palenzuela, Pumera (CR94) 2018; 103 Zhu, Skommer, Macdonald, Friedrich, Kaslin, Wlodkowic (CR86) 2015; 9 Chan, Tan, Wu (CR12) 2017; 17 Mostafa, Nobes, Qureshi (CR32) 2020; 92 Sirjani, Migas, Cragg, Dymond (CR40) 2020; 33 Kaba, Jeon, Park, Yi, Baek, Park, Kim (CR77) 2021; 346 Dixit, Kadimisetty, Rusling (CR4) 2018; 106 Bhattacharjee, Parra-Cabrera, Kim, Kuo, Folch (CR29) 2018; 30 He, Xue, Fu (CR37) 2014; 4 Waheed, Cabot, Macdonald, Lewis, Guijt, Paull, Breadmore (CR2) 2016; 16 CR7 Griffiths, Howarth, De Almeida-Rowbotham, Rees, Kerton (CR61) 2016; 139 Arnold, Monsees, Hey, Schweyen (CR69) 2019; 12 Wiklund, Green, Ohlin (CR76) 2012; 12 Salafi, Zeming, Lim, Raman, Seah, Tan, Zhang (CR47) 2019; 4 Capel, Rimington, Lewis, Christie (CR13) 2018; 2 CR43 O'Neill, Ben Azouz, Vazquez, Liu, Marczak, Slouka, Chang, Diamond, Brabazon (CR36) 2014; 8 Gojzewski, Guo, Grzelachowska, Ridwan, Hempenius, Grijpma, Vancso (CR58) 2020; 12 CR85 Jeon, Mirgissa, Baek, Rhee, Kim (CR74) 2021; 326 Tzivelekis, Selby, Batet, Madadi, Dalgarno (CR24) 2021; 31 Urrios, Parra-Cabrera, Bhattacharjee, Gonzalez-Suarez, Rigat-Brugarolas, Nallapatti, Samitier, DeForest, Posas, Garcia-Cordero (CR28) 2016; 16 Scott, Potsaid, Wen (CR45) 2010; 4 Shallan, Smejkal, Corban, Guijt, Breadmore (CR70) 2014; 86 Nielsen, Beauchamp, Nordin, Woolley (CR15) 2020; 13 Moussus, Meier (CR67) 2021; 21 Menon, Póczos, Feinberg, Washburn (CR64) 2019; 6 Ong, Ching, Chong, Arora, Li, Hashimoto, DasGupta, Yuen, Toh (CR54) 2019; 19 Macdonald, Cabot, Smejkal, Guijt, Paull, Breadmore (CR14) 2017; 89 Beauchamp, Nordin, Woolley (CR16) 2017; 409 Rasouli, Tabrizian (CR92) 2019; 19 Carve, Wlodkowic (CR83) 2018; 9 Song, Choi, Seong, Kim (CR42) 2015; 284 Choi, Wicker, Cho, Ha, Lee (CR88) 2009; 15 Naderi, Bhattacharjee, Folch (CR6) 2019; 21 CR55 Hashmi, Yu, Reilly-Collette, Heiman, Xu (CR75) 2012; 12 Au, Huynh, Horowitz, Folch (CR3) 2016; 55 Gross, Anderson, Meisel, McNitt, Spence (CR39) 2015; 87 Tang, Vaze, Rusling (CR41) 2017; 17 Kheireddine, Perumal, Smith, Nicolau, Wachsmann-Hogiu (CR46) 2019; 19 Aladese, Jeong (CR19) 2021; 15 Fraser, Kinghorn, Dirkzwager, Liang, Cheung, Lim, Shiu, Tang, Andrew, Manitta (CR65) 2018; 100 Bertana, De Pasquale, Ferrero, Scaltrito, Catania, Nicosia, Marasso, Cocuzza, Perrucci (CR60) 2019; 11 Park, Lee, Han, Lee, Lee, Park (CR53) 2021; 181 Li, Dey, Kim (CR51) 2019; 296 Zhang, Xiao (CR82) 2018; 9 Liu, Yang, Lenigk, Bonanno, Grodzinski (CR93) 2004; 76 He, Wu, Fu, Gao, Qiu (CR21) 2016; 28 Cafieri, Monies, Mongeau, Bes (CR62) 2016; 98 Goh, Sing, Yeong (CR63) 2021; 54 Mehta, Rath (CR10) 2021; 4 Brennen (CR73) 2014 Gross, Erkal, Lockwood, Chen, Spence (CR1) 2014; 86 Piironen, Haapala, Talman, Järvinen, Sikanen (CR87) 2020; 20 Jagannadh, Murthy, Srinivasan, Gorthi (CR48) 2016; 9 Riahi (CR68) 2016; 23 Chen, Mehl, Munshi, Townsend, Spence, Martin (CR27) 2016; 8 Vandenberghe, Boyd (CR59) 2004 Skliutas, Kasetaite, Jonušauskas, Ostrauskaite, Malinauskas (CR56) 2018; 57 Lee, An, Chua (CR84) 2017; 7 Kowsari, Zhang, Panjwani, Chen, Hingorani, Akbari, Fang, Ge (CR31) 2018; 24 Conde, Keraite, Ongaro, Kersaudy-Kerhoas (CR81) 2020; 20 Wang, Pumera (CR9) 2021; 135 Sun, Fang, Wu, Zhang (CR33) 2005; 121 Bhattacharjee, Urrios, Kang, Folch (CR8) 2016; 16 Monzón, Ortega, Hernández, Paz, Ortega (CR30) 2017; 10 Au, Bhattacharjee, Horowitz, Chang, Folch (CR17) 2015; 15 Kara, Vassiliadou, Ongoren, Keeble, Hing, Lalatsa, Serrano (CR23) 2021; 13 Ho, Ng, Li, Yoon (CR20) 2015; 15 Ahmed, Mao, Shi, Juluri, Huang (CR91) 2009; 9 Gong, Beauchamp, Perry, Woolley, Nordin (CR57) 2015; 5 L Wang (48_CR9) 2021; 135 48_CR55 VK Jagannadh (48_CR48) 2016; 9 C Arnold (48_CR69) 2019; 12 Y Okabe (48_CR78) 2012; 35 48_CR7 M Abramowitz (48_CR90) 2002; 33 C Sun (48_CR33) 2005; 121 LA Fraser (48_CR65) 2018; 100 J Zhang (48_CR82) 2018; 9 N Bhattacharjee (48_CR8) 2016; 16 J-Y Lee (48_CR84) 2017; 7 F Zhu (48_CR86) 2015; 9 HN Chan (48_CR12) 2017; 17 E Skliutas (48_CR56) 2018; 57 BC Gross (48_CR1) 2014; 86 NP Macdonald (48_CR14) 2017; 89 R Xiao (48_CR22) 2021; 206 AK Au (48_CR17) 2015; 15 M Wiklund (48_CR76) 2012; 12 AK Au (48_CR25) 2014; 14 T Ching (48_CR52) 2020; 22 AK Au (48_CR3) 2016; 55 48_CR43 M Riahi (48_CR68) 2016; 23 AI Shallan (48_CR70) 2014; 86 S Waheed (48_CR2) 2016; 16 K Kowsari (48_CR31) 2018; 24 48_CR85 PF O'Neill (48_CR36) 2014; 8 M Carve (48_CR83) 2018; 9 C Chen (48_CR27) 2016; 8 E Sirjani (48_CR40) 2020; 33 CLM Palenzuela (48_CR94) 2018; 103 D Ahmed (48_CR91) 2009; 9 AJ Capel (48_CR13) 2018; 2 AM Kaba (48_CR77) 2021; 346 LJY Ong (48_CR54) 2019; 19 A Menon (48_CR64) 2019; 6 A Hashmi (48_CR75) 2012; 12 A De Vellis (48_CR80) 2017; 243 CMB Ho (48_CR20) 2015; 15 N Bhattacharjee (48_CR29) 2018; 30 GD Goh (48_CR63) 2021; 54 48_CR38 A Naderi (48_CR6) 2019; 21 Z Li (48_CR51) 2019; 296 R Amin (48_CR5) 2016; 8 C Scott (48_CR45) 2010; 4 V Bertana (48_CR60) 2019; 11 48_CR72 AR Brunet (48_CR66) 2017; 17 C Dixit (48_CR4) 2018; 106 H Gojzewski (48_CR58) 2020; 12 JW Choi (48_CR88) 2009; 15 M Monzón (48_CR30) 2017; 10 BC Gross (48_CR39) 2015; 87 J Park (48_CR53) 2021; 181 MR Rasouli (48_CR92) 2019; 19 C Tzivelekis (48_CR24) 2021; 31 S Kheireddine (48_CR46) 2019; 19 YT Kim (48_CR50) 2019; 19 M Moussus (48_CR67) 2021; 21 CE Brennen (48_CR73) 2014 YF Zhang (48_CR89) 2019; 4 H Gong (48_CR57) 2015; 5 C Tang (48_CR41) 2017; 17 AJ Conde (48_CR81) 2020; 20 RH Liu (48_CR93) 2004; 76 AL Beckwith (48_CR26) 2018; 27 Y He (48_CR21) 2016; 28 S Cafieri (48_CR62) 2016; 98 MJ Beauchamp (48_CR16) 2017; 409 AD Aladese (48_CR19) 2021; 15 KG Mostafa (48_CR32) 2020; 92 LD Vallejo-Melgarejo (48_CR35) 2019; 25 Y He (48_CR37) 2014; 4 F Kotz (48_CR71) 2018; 9 V Mehta (48_CR10) 2021; 4 JW Lim (48_CR18) 2020; 14 RH Liu (48_CR79) 2002; 2 K Piironen (48_CR87) 2020; 20 AV Nielsen (48_CR15) 2020; 13 L Vandenberghe (48_CR59) 2004 T Salafi (48_CR47) 2019; 4 C Yuan (48_CR49) 2019; 11 H Jeon (48_CR74) 2021; 326 A Urrios (48_CR28) 2016; 16 AA Yazdi (48_CR11) 2016; 20 MS Song (48_CR42) 2015; 284 A Kara (48_CR23) 2021; 13 PJEM van der Linden (48_CR34) 2020; 20 Y-S Lee (48_CR44) 2018; 18 C Griffiths (48_CR61) 2016; 139 |
References_xml | – volume: 20 start-page: 50 year: 2016 ident: CR11 article-title: 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications publication-title: Microfluid. Nanofluid. – volume: 12 start-page: 4216 year: 2012 end-page: 4227 ident: CR75 article-title: Oscillating bubbles: a versatile tool for lab on a chip applications publication-title: Lab Chip – volume: 35 start-page: 37 year: 2012 end-page: 43 ident: CR78 article-title: Piezoelectrically driven vertical cavity acoustic transducers for the convective transport and rapid detection of DNA and protein binding to DNA microarrays with SPR imaging—a parametric study publication-title: Biosens. Bioelectron. – volume: 27 start-page: 1009 year: 2018 end-page: 1022 ident: CR26 article-title: Monolithic, 3D-printed microfluidic platform for recapitulation of dynamic tumor microenvironments publication-title: J. Microelectromech. Syst. – volume: 206 start-page: 109767 year: 2021 ident: CR22 article-title: 3D printing of dual phase-strengthened microlattices for lightweight micro aerial vehicles publication-title: Mater. Des. – volume: 8 start-page: 6005 year: 2016 end-page: 6012 ident: CR27 article-title: 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review publication-title: Anal. Methods – volume: 20 start-page: 741 year: 2020 end-page: 748 ident: CR81 article-title: Versatile hybrid acoustic micromixer with demonstration of circulating cell-free DNA extraction from sub-ml plasma samples publication-title: Lab Chip – volume: 13 start-page: 2134 year: 2021 ident: CR23 article-title: Engineering 3D printed microfluidic chips for the fabrication of nanomedicines publication-title: Pharmaceutics – volume: 21 start-page: 325 year: 2019 end-page: 364 ident: CR6 article-title: Digital manufacturing for microfluidics publication-title: Annu. Rev. Biomed. Eng. – volume: 16 start-page: 1720 year: 2016 end-page: 1742 ident: CR8 article-title: The upcoming 3D-printing revolution in microfluidics publication-title: Lab Chip – volume: 20 start-page: 4128 year: 2020 end-page: 4140 ident: CR34 article-title: Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer publication-title: Lab Chip – volume: 17 start-page: 484 year: 2017 end-page: 489 ident: CR41 article-title: Automated 3D-printed unibody immunoarray for chemiluminescence detection of cancer biomarker proteins publication-title: Lab Chip – volume: 121 start-page: 113 year: 2005 end-page: 120 ident: CR33 article-title: Projection micro-stereolithography using digital micro-mirror dynamic mask publication-title: Sens. Actuators A Phys. – volume: 19 start-page: 3316 year: 2019 end-page: 3325 ident: CR92 article-title: An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles publication-title: Lab Chip – volume: 409 start-page: 4311 year: 2017 end-page: 4319 ident: CR16 article-title: Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices publication-title: Anal. Bioanal. Chem. – volume: 10 start-page: 64 year: 2017 ident: CR30 article-title: Anisotropy of photopolymer parts made by digital light processing publication-title: Materials – volume: 55 start-page: 3862 year: 2016 end-page: 3881 ident: CR3 article-title: 3D-printed microfluidics publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 