MUFFIN: multi-scale feature fusion for drug–drug interaction prediction

Abstract Motivation Adverse drug–drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft feat...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 37; no. 17; pp. 2651 - 2658
Main Authors Chen, Yujie, Ma, Tengfei, Yang, Xixi, Wang, Jianmin, Song, Bosheng, Zeng, Xiangxiang
Format Journal Article
LanguageEnglish
Published England Oxford University Press 09.09.2021
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
DOI10.1093/bioinformatics/btab169

Cover

Loading…
Abstract Abstract Motivation Adverse drug–drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure. Results Accordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines. Availability and implementation The source code and data are available at https://github.com/xzenglab/MUFFIN.
AbstractList Adverse drug-drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure.MOTIVATIONAdverse drug-drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure.Accordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines.RESULTSAccordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines.The source code and data are available at https://github.com/xzenglab/MUFFIN.AVAILABILITY AND IMPLEMENTATIONThe source code and data are available at https://github.com/xzenglab/MUFFIN.
Adverse drug-drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure. Accordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines. The source code and data are available at https://github.com/xzenglab/MUFFIN.
Abstract Motivation Adverse drug–drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure. Results Accordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines. Availability and implementation The source code and data are available at https://github.com/xzenglab/MUFFIN.
Author Ma, Tengfei
Wang, Jianmin
Zeng, Xiangxiang
Chen, Yujie
Yang, Xixi
Song, Bosheng
Author_xml – sequence: 1
  givenname: Yujie
  surname: Chen
  fullname: Chen, Yujie
– sequence: 2
  givenname: Tengfei
  surname: Ma
  fullname: Ma, Tengfei
– sequence: 3
  givenname: Xixi
  surname: Yang
  fullname: Yang, Xixi
– sequence: 4
  givenname: Jianmin
  orcidid: 0000-0001-8910-0929
  surname: Wang
  fullname: Wang, Jianmin
– sequence: 5
  givenname: Bosheng
  orcidid: 0000-0002-1479-5399
  surname: Song
  fullname: Song, Bosheng
  email: boshengsong@hnu.edu.cn
– sequence: 6
  givenname: Xiangxiang
  surname: Zeng
  fullname: Zeng, Xiangxiang
  email: xzeng@hnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33720331$$D View this record in MEDLINE/PubMed
BookMark eNqNkL1OwzAUhS0Eoj_wClVGllA7rp0YsaCKQqUCC50t23GQURIX_wxsvANvyJOQ0BYJFpjOle757tU5I3DY2lYDMEHwHEGGp9JY01bWNSIY5acyCIkoOwBDhGmezgqEDr9niAdg5P0zhJBAQo_BAOM8gxijIVjerReL5f1F0sQ6mNQrUeuk0iJE12n0xrZJ9yYpXXz6eHvvJTFt0E6o0O82TpfmazwBR5WovT7d6RisF9eP89t09XCznF-tUoUJDimjqmCYsEpLQSXVjJal1BJneVmSolA0l5UqpGIZFlCIDKNKFChXSM6UJBnDY3C2vbtx9iVqH3hjvNJ1LVpto-cZgWiWU0SyzjrZWaNsdMk3zjTCvfJ9_M5wuTUoZ713uuLKBNGnCU6YmiPI-7b5z7b5ru0Op7_w_Yc_QbQFbdz8l_kEw1Kffw
CitedBy_id crossref_primary_10_1371_journal_pone_0304798
crossref_primary_10_3390_molecules29204829
crossref_primary_10_1016_j_future_2024_06_060
crossref_primary_10_1109_TCBB_2022_3144008
crossref_primary_10_1016_j_isci_2024_109148
crossref_primary_10_1186_s13321_022_00659_8
crossref_primary_10_1093_bib_bbad155
crossref_primary_10_1016_j_cmpb_2024_108524
crossref_primary_10_1016_j_knosys_2024_112685
crossref_primary_10_1016_j_omtn_2024_102295
crossref_primary_10_1016_j_jpha_2024_101159
crossref_primary_10_1093_bioinformatics_btad514
crossref_primary_10_1093_bib_bbac576
crossref_primary_10_1016_j_compbiomed_2024_108835
crossref_primary_10_3389_fphar_2021_818115
crossref_primary_10_1093_bib_bbad385
crossref_primary_10_1093_bib_bbab480
crossref_primary_10_1109_ACCESS_2025_3547594
