MUFFIN: multi-scale feature fusion for drug–drug interaction prediction
Abstract Motivation Adverse drug–drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft feat...
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 37; no. 17; pp. 2651 - 2658 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
09.09.2021
|
Online Access | Get full text |
ISSN | 1367-4803 1367-4811 1367-4811 |
DOI | 10.1093/bioinformatics/btab169 |
Cover
Loading…
Abstract | Abstract
Motivation
Adverse drug–drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure.
Results
Accordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines.
Availability and implementation
The source code and data are available at https://github.com/xzenglab/MUFFIN. |
---|---|
AbstractList | Adverse drug-drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure.MOTIVATIONAdverse drug-drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure.Accordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines.RESULTSAccordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines.The source code and data are available at https://github.com/xzenglab/MUFFIN.AVAILABILITY AND IMPLEMENTATIONThe source code and data are available at https://github.com/xzenglab/MUFFIN. Adverse drug-drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure. Accordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines. The source code and data are available at https://github.com/xzenglab/MUFFIN. Abstract Motivation Adverse drug–drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure. Results Accordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines. Availability and implementation The source code and data are available at https://github.com/xzenglab/MUFFIN. |
Author | Ma, Tengfei Wang, Jianmin Zeng, Xiangxiang Chen, Yujie Yang, Xixi Song, Bosheng |
Author_xml | – sequence: 1 givenname: Yujie surname: Chen fullname: Chen, Yujie – sequence: 2 givenname: Tengfei surname: Ma fullname: Ma, Tengfei – sequence: 3 givenname: Xixi surname: Yang fullname: Yang, Xixi – sequence: 4 givenname: Jianmin orcidid: 0000-0001-8910-0929 surname: Wang fullname: Wang, Jianmin – sequence: 5 givenname: Bosheng orcidid: 0000-0002-1479-5399 surname: Song fullname: Song, Bosheng email: boshengsong@hnu.edu.cn – sequence: 6 givenname: Xiangxiang surname: Zeng fullname: Zeng, Xiangxiang email: xzeng@hnu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33720331$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkL1OwzAUhS0Eoj_wClVGllA7rp0YsaCKQqUCC50t23GQURIX_wxsvANvyJOQ0BYJFpjOle757tU5I3DY2lYDMEHwHEGGp9JY01bWNSIY5acyCIkoOwBDhGmezgqEDr9niAdg5P0zhJBAQo_BAOM8gxijIVjerReL5f1F0sQ6mNQrUeuk0iJE12n0xrZJ9yYpXXz6eHvvJTFt0E6o0O82TpfmazwBR5WovT7d6RisF9eP89t09XCznF-tUoUJDimjqmCYsEpLQSXVjJal1BJneVmSolA0l5UqpGIZFlCIDKNKFChXSM6UJBnDY3C2vbtx9iVqH3hjvNJ1LVpto-cZgWiWU0SyzjrZWaNsdMk3zjTCvfJ9_M5wuTUoZ713uuLKBNGnCU6YmiPI-7b5z7b5ru0Op7_w_Yc_QbQFbdz8l_kEw1Kffw |
CitedBy_id | crossref_primary_10_1371_journal_pone_0304798 crossref_primary_10_3390_molecules29204829 crossref_primary_10_1016_j_future_2024_06_060 crossref_primary_10_1109_TCBB_2022_3144008 crossref_primary_10_1016_j_isci_2024_109148 crossref_primary_10_1186_s13321_022_00659_8 crossref_primary_10_1093_bib_bbad155 crossref_primary_10_1016_j_cmpb_2024_108524 crossref_primary_10_1016_j_knosys_2024_112685 crossref_primary_10_1016_j_omtn_2024_102295 crossref_primary_10_1016_j_jpha_2024_101159 crossref_primary_10_1093_bioinformatics_btad514 crossref_primary_10_1093_bib_bbac576 crossref_primary_10_1016_j_compbiomed_2024_108835 crossref_primary_10_3389_fphar_2021_818115 crossref_primary_10_1093_bib_bbad385 crossref_primary_10_1093_bib_bbab480 crossref_primary_10_1109_ACCESS_2025_3547594 crossref_primary_10_1016_j_eswa_2023_120238 crossref_primary_10_1093_bib_bbac602 crossref_primary_10_1007_s00726_022_03145_5 crossref_primary_10_1016_j_ymeth_2022_11_001 crossref_primary_10_1093_bioinformatics_btaf023 crossref_primary_10_1016_j_neunet_2024_106828 crossref_primary_10_3390_app131910750 crossref_primary_10_1186_s12967_024_05372_8 crossref_primary_10_1038_s41598_024_54409_x crossref_primary_10_1002_psp4_12870 crossref_primary_10_1016_j_compbiomed_2023_107900 crossref_primary_10_3934_era_2023286 crossref_primary_10_1016_j_neunet_2024_106757 crossref_primary_10_1109_TKDE_2024_3471508 crossref_primary_10_1007_s11042_023_14421_1 crossref_primary_10_1016_j_compbiomed_2023_107340 crossref_primary_10_1039_D2SC02023H crossref_primary_10_1109_JBHI_2024_3419015 crossref_primary_10_1089_cmb_2024_0476 crossref_primary_10_1016_j_ymeth_2022_01_001 crossref_primary_10_1016_j_neunet_2023_08_036 crossref_primary_10_1002_qub2_32 crossref_primary_10_1016_j_ymeth_2022_01_004 crossref_primary_10_3390_ijms24054500 crossref_primary_10_1016_j_ymeth_2022_08_015 crossref_primary_10_1093_bioinformatics_btac682 crossref_primary_10_1016_j_ymeth_2022_01_009 crossref_primary_10_1093_bib_bbab421 crossref_primary_10_1093_bib_bbac597 crossref_primary_10_1021_acs_jcim_5c00043 crossref_primary_10_1016_j_patcog_2024_110887 crossref_primary_10_1093_bfgp_elac023 crossref_primary_10_1093_bfgp_elae052 crossref_primary_10_1016_j_ymeth_2024_02_008 crossref_primary_10_1016_j_compbiomed_2022_105395 crossref_primary_10_3390_ijerph20032696 crossref_primary_10_3389_fmicb_2021_694534 crossref_primary_10_3389_fgene_2021_827161 crossref_primary_10_1021_acs_jcim_3c00297 crossref_primary_10_1007_s10489_022_03839_z crossref_primary_10_1093_bib_bbad235 crossref_primary_10_1016_j_jbi_2024_104672 crossref_primary_10_1002_psp4_12884 crossref_primary_10_1016_j_eswa_2022_119312 crossref_primary_10_1021_acs_jcim_3c01304 crossref_primary_10_1016_j_compbiomed_2022_105984 crossref_primary_10_1016_j_ejmech_2024_117164 crossref_primary_10_1016_j_ymeth_2022_10_001 crossref_primary_10_3389_fgene_2021_818841 crossref_primary_10_1097_MD_0000000000037591 crossref_primary_10_3389_fcell_2021_803608 crossref_primary_10_1155_2024_5155997 crossref_primary_10_1007_s12539_025_00687_6 crossref_primary_10_1093_bfgp_elab036 crossref_primary_10_3390_covid3090096 crossref_primary_10_1109_JBHI_2024_3453956 crossref_primary_10_1016_j_csbj_2022_04_021 crossref_primary_10_1021_acs_jcim_4c01647 crossref_primary_10_1109_JBHI_2023_3335402 crossref_primary_10_26599_BDMA_2022_9020021 crossref_primary_10_1007_s11704_024_31063_0 crossref_primary_10_1016_j_compbiomed_2023_107812 crossref_primary_10_1016_j_compbiolchem_2023_108001 crossref_primary_10_1109_JBHI_2024_3349570 crossref_primary_10_1093_bib_bbad215 crossref_primary_10_3389_fgene_2022_960388 crossref_primary_10_3389_fgene_2021_811158 crossref_primary_10_31083_j_fbl2706177 crossref_primary_10_1109_TCBB_2024_3477410 crossref_primary_10_3389_fgene_2023_1254827 crossref_primary_10_1186_s12859_024_05806_6 crossref_primary_10_1016_j_compbiomed_2022_105889 crossref_primary_10_1016_j_asoc_2024_112242 crossref_primary_10_3390_app13127227 crossref_primary_10_1007_s11814_023_1377_3 crossref_primary_10_3390_ph17070822 crossref_primary_10_1186_s12859_021_04398_9 crossref_primary_10_1016_j_jmgm_2023_108557 crossref_primary_10_1016_j_ymeth_2022_09_001 crossref_primary_10_1021_acs_jcim_2c01112 crossref_primary_10_1016_j_ymeth_2024_01_009 crossref_primary_10_1109_JBHI_2024_3401035 crossref_primary_10_1016_j_knosys_2023_111239 crossref_primary_10_1109_ACCESS_2024_3442931 crossref_primary_10_4018_IJWLTT_335115 crossref_primary_10_1093_bib_bbab586 crossref_primary_10_1109_TCBB_2024_3383438 crossref_primary_10_1109_TCBB_2024_3417715 crossref_primary_10_1016_j_compbiomed_2023_106904 crossref_primary_10_1016_j_ymeth_2023_10_007 crossref_primary_10_3390_ijms232416216 crossref_primary_10_1186_s12859_023_05212_4 crossref_primary_10_3389_fgene_2021_809001 crossref_primary_10_1109_ACCESS_2022_3217926 crossref_primary_10_1016_j_compbiolchem_2025_108426 crossref_primary_10_1109_TCBBIO_2024_3498094 crossref_primary_10_1038_s42003_023_05243_w |