3627 year: 2015 end-page: 3637 ident: CR20 article-title: 3D printed microfluidics for biological applications publication-title: Lab Chip – volume: 11 start-page: 40662 year: 2019 end-page: 40668 ident: CR49 article-title: Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 1900427 year: 2019 ident: CR89 article-title: Miniature pneumatic actuators for soft robots by high-resolution multimaterial 3D printing publication-title: Adv. Mater. Technol. – volume: 16 start-page: 2287 year: 2016 end-page: 2294 ident: CR28 article-title: 3D-printing of transparent bio-microfluidic devices in PEG-DA publication-title: Lab Chip – volume: 4 start-page: 1 year: 2014 end-page: 7 ident: CR37 article-title: Fabrication of low cost soft tissue prostheses with the desktop 3D printer publication-title: Sci. Rep. – volume: 15 start-page: 1 year: 2021 end-page: 21 ident: CR19 article-title: Recent developments in 3D printing of droplet-based microfluidics publication-title: Biochip J. – volume: 5 start-page: 106621 year: 2015 end-page: 106632 ident: CR57 article-title: Optical approach to resin formulation for 3D printed microfluidics publication-title: RSC Adv. – volume: 89 start-page: 3858 year: 2017 end-page: 3866 ident: CR14 article-title: Comparing microfluidic performance of three-dimensional (3D) printing platforms publication-title: Anal. Chem. – volume: 24 start-page: 627 year: 2018 end-page: 638 ident: CR31 article-title: Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing publication-title: Addit. Manuf. – volume: 33 start-page: 101094 year: 2020 ident: CR40 article-title: 3D printed UV/VIS detection systems constructed from transparent filaments and immobilised enzymes publication-title: Addit. Manuf. – volume: 326 start-page: 112730 year: 2021 ident: CR74 article-title: Excitation-frequency determination based on electromechanical impedance spectroscopy for a laser-microfabricated cavitation microstreaming micromixer publication-title: Sens. Actuators A Phys. – volume: 14 start-page: 169 year: 2020 end-page: 178 ident: CR18 article-title: Portable pumpless 3D-printed chip for on-site colorimetric screening of Hg 2+ in lake water publication-title: Biochip J. – volume: 135 start-page: 116151 year: 2021 ident: CR9 article-title: Recent advances of 3D printing in analytical chemistry: focus on microfluidic, separation, and extraction devices publication-title: Trends Anal. Chem. – volume: 23 start-page: 442 year: 2016 end-page: 447 ident: CR68 article-title: Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology publication-title: Opt. Rev. – volume: 19 start-page: 2178 year: 2019 end-page: 2191 ident: CR54 article-title: Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions publication-title: Lab Chip – volume: 87 start-page: 6335 year: 2015 end-page: 6341 ident: CR39 article-title: Polymer coatings in 3D-printed fluidic device channels for improved cellular adherence prior to electrical lysis publication-title: Anal. Chem. – volume: 9 start-page: 586 year: 2016 end-page: 595 ident: CR48 article-title: Automated quantitative cytological analysis using portable microfluidic microscopy publication-title: J. Biophotonics – volume: 57 start-page: 041412 year: 2018 ident: CR56 article-title: Photosensitive naturally derived resins toward optical 3-D printing publication-title: Opt. Eng. – ident: CR85 – volume: 4 start-page: 1 year: 2021 end-page: 33 ident: CR10 article-title: 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare publication-title: Bio-Des. Manuf. – volume: 15 start-page: 59 year: 2009 end-page: 70 ident: CR88 article-title: Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography publication-title: Rapid Prototyp. J. – volume: 139 start-page: 74 year: 2016 end-page: 85 ident: CR61 article-title: A design of experiments approach for the optimisation of energy and waste during the production of parts manufactured by 3D printing publication-title: J. Clean. Prod. – volume: 9 start-page: 2738 year: 2009 end-page: 2741 ident: CR91 article-title: A millisecond micromixer via single-bubble-based acoustic streaming publication-title: Lab Chip – volume: 33 start-page: 772 year: 2002 end-page: 781 ident: CR90 article-title: Basic principles of microscope objectives publication-title: Biotechniques – volume: 12 start-page: 1970 year: 2019 ident: CR69 article-title: Surface quality of 3D-printed models as a function of various printing parameters publication-title: Materials – volume: 9 start-page: 115 year: 2018 ident: CR71 article-title: Highly fluorinated methacrylates for optical 3D printing of microfluidic devices publication-title: Micromachines – volume: 92 start-page: 187 year: 2020 end-page: 193 ident: CR32 article-title: Investigation of light-induced surface roughness in projection micro-stereolithography additive manufacturing (PµSLA) publication-title: Procedia CIRP – volume: 9 start-page: 046502 year: 2015 ident: CR86 article-title: Three-dimensional printed millifluidic devices for zebrafish embryo tests publication-title: Biomicrofluidics – volume: 106 start-page: 37 year: 2018 end-page: 52 ident: CR4 article-title: 3D-printed miniaturized fluidic tools in chemistry and biology publication-title: Trends Anal. Chem. – year: 2014 ident: CR73 publication-title: Cavitation and Bubble Dynamics – volume: 16 start-page: 1993 year: 2016 end-page: 2013 ident: CR2 article-title: 3D printed microfluidic devices: enablers and barriers publication-title: Lab Chip – ident: CR43 – volume: 86 start-page: 3240 year: 2014 end-page: 3253 ident: CR1 article-title: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences publication-title: Anal. Chem. – volume: 4 start-page: 285 year: 2010 end-page: 305 ident: CR45 article-title: Wide field scanning telescope using MEMS deformable mirrors publication-title: Int. J. Optomechatron. – ident: CR72 – volume: 76 start-page: 1824 year: 2004 end-page: 1831 ident: CR93 article-title: Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection publication-title: Anal. Chem. – volume: 2 start-page: 422 year: 2018 end-page: 436 ident: CR13 article-title: 3D printing for chemical, pharmaceutical and biological applications publication-title: Nat. Rev. Chem. – volume: 21 start-page: 2557 year: 2021 end-page: 2564 ident: CR67 article-title: A 3D-printed Arabidopsis thaliana root imaging platform publication-title: Lab Chip – volume: 4 start-page: 1800359 year: 2019 ident: CR47 article-title: Portable smartphone-based platform for real-time particle detection in microfluidics publication-title: Adv. Mater. Technol. – volume: 17 start-page: 2713 year: 2017 end-page: 2739 ident: CR12 article-title: Point-of-care testing: applications of 3D printing publication-title: Lab Chip – volume: 25 start-page: 1684 year: 2019 end-page: 1694 ident: CR35 article-title: Characterization of 3D-printed lenses and diffraction gratings made by DLP additive manufacturing publication-title: Rapid Prototyp. J. – volume: 9 start-page: 91 year: 2018 ident: CR83 article-title: 3D-printed chips: Compatibility of additive manufacturing photopolymeric substrata with biological applications publication-title: Micromachines – volume: 20 start-page: 2372 year: 2020 end-page: 2382 ident: CR87 article-title: Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices publication-title: Lab Chip – volume: 100 start-page: 591 year: 2018 end-page: 596 ident: CR65 article-title: A portable microfluidic aptamer-tethered enzyme capture (APTEC) biosensor for malaria diagnosis publication-title: Biosens. Bioelectron. – volume: 2 start-page: 151 year: 2002 end-page: 157 ident: CR79 article-title: Bubble-induced acoustic micromixing publication-title: Lab Chip – volume: 12 start-page: 2438 year: 2012 end-page: 2451 ident: CR76 article-title: Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices publication-title: Lab Chip – volume: 98 start-page: 434 year: 2016 end-page: 445 ident: CR62 article-title: Plunge milling time optimization via mixed-integer nonlinear programming publication-title: Comput. Ind. Eng. – volume: 54 start-page: 63 year: 2021 end-page: 94 ident: CR63 article-title: A review on machine learning in 3D printing: applications, potential, and challenges publication-title: Artif. Intell. Rev. – volume: 17 start-page: 2271 year: 2017 ident: CR66 article-title: Reconfigurable microfluidic magnetic valve arrays: towards a radiotherapy-compatible spheroid culture platform for the combinatorial screening of cancer therapies publication-title: Sensors – volume: 8 start-page: 052112 year: 2014 ident: CR36 article-title: Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications publication-title: Biomicrofluidics – volume: 346 start-page: 130511 year: 2021 ident: CR77 article-title: Cavitation-microstreaming-based lysis and DNA extraction using a laser-machined polycarbonate microfluidic chip publication-title: Sens. Actuators B Chem. – volume: 19 start-page: 3086 year: 2019 end-page: 3093 ident: CR50 article-title: Partitioning of hydrogels in 3D-printed microchannels publication-title: Lab Chip – volume: 181 start-page: 113159 year: 2021 ident: CR53 article-title: Pushbutton-activated microfluidic dropenser for droplet digital PCR publication-title: Biosens. Bioelectron. – volume: 86 start-page: 3124 year: 2014 end-page: 3130 ident: CR70 article-title: Cost-effective three-dimensional printing of visibly transparent microchips within minutes publication-title: Anal. Chem. – volume: 22 start-page: 1901109 year: 2020 ident: CR52 article-title: Fabrication of complex 3D fluidic networks via modularized stereolithography publication-title: Adv. Eng. Mater. – volume: 11 start-page: 292 year: 2019 ident: CR60 article-title: 3D printing with the commercial UV-curable standard blend resin: optimized process parameters towards the fabrication of tiny functional parts publication-title: Polymers – year: 2004 ident: CR59 publication-title: Convex Optimization – ident: CR38 – volume: 7 start-page: 120 year: 2017 end-page: 133 ident: CR84 article-title: Fundamentals and applications of 3D printing for novel materials publication-title: Appl. Mater. Today – volume: 296 start-page: 126692 year: 2019 ident: CR51 article-title: Microfluidic single valve oscillator for blood plasma filtration publication-title: Sens. Actuators B Chem. – volume: 18 start-page: 1207 year: 2018 end-page: 1214 ident: CR44 article-title: 3D-printed Quake-style microvalves and micropumps publication-title: Lab Chip – volume: 103 start-page: 110 year: 2018 end-page: 118 ident: CR94 article-title: (Bio) Analytical chemistry enabled by 3D printing: sensors and biosensors publication-title: Trends Anal. Chem. – volume: 8 start-page: 022001 year: 2016 ident: CR5 article-title: 3D-printed microfluidic devices publication-title: Biofabrication – ident: CR55 – volume: 13 start-page: 45 year: 2020 end-page: 65 ident: CR15 article-title: 3D printed microfluidics publication-title: Annu. Rev. Anal. Chem. – volume: 15 start-page: 1934 year: 2015 end-page: 1941 ident: CR17 article-title: 3D-printed microfluidic automation publication-title: Lab Chip – ident: CR7 – volume: 30 start-page: 1800001 year: 2018 ident: CR29 article-title: Desktop-stereolithography 3D-printing of a poly (dimethylsiloxane)-based material with sylgard-184 properties publication-title: Adv. Mater. – volume: 28 start-page: 1658 year: 2016 end-page: 1678 ident: CR21 article-title: Developments of 3D printing microfluidics and applications in chemistry and biology: a review publication-title: Electroanalysis – volume: 6 start-page: 181 year: 2019 end-page: 189 ident: CR64 article-title: Optimization of silicone 3D printing with hierarchical machine learning publication-title: 3D Print. Addit. Manuf. – volume: 243 start-page: 298 year: 2017 end-page: 302 ident: CR80 article-title: Drastic sensing enhancement using acoustic bubbles for surface-based microfluidic sensors publication-title: Sens. Actuators B Chem. – volume: 31 start-page: 035005 year: 2021 ident: CR24 article-title: Microfluidic chip fabrication and performance analysis of 3D printed material for use in microfluidic nucleic acid amplification applications publication-title: J. Micromech. Microeng. – volume: 284 start-page: 185 year: 2015 end-page: 191 ident: CR42 article-title: Matching-index-of-refraction of transparent 3D printing models for flow visualization publication-title: Nucl. Eng. Des. – volume: 19 start-page: 825 year: 2019 end-page: 836 ident: CR46 article-title: Dual-phone illumination-imaging system for high resolution and large field of view multi-modal microscopy publication-title: Lab Chip – volume: 14 start-page: 1294 year: 2014 end-page: 1301 ident: CR25 article-title: Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices publication-title: Lab Chip – volume: 12 start-page: 8908 year: 2020 end-page: 8914 ident: CR58 article-title: Layer-by-layer printing of photopolymers in 3D: How weak is the interface? publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 1530 year: 2018 end-page: 1540 ident: CR82 article-title: 3D printing of photopolymers publication-title: Polym. Chem. – volume: 27 start-page: 1009 year: 2018 ident: 48_CR26 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2018.2869327 – ident: 48_CR55 – volume: 55 start-page: 3862 year: 2016 ident: 48_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201504382 – volume: 92 start-page: 187 year: 2020 ident: 48_CR32 publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.05.177 – volume: 19 start-page: 2178 year: 2019 ident: 48_CR54 publication-title: Lab Chip doi: 10.1039/C9LC00160C – volume: 16 start-page: 1720 year: 2016 ident: 48_CR8 publication-title: Lab Chip doi: 10.1039/C6LC00163G – volume: 11 start-page: 292 year: 2019 ident: 48_CR60 publication-title: Polymers doi: 10.3390/polym11020292 – volume: 15 start-page: 3627 year: 2015 ident: 48_CR20 publication-title: Lab Chip doi: 10.1039/C5LC00685F – volume: 86 start-page: 3124 year: 2014 ident: 48_CR70 publication-title: Anal. Chem. doi: 10.1021/ac4041857 – volume: 2 start-page: 422 year: 2018 ident: 48_CR13 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0058-y – volume: 8 start-page: 052112 year: 2014 ident: 48_CR36 publication-title: Biomicrofluidics doi: 10.1063/1.4898632 – volume: 17 start-page: 2271 year: 2017 ident: 48_CR66 publication-title: Sensors doi: 10.3390/s17102271 – volume: 15 start-page: 1 year: 2021 ident: 48_CR19 publication-title: Biochip J. doi: 10.1007/s13206-021-00032-1 – volume: 15 start-page: 1934 year: 2015 ident: 48_CR17 publication-title: Lab Chip doi: 10.1039/C5LC00126A – volume: 2 start-page: 151 year: 2002 ident: 48_CR79 publication-title: Lab Chip doi: 10.1039/b201952c – volume: 54 start-page: 63 year: 2021 ident: 48_CR63 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09876-9 – volume: 14 start-page: 1294 year: 2014 ident: 48_CR25 publication-title: Lab Chip doi: 10.1039/C3LC51360B – volume: 5 start-page: 106621 year: 2015 ident: 48_CR57 publication-title: RSC Adv. doi: 10.1039/C5RA23855B – volume: 23 start-page: 442 year: 2016 ident: 48_CR68 publication-title: Opt. Rev. doi: 10.1007/s10043-016-0212-z – ident: 48_CR7 doi: 10.1007/978-3-030-58960-8_3 – volume: 20 start-page: 741 year: 2020 ident: 48_CR81 publication-title: Lab Chip doi: 10.1039/C9LC01130G – volume: 135 start-page: 116151 year: 2021 ident: 48_CR9 publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2020.116151 – volume: 20 start-page: 4128 year: 2020 ident: 48_CR34 publication-title: Lab Chip doi: 10.1039/D0LC00767F – volume: 409 start-page: 4311 year: 2017 ident: 48_CR16 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-017-0398-3 – volume: 17 start-page: 2713 year: 2017 ident: 48_CR12 publication-title: Lab Chip doi: 10.1039/C7LC00397H – volume: 12 start-page: 4216 year: 2012 ident: 48_CR75 publication-title: Lab Chip doi: 10.1039/c2lc40424a – volume: 103 start-page: 110 year: 2018 ident: 48_CR94 publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2018.03.016 – volume: 4 start-page: 1900427 year: 2019 ident: 48_CR89 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900427 – volume: 12 start-page: 1970 year: 2019 ident: 48_CR69 publication-title: Materials doi: 10.3390/ma12121970 – volume: 24 start-page: 627 year: 2018 ident: 48_CR31 publication-title: Addit. Manuf. – volume: 33 start-page: 772 year: 2002 ident: 48_CR90 publication-title: Biotechniques doi: 10.2144/02334bi01 – ident: 48_CR43 – volume: 181 start-page: 113159 year: 2021 ident: 48_CR53 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113159 – volume: 9 start-page: 91 year: 2018 ident: 48_CR83 publication-title: Micromachines doi: 10.3390/mi9020091 – ident: 48_CR85 – volume: 8 start-page: 022001 year: 2016 ident: 48_CR5 publication-title: Biofabrication doi: 10.1088/1758-5090/8/2/022001 – volume: 25 start-page: 1684 year: 2019 ident: 48_CR35 publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-03-2019-0074 – volume: 13 start-page: 45 year: 2020 ident: 48_CR15 publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-091619-102649 – volume: 30 start-page: 1800001 year: 2018 ident: 48_CR29 publication-title: Adv. Mater. doi: 10.1002/adma.201800001 – volume: 87 start-page: 6335 year: 2015 ident: 48_CR39 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b01202 – volume: 4 start-page: 1 year: 2021 ident: 48_CR10 publication-title: Bio-Des. Manuf. doi: 10.1007/s42242-020-00112-5 – volume: 35 start-page: 37 year: 2012 ident: 48_CR78 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.01.028 – volume: 4 start-page: 285 year: 2010 ident: 48_CR45 publication-title: Int. J. Optomechatron. doi: 10.1080/15599612.2010.513720 – volume: 9 start-page: 046502 year: 2015 ident: 48_CR86 publication-title: Biomicrofluidics doi: 10.1063/1.4927379 – volume: 13 start-page: 2134 year: 2021 ident: 48_CR23 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13122134 – volume: 17 start-page: 484 year: 2017 ident: 48_CR41 publication-title: Lab Chip doi: 10.1039/C6LC01238H – volume: 76 start-page: 1824 year: 2004 ident: 48_CR93 publication-title: Anal. Chem. doi: 10.1021/ac0353029 – volume: 89 start-page: 3858 year: 2017 ident: 48_CR14 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b00136 – volume: 28 start-page: 1658 year: 2016 ident: 48_CR21 publication-title: Electroanalysis doi: 10.1002/elan.201600043 – volume: 243 start-page: 298 year: 2017 ident: 48_CR80 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.11.098 – ident: 48_CR38 – volume-title: Convex Optimization year: 2004 ident: 48_CR59 – volume: 4 start-page: 1 year: 2014 ident: 48_CR37 publication-title: Sci. Rep. – volume: 15 start-page: 59 year: 2009 ident: 48_CR88 publication-title: Rapid Prototyp. J. doi: 10.1108/13552540910925072 – volume: 18 start-page: 1207 year: 2018 ident: 48_CR44 publication-title: Lab Chip doi: 10.1039/C8LC00001H – ident: 48_CR72 doi: 10.1016/B978-0-12-420138-5.00002-1 – volume: 346 start-page: 130511 year: 2021 ident: 48_CR77 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130511 – volume: 21 start-page: 325 year: 2019 ident: 48_CR6 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-092618-020341 – volume: 19 start-page: 3316 year: 2019 ident: 48_CR92 publication-title: Lab Chip doi: 10.1039/C9LC00637K – volume: 57 start-page: 041412 year: 2018 ident: 48_CR56 publication-title: Opt. Eng. doi: 10.1117/1.OE.57.4.041412 – volume: 9 start-page: 1530 year: 2018 ident: 48_CR82 publication-title: Polym. Chem. doi: 10.1039/C8PY00157J – volume: 21 start-page: 2557 year: 2021 ident: 48_CR67 publication-title: Lab Chip doi: 10.1039/D1LC00149C – volume: 121 start-page: 113 year: 2005 ident: 48_CR33 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2004.12.011 – volume: 12 start-page: 2438 year: 2012 ident: 48_CR76 publication-title: Lab Chip doi: 10.1039/c2lc40203c – volume: 4 start-page: 1800359 year: 2019 ident: 48_CR47 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800359 – volume: 16 start-page: 2287 year: 2016 ident: 48_CR28 publication-title: Lab Chip doi: 10.1039/C6LC00153J – volume: 296 start-page: 126692 year: 2019 ident: 48_CR51 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.126692 – volume: 7 start-page: 120 year: 2017 ident: 48_CR84 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2017.02.004 – volume: 10 start-page: 64 year: 2017 ident: 48_CR30 publication-title: Materials doi: 10.3390/ma10010064 – volume: 22 start-page: 1901109 year: 2020 ident: 48_CR52 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201901109 – volume: 19 start-page: 825 year: 2019 ident: 48_CR46 publication-title: Lab Chip doi: 10.1039/C8LC00995C – volume: 14 start-page: 169 year: 2020 ident: 48_CR18 publication-title: Biochip J. doi: 10.1007/s13206-019-4205-4 – volume: 31 start-page: 035005 year: 2021 ident: 48_CR24 publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/abd9a9 – volume: 139 start-page: 74 year: 2016 ident: 48_CR61 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.07.182 – volume-title: Cavitation and Bubble Dynamics year: 2014 ident: 48_CR73 – volume: 16 start-page: 1993 year: 2016 ident: 48_CR2 publication-title: Lab Chip doi: 10.1039/C6LC00284F – volume: 100 start-page: 591 year: 2018 ident: 48_CR65 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.10.001 – volume: 9 start-page: 586 year: 2016 ident: 48_CR48 publication-title: J. Biophotonics doi: 10.1002/jbio.201500108 – volume: 33 start-page: 101094 year: 2020 ident: 48_CR40 publication-title: Addit. Manuf. – volume: 284 start-page: 185 year: 2015 ident: 48_CR42 publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.12.019 – volume: 20 start-page: 2372 year: 2020 ident: 48_CR87 publication-title: Lab Chip doi: 10.1039/D0LC00114G – volume: 12 start-page: 8908 year: 2020 ident: 48_CR58 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b22272 – volume: 6 start-page: 181 year: 2019 ident: 48_CR64 publication-title: 3D Print. Addit. Manuf. doi: 10.1089/3dp.2018.0088 – volume: 326 start-page: 112730 year: 2021 ident: 48_CR74 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2021.112730 – volume: 9 start-page: 2738 year: 2009 ident: 48_CR91 publication-title: Lab Chip doi: 10.1039/b903687c – volume: 106 start-page: 37 year: 2018 ident: 48_CR4 publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2018.06.013 – volume: 86 start-page: 3240 year: 2014 ident: 48_CR1 publication-title: Anal. Chem. doi: 10.1021/ac403397r – volume: 9 start-page: 115 year: 2018 ident: 48_CR71 publication-title: Micromachines doi: 10.3390/mi9030115 – volume: 20 start-page: 50 year: 2016 ident: 48_CR11 publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-016-1715-4 – volume: 19 start-page: 3086 year: 2019 ident: 48_CR50 publication-title: Lab Chip doi: 10.1039/C9LC00535H – volume: 8 start-page: 6005 year: 2016 ident: 48_CR27 publication-title: Anal. Methods doi: 10.1039/C6AY01671E – volume: 206 start-page: 109767 year: 2021 ident: 48_CR22 publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109767 – volume: 98 start-page: 434 year: 2016 ident: 48_CR62 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.06.015 – volume: 11 start-page: 40662 year: 2019 ident: 48_CR49 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14692 |
SSID | ssj0000331528 |
Score | 2.2773325 |
Snippet | We report a quantitative and systematic method for determining 3D-printing and surface-treatment conditions that can help improve the optical quality of... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 82 |
SubjectTerms | 3-D printers Aluminum oxide Biomedical Engineering and Bioengineering Biotechnology Cavitation Chemical etching Chemistry Chemistry and Materials Science Cleanrooms Devices Etching Fluorescence High definition Lithography Manufacturing Microfluidic devices Microfluidics Microspheres Nanoparticles Optics Original Article Parameters Polymer coatings Polymers Printing Quality improvement Rapid manufacturing Resins Sanding Slurries Thickness Three dimensional printing Translucence User training 생물공학 |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS-wwEA9-XN5FFJW3fhHEmwY3SVvTk4i6foCiqOAtpEnnsSit1t3_35m0dfGBnnpok8LMZD4y85thbO8IKPBxQXitUpFAoUUhTS5M5rLYjkTFqsqb2-zyKbl-Tp-7C7ePrqyy14lRUYfa0x35ocpRVqiBmTp-exc0NYqyq90IjXm2KNHSkJyb0cXXHctQazRPEQ2HVldQFrHDzbToOa0onMZoLEKrhfxmm-arBr65nf9lSqMBGi2zpc5z5Cctq1fYXFmtsuZ-6qqIE0Otxc_62haiNq-B6zNxh7tRaTN3VeAP0wacL8VjX17OT2vKWZPscXRfeasB20Vl4DdUrgev03EYe9w9apU19jQ6fzy9FN0YBaR_qifCKZ0NlfemoE48AOgzYYxFKHiVeT8Ej6cy1d7J9CgY41yAHKSBPJjCJKUGvc4Wqroq_zKeZcPSFT7JAWQii8zoAIA-RMgL5TAyGjDZE9D6rsc4jbp4tbPuyER0i0S3kehWDtj-15q3tsPGr1_vIl_six9baoxNz3-1fWksuv9XNs8Twv4O2FbPNtsdyQ87E6ABO-hZOXv98y83ft9tk_1RUYaoLm2LLUyaabmNjsqk2InS-Am30uFp priority: 102 providerName: ProQuest |
Title | Quantitative Determination of 3D-Printing and Surface-Treatment Conditions for Direct-Printed Microfluidic Devices |
URI | https://link.springer.com/article/10.1007/s13206-022-00048-1 https://www.proquest.com/docview/2919601172 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002821647 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | BioChip Journal, 2022, 16(1), , pp.82-98 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5dBeKBQqtgVkVb0Vo42dBOe4XVhoKxBtWQlOlh8xWi3KVmFz6a_v2Im7AgESp0iJH4lnPI_MN2OAz4fOOz7KUsNZRlOnOdWJKKjIVR7KkbCAqjw7z08n6fer7KpLCruLaPcYkgySepnsxpn3ftF5CpnQFH2e1QzHFT1YHZ5c_1j-WxlwjmopZMGhtqU-etjlyzw-0D2dtFLV7p65-SBCGhTP-C1M4iu3eJPZQbPQB-bvg2qOL_2mdVjrLFEybFlnA16V1Tt4PYoHwG1C_bNRVchBQ4lIjiJuxlOSzB3hR_QCJ_OwaaIqS343tVOmpJcRuk5Gcx8P93xN0DQmrXRtO5WWnHkooLttpnZqcPQgsbZgMj6-HJ3S7ogGpG3GF1Qxng-YMUL7Kj_OoT2G_pvPsGe5MQNncMdn3KgkO7RCKGVd4RLhCiu0SEvu-HvoVfOq3AaS54NSaZMWziVponPBrXNon9hCM4VeVx-SSCRpuvrl_hiNW7msvOxXU-JqyrCaMunDl_99_rTVO55t_QlpL2dmKn3RbX-9mctZLdG1-CaLIvV5xX3Yiawhu-1-J1mBgsxX12N92I-UXj5-esoPL2v-Ed6wwCweA7cDvUXdlLtoFC30HqyI8cletxPw-vX4_OIX3p2w4T9bpwKB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9QwDLa22wO8IBAgbowRIXiCiGvSdukDQmO36Y7tTgNu0t5CmjTotKkd3Z0Qf2q_cXba7jQk9ranPrRxK9t17NifDfB2x1PgYxy3UiQ89rnkeaQyrlKThnYkIlRVTqbp6CT-epqcrsFVh4WhssrOJgZD7SpLZ-QfRYa6Qg3MxOeL35ymRlF2tRuh0ajFYfH3D4Zsl5_GQ5TvOyEO9md7I95OFcDPSeSCGyHTgbBW5dSYxnt0ITDkIFC4SK0deItKmkhromTHKWWM85mPlM-cylVcSC-R7jpsxIRo7cHGl_3p8febU52BlLghBvwd7vOc8pYtUqfB60lBATzGfwHMzaNbu-F6Wftbju4_udmw5R08hketr8p2G-V6AmtF-RTqb0tTBmQa2kk27KppSL6s8kwO-TFSo2JqZkrHfixrb2zBZ11BO9urKEtO2s7QYWaNzW0WFY5NqEDQny_nbm6RerBjz-DkXlj8HHplVRYvgKXpoDC5jTPvozjKUyWd9-i1uCwXBmOxPkQdA7Vtu5rTcI1zverHTEzXyHQdmK6jPry_WXPR9PS48-k3KBd9ZueaWnHT9Velz2qNAcdYZ1lMaOM-bHVi060RuNQrle3Dh06Uq9v_f-Xm3dRew4PRbHKkj8bTw5fwUAR9oqq4Legt6mXxCt2kRb7d6iaDn_f9O1wD3J8fRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELf4kIAXBAy0DgYW4o1ZNHYSnEfUUgEbCASVeLMcOzdVRSkK7f-_OyehY2JIPOUhtiP5zveRu9_PjB2dAiU-1gunZCJiyJXII50Jndo00JHI0FV5fZNeDOOrx-TxLxR_6HZvS5I1poFYmsrpybOHkznwTUnKhDGRCqhogfnPMprjiDR9KM9e_7J0lUIHFfBw6HcF1REb5Mz7y7zxTotlBW8Cz39qpcEFDTbYehM78rNa2JtsoSi32GqvvbLtC6vuZrYMqDG0YbzfdrrQ3vMJcNUXt7gyNTpzW3p-P6vAukI8tM3mvDehCjZpIsdgltf2sJ5UeH5NzXvwNBv5kcPVg43ZZsPB-UPvQjSXKqA0EjUVVqq0K53TOfHyAGAEhRkXYeJl6lwXHJ7RRDkbJadea2s9ZBBpyLzOdVwoUDtsqZyUxVfG07Rb2NzFGUAUR3mqlQfAiMJnubSYJ3VY1G6mcQ3jOF188WTmXMkkAIMCMEEAJuqw49c5zzXfxoejD1FGZuxGhmiy6fl7YsaVwWTg0mRZTEjgDttrRWiaA_piZIamh_jwZIf9aMU6f_3_T3773PADtnLbH5hflzc_d9maDKpGDWx7bGlazYrvGNFM8_2gtH8AI2zpPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Determination+of+3D-Printing+and+Surface-Treatment+Conditions+for+Direct-Printed+Microfluidic+Devices&rft.jtitle=Biochip+journal&rft.au=Namgung%2C+Hyun&rft.au=Kaba%2C+Abdi+Mirgissa&rft.au=Oh%2C+Hyeonkyu&rft.au=Jeon%2C+Hyunjin&rft.date=2022-03-01&rft.pub=The+Korean+BioChip+Society+%28KBCS%29&rft.issn=1976-0280&rft.eissn=2092-7843&rft.volume=16&rft.issue=1&rft.spage=82&rft.epage=98&rft_id=info:doi/10.1007%2Fs13206-022-00048-1&rft.externalDocID=10_1007_s13206_022_00048_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-0280&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-0280&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-0280&client=summon |