crossref_primary_10_1016_j_eswa_2023_120238
crossref_primary_10_1093_bib_bbac602
crossref_primary_10_1007_s00726_022_03145_5
crossref_primary_10_1016_j_ymeth_2022_11_001
crossref_primary_10_1093_bioinformatics_btaf023
crossref_primary_10_1016_j_neunet_2024_106828
crossref_primary_10_3390_app131910750
crossref_primary_10_1186_s12967_024_05372_8
crossref_primary_10_1038_s41598_024_54409_x
crossref_primary_10_1002_psp4_12870
crossref_primary_10_1016_j_compbiomed_2023_107900
crossref_primary_10_3934_era_2023286
crossref_primary_10_1016_j_neunet_2024_106757
crossref_primary_10_1109_TKDE_2024_3471508
crossref_primary_10_1007_s11042_023_14421_1
crossref_primary_10_1016_j_compbiomed_2023_107340
crossref_primary_10_1039_D2SC02023H
crossref_primary_10_1109_JBHI_2024_3419015
crossref_primary_10_1089_cmb_2024_0476
crossref_primary_10_1016_j_ymeth_2022_01_001
crossref_primary_10_1016_j_neunet_2023_08_036
crossref_primary_10_1002_qub2_32
crossref_primary_10_1016_j_ymeth_2022_01_004
crossref_primary_10_3390_ijms24054500
crossref_primary_10_1016_j_ymeth_2022_08_015
crossref_primary_10_1093_bioinformatics_btac682
crossref_primary_10_1016_j_ymeth_2022_01_009
crossref_primary_10_1093_bib_bbab421
crossref_primary_10_1093_bib_bbac597
crossref_primary_10_1021_acs_jcim_5c00043
crossref_primary_10_1016_j_patcog_2024_110887
crossref_primary_10_1093_bfgp_elac023
crossref_primary_10_1093_bfgp_elae052
crossref_primary_10_1016_j_ymeth_2024_02_008
crossref_primary_10_1016_j_compbiomed_2022_105395
crossref_primary_10_3390_ijerph20032696
crossref_primary_10_3389_fmicb_2021_694534
crossref_primary_10_3389_fgene_2021_827161
crossref_primary_10_1021_acs_jcim_3c00297
crossref_primary_10_1007_s10489_022_03839_z
crossref_primary_10_1093_bib_bbad235
crossref_primary_10_1016_j_jbi_2024_104672
crossref_primary_10_1002_psp4_12884
crossref_primary_10_1016_j_eswa_2022_119312
crossref_primary_10_1021_acs_jcim_3c01304
crossref_primary_10_1016_j_compbiomed_2022_105984
crossref_primary_10_1016_j_ejmech_2024_117164
crossref_primary_10_1016_j_ymeth_2022_10_001
crossref_primary_10_3389_fgene_2021_818841
crossref_primary_10_1097_MD_0000000000037591
crossref_primary_10_3389_fcell_2021_803608
crossref_primary_10_1155_2024_5155997
crossref_primary_10_1007_s12539_025_00687_6
crossref_primary_10_1093_bfgp_elab036
crossref_primary_10_3390_covid3090096
crossref_primary_10_1109_JBHI_2024_3453956
crossref_primary_10_1016_j_csbj_2022_04_021
crossref_primary_10_1021_acs_jcim_4c01647
crossref_primary_10_1109_JBHI_2023_3335402
crossref_primary_10_26599_BDMA_2022_9020021
crossref_primary_10_1007_s11704_024_31063_0
crossref_primary_10_1016_j_compbiomed_2023_107812
crossref_primary_10_1016_j_compbiolchem_2023_108001
crossref_primary_10_1109_JBHI_2024_3349570
crossref_primary_10_1093_bib_bbad215
crossref_primary_10_3389_fgene_2022_960388
crossref_primary_10_3389_fgene_2021_811158
crossref_primary_10_31083_j_fbl2706177
crossref_primary_10_1109_TCBB_2024_3477410
crossref_primary_10_3389_fgene_2023_1254827
crossref_primary_10_1186_s12859_024_05806_6
crossref_primary_10_1016_j_compbiomed_2022_105889
crossref_primary_10_1016_j_asoc_2024_112242
crossref_primary_10_3390_app13127227
crossref_primary_10_1007_s11814_023_1377_3
crossref_primary_10_3390_ph17070822
crossref_primary_10_1186_s12859_021_04398_9
crossref_primary_10_1016_j_jmgm_2023_108557
crossref_primary_10_1016_j_ymeth_2022_09_001
crossref_primary_10_1021_acs_jcim_2c01112
crossref_primary_10_1016_j_ymeth_2024_01_009
crossref_primary_10_1109_JBHI_2024_3401035
crossref_primary_10_1016_j_knosys_2023_111239
crossref_primary_10_1109_ACCESS_2024_3442931
crossref_primary_10_4018_IJWLTT_335115
crossref_primary_10_1093_bib_bbab586
crossref_primary_10_1109_TCBB_2024_3383438
crossref_primary_10_1109_TCBB_2024_3417715
crossref_primary_10_1016_j_compbiomed_2023_106904
crossref_primary_10_1016_j_ymeth_2023_10_007
crossref_primary_10_3390_ijms232416216
crossref_primary_10_1186_s12859_023_05212_4
crossref_primary_10_3389_fgene_2021_809001
crossref_primary_10_1109_ACCESS_2022_3217926
crossref_primary_10_1016_j_compbiolchem_2025_108426
crossref_primary_10_1109_TCBBIO_2024_3498094
crossref_primary_10_1038_s42003_023_05243_w
Cites_doi 10.1136/amiajnl-2012-000935
10.1136/amiajnl-2011-000214
10.1021/ci100050t
10.1093/bioinformatics/btz600
10.1007/s40273-016-0397-9
10.1038/446975a
10.1038/nprot.2014.151
10.1073/pnas.1803294115
10.1038/s41421-020-0153-3
10.1093/bioinformatics/btz418
10.2147/DDDT.S226948
10.1016/S1359-6446(05)03632-9
10.1093/bioinformatics/bty294
10.1126/scitranslmed.3003377
10.1136/amiajnl-2013-002512
10.1093/nar/28.1.27
10.1186/s13321-017-0200-8
10.1093/nar/gkx1037
10.1016/j.jbi.2008.03.004
10.1186/s12859-016-1415-9
10.1093/bioinformatics/btv080
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1093/bioinformatics/btab169
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 2658
ExternalDocumentID 33720331
10_1093_bioinformatics_btab169
10.1093/bioinformatics/btab169
Genre Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 531118010355
– fundername: Hunan Provincial Natural Science Foundation of China
  grantid: 2020JJ4215
– fundername: National Natural Science Foundation of China
  grantid: 61872309
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c353t-96c89359feba6b6e96ddbeb327dd588c67bfc8bc923a0aa231fa817c1b4cb5293
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Fri Jul 11 03:47:14 EDT 2025
Thu Apr 03 06:56:57 EDT 2025
Tue Jul 01 02:33:55 EDT 2025
Thu Apr 24 22:55:30 EDT 2025
Wed Apr 02 07:06:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-96c89359feba6b6e96ddbeb327dd588c67bfc8bc923a0aa231fa817c1b4cb5293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8910-0929
0000-0002-1479-5399
PMID 33720331
PQID 2501476152
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2501476152
pubmed_primary_33720331
crossref_citationtrail_10_1093_bioinformatics_btab169
crossref_primary_10_1093_bioinformatics_btab169
oup_primary_10_1093_bioinformatics_btab169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Sep-09
PublicationDateYYYYMMDD 2021-09-09
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-Sep-09
  day: 09
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Giacomini (2023051609171039300_btab169-B5) 2007; 446
Bordes (2023051609171039300_btab169-B2) 2013
Whitebread (2023051609171039300_btab169-B32) 2005; 10
Wishart (2023051609171039300_btab169-B33) 2018; 46
Vilar (2023051609171039300_btab169-B29) 2012; 19
Krizhevsky (2023051609171039300_btab169-B13) 2017; 60
Zhou (2023051609171039300_btab169-B36) 2020; 6
Zitnik (2023051609171039300_btab169-B38) 2018; 34
Huang (2023051609171039300_btab169-B9) 2020; 34
Ryu (2023051609171039300_btab169-B22) 2018; 115
Ioannidis (2023051609171039300_btab169-B10) 2020
Rogers (2023051609171039300_btab169-B21) 2010; 50
Lin (2023051609171039300_btab169-B15) 2020
Perozzi (2023051609171039300_btab169-B19) 2014
Tatonetti (2023051609171039300_btab169-B25) 2012; 19
Toropov (2023051609171039300_btab169-B27) 2005
Hu (2023051609171039300_btab169-B8) 2019
Vilar (2023051609171039300_btab169-B30) 2014; 9
Mohamed (2023051609171039300_btab169-B18) 2020; 36
Belleau (2023051609171039300_btab169-B1) 2008; 41
Mikolov (2023051609171039300_btab169-B17) 2013
Li (2023051609171039300_btab169-B14) 2015; 31
Wang (2023051609171039300_btab169-B31) 2019; 13
Plumpton (2023051609171039300_btab169-B20) 2016; 34
Gottlieb (2023051609171039300_btab169-B7) 2012; 8
Zhou (2023051609171039300_btab169-B37) 2020
Kanehisa (2023051609171039300_btab169-B11) 2000; 28
Trouillon (2023051609171039300_btab169-B28) 2016
Zeng (2023051609171039300_btab169-B34) 2019; 35
Karim (2023051609171039300_btab169-B12) 2019
Takeda (2023051609171039300_btab169-B23) 2017