Cites_doi | 10.1136/amiajnl-2012-000935 10.1136/amiajnl-2011-000214 10.1021/ci100050t 10.1093/bioinformatics/btz600 10.1007/s40273-016-0397-9 10.1038/446975a 10.1038/nprot.2014.151 10.1073/pnas.1803294115 10.1038/s41421-020-0153-3 10.1093/bioinformatics/btz418 10.2147/DDDT.S226948 10.1016/S1359-6446(05)03632-9 10.1093/bioinformatics/bty294 10.1126/scitranslmed.3003377 10.1136/amiajnl-2013-002512 10.1093/nar/28.1.27 10.1186/s13321-017-0200-8 10.1093/nar/gkx1037 10.1016/j.jbi.2008.03.004 10.1186/s12859-016-1415-9 10.1093/bioinformatics/btv080 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1093/bioinformatics/btab169 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 |
EndPage | 2658 |
ExternalDocumentID | 33720331 10_1093_bioinformatics_btab169 10.1093/bioinformatics/btab169 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 531118010355 – fundername: Hunan Provincial Natural Science Foundation of China grantid: 2020JJ4215 – fundername: National Natural Science Foundation of China grantid: 61872309 |
GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c353t-96c89359feba6b6e96ddbeb327dd588c67bfc8bc923a0aa231fa817c1b4cb5293 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Fri Jul 11 03:47:14 EDT 2025 Thu Apr 03 06:56:57 EDT 2025 Tue Jul 01 02:33:55 EDT 2025 Thu Apr 24 22:55:30 EDT 2025 Wed Apr 02 07:06:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-96c89359feba6b6e96ddbeb327dd588c67bfc8bc923a0aa231fa817c1b4cb5293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8910-0929 0000-0002-1479-5399 |
PMID | 33720331 |
PQID | 2501476152 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2501476152 pubmed_primary_33720331 crossref_citationtrail_10_1093_bioinformatics_btab169 crossref_primary_10_1093_bioinformatics_btab169 oup_primary_10_1093_bioinformatics_btab169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Sep-09 |
PublicationDateYYYYMMDD | 2021-09-09 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-Sep-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics (Oxford, England) |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Giacomini (2023051609171039300_btab169-B5) 2007; 446 Bordes (2023051609171039300_btab169-B2) 2013 Whitebread (2023051609171039300_btab169-B32) 2005; 10 Wishart (2023051609171039300_btab169-B33) 2018; 46 Vilar (2023051609171039300_btab169-B29) 2012; 19 Krizhevsky (2023051609171039300_btab169-B13) 2017; 60 Zhou (2023051609171039300_btab169-B36) 2020; 6 Zitnik (2023051609171039300_btab169-B38) 2018; 34 Huang (2023051609171039300_btab169-B9) 2020; 34 Ryu (2023051609171039300_btab169-B22) 2018; 115 Ioannidis (2023051609171039300_btab169-B10) 2020 Rogers (2023051609171039300_btab169-B21) 2010; 50 Lin (2023051609171039300_btab169-B15) 2020 Perozzi (2023051609171039300_btab169-B19) 2014 Tatonetti (2023051609171039300_btab169-B25) 2012; 19 Toropov (2023051609171039300_btab169-B27) 2005 Hu (2023051609171039300_btab169-B8) 2019 Vilar (2023051609171039300_btab169-B30) 2014; 9 Mohamed (2023051609171039300_btab169-B18) 2020; 36 Belleau (2023051609171039300_btab169-B1) 2008; 41 Mikolov (2023051609171039300_btab169-B17) 2013 Li (2023051609171039300_btab169-B14) 2015; 31 Wang (2023051609171039300_btab169-B31) 2019; 13 Plumpton (2023051609171039300_btab169-B20) 2016; 34 Gottlieb (2023051609171039300_btab169-B7) 2012; 8 Zhou (2023051609171039300_btab169-B37) 2020 Kanehisa (2023051609171039300_btab169-B11) 2000; 28 Trouillon (2023051609171039300_btab169-B28) 2016 Zeng (2023051609171039300_btab169-B34) 2019; 35 Karim (2023051609171039300_btab169-B12) 2019 Takeda (2023051609171039300_btab169-B23) 2017; 9 Tatonetti (2023051609171039300_btab169-B26) 2012; 4 Ma (2023051609171039300_btab169-B16) 2018 Deac (2023051609171039300_btab169-B4) 2019 Tang (2023051609171039300_btab169-B24) 2015 Cheng (2023051609171039300_btab169-B3) 2014; 21 Gilmer (2023051609171039300_btab169-B6) 2017 Zhang (2023051609171039300_btab169-B35) 2017; 18 |
References_xml | – volume: 19 start-page: 1066 year: 2012 ident: 2023051609171039300_btab169-B29 article-title: Drug–drug interaction through molecular structure similarity analysis publication-title: J. Am. Med. Informatics Assoc doi: 10.1136/amiajnl-2012-000935 – volume: 60 start-page: 84 year: 2017 ident: 2023051609171039300_btab169-B13 article-title: Imagenet classification with deep convolutional publication-title: Neural Netw – year: 2013 ident: 2023051609171039300_btab169-B17 – year: 2020 ident: 2023051609171039300_btab169-B15 – volume: 19 start-page: 79 year: 2012 ident: 2023051609171039300_btab169-B25 article-title: A novel signal detection algorithm for identifying hidden drug–drug interactions in adverse event reports publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2011-000214 – volume: 50 start-page: 742 year: 2010 ident: 2023051609171039300_btab169-B21 article-title: Extended-connectivity fingerprints publication-title: J. Chem. Inf. Model doi: 10.1021/ci100050t – year: 2020 ident: 2023051609171039300_btab169-B37 – year: 2019 ident: 2023051609171039300_btab169-B4 – year: 2005 ident: 2023051609171039300_btab169-B27 – volume: 36 start-page: 603 year: 2020 ident: 2023051609171039300_btab169-B18 article-title: Discovering protein drug targets using knowledge graph embeddings publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz600 – start-page: 113 year: 2019 ident: 2023051609171039300_btab169-B12 – year: 2019 ident: 2023051609171039300_btab169-B8 – volume: 34 start-page: 771 year: 2016 ident: 2023051609171039300_btab169-B20 article-title: A systematic review of economic evaluations of pharmacogenetic testing for prevention of adverse drug reactions publication-title: Pharmacoeconomics doi: 10.1007/s40273-016-0397-9 – start-page: 1067 year: 2015 ident: 2023051609171039300_btab169-B24 – volume: 446 start-page: 975 year: 2007 ident: 2023051609171039300_btab169-B5 article-title: When good drugs go bad publication-title: Nature doi: 10.1038/446975a – volume: 9 start-page: 2147 year: 2014 ident: 2023051609171039300_btab169-B30 article-title: Similarity-based modeling in large-scale prediction of drug–drug interactions publication-title: Nat. Protoc doi: 10.1038/nprot.2014.151 – volume: 115 start-page: E4304 year: 2018 ident: 2023051609171039300_btab169-B22 article-title: Deep learning improves prediction of drug–drug and drug–food interactions publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1803294115 – start-page: 2787 year: 2013 ident: 2023051609171039300_btab169-B2 article-title: Translating embeddings for modeling multi-relational data publication-title: Adv. Neural Inf. Process. Syst – volume: 8 start-page: 592 year: 2012 ident: 2023051609171039300_btab169-B7 article-title: INDI: a computational framework for inferring drug interactions and their associated recommendations publication-title: Nat. Rev. Drug Discov – volume: 6 start-page: 1 year: 2020 ident: 2023051609171039300_btab169-B36 article-title: Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2 publication-title: Cell Discov doi: 10.1038/s41421-020-0153-3 – volume: 35 start-page: 5191 year: 2019 ident: 2023051609171039300_btab169-B34 article-title: deepDR: a network-based deep learning approach to in silico drug repositioning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz418 – volume: 13 start-page: 4207 year: 2019 ident: 2023051609171039300_btab169-B31 article-title: Drug–drug interactions of amiodarone and quinidine on the pharmacokinetics of eliglustat in rats publication-title: Drug Des. Dev. Ther doi: 10.2147/DDDT.S226948 – volume: 10 start-page: 1421 year: 2005 ident: 2023051609171039300_btab169-B32 article-title: Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development publication-title: Drug Disc. Today doi: 10.1016/S1359-6446(05)03632-9 – year: 2016 ident: 2023051609171039300_btab169-B28 – volume: 34 start-page: i457 year: 2018 ident: 2023051609171039300_btab169-B38 article-title: Modeling polypharmacy side effects with graph convolutional networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty294 – start-page: 701 year: 2014 ident: 2023051609171039300_btab169-B19 – volume: 4 start-page: 125ra131 year: 2012 ident: 2023051609171039300_btab169-B26 article-title: Data-driven prediction of drug effects and interactions publication-title: Sci. Transl. Med doi: 10.1126/scitranslmed.3003377 – volume: 21 start-page: e2e278 year: 2014 ident: 2023051609171039300_btab169-B3 article-title: Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties publication-title: J. Am. Med. Inform. Assoc doi: 10.1136/amiajnl-2013-002512 – year: 2020 ident: 2023051609171039300_btab169-B10 – year: 2018 ident: 2023051609171039300_btab169-B16 – volume: 28 start-page: 27 year: 2000 ident: 2023051609171039300_btab169-B11 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – volume: 9 start-page: 1 year: 2017 ident: 2023051609171039300_btab169-B23 article-title: Predicting drug–drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge publication-title: J. Cheminform doi: 10.1186/s13321-017-0200-8 – volume: 46 start-page: D1074 year: 2018 ident: 2023051609171039300_btab169-B33 article-title: DrugBank 5.0: a major update to the DrugBank database for 2018 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1037 – volume: 34 start-page: 702 year: 2020 ident: 2023051609171039300_btab169-B9 article-title: CASTER: predicting Drug Interactions with Chemical Substructure Representation publication-title: Proc. AAAI Conf. Artif. Intell – volume: 41 start-page: 706 year: 2008 ident: 2023051609171039300_btab169-B1 article-title: Bio2RDF: towards a mashup to build bioinformatics knowledge systems publication-title: J. Biomed. Inform doi: 10.1016/j.jbi.2008.03.004 – volume: 18 start-page: 18 year: 2017 ident: 2023051609171039300_btab169-B35 article-title: Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1415-9 – year: 2017 ident: 2023051609171039300_btab169-B6 – volume: 31 start-page: 2007 year: 2015 ident: 2023051609171039300_btab169-B14 article-title: Large-scale exploration and analysis of drug combinations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv080 |
SSID | ssj0005056 |
Score | 2.648141 |
Snippet | Abstract
Motivation
Adverse drug–drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of... Adverse drug-drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2651 |
Title | MUFFIN: multi-scale feature fusion for drug–drug interaction prediction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33720331 https://www.proquest.com/docview/2501476152 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7LguBFfLu-iOBJKNs2aZp4E7HsCrtedmFvJUlTEaS7dNuDN_-D_9BfYqaPlVVEPbWHJikzKTPpN983CF36kiVCa2E94DGH8oA6XBjpMMGEoYwnRAF3eDRmgym9nwWzDvJaLsxXCF-QvnqaNyKiIFzcV4VUHgPKno3EoJY_eZh9FnW4Vb9W0CGzC7uk5QT_OM1aOFqjuH3LNKuIE22jrSZVxDe1b3dQx2S7aKNuHvmyh4ajaRQNx9e4qgl0ltbYBqemEurEaQl_wbB9EZzk5eP76xtcMIhD5DWVAS9ywGjgdh9No7vJ7cBpGiM4mgSkcATTHBi1qVGSKWYESxJlT8V-mCQB55qFKtVcaZu8SVdKm8Klknuh9hTVKrAB_gB1s3lmjhCmXCoVUk2oYlQHvvS0L1NF7cGBuUbyHgpa-8S6UQ2H5hXPcY1ek3jdrnFj1x7qr8Ytat2MX0dcWfP_-eGL1kux_R4A5JCZmZfL2AegNLR5mt9Dh7X7VnMSaMlDiHf8n6VO0KYPdSwAIolT1C3y0pzZRKRQ59Xe-wAvmeK2 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MUFFIN%3A+multi-scale+feature+fusion+for+drug-drug+interaction+prediction&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Chen%2C+Yujie&rft.au=Ma%2C+Tengfei&rft.au=Yang%2C+Xixi&rft.au=Wang%2C+Jianmin&rft.date=2021-09-09&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=37&rft.issue=17&rft.spage=2651&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtab169&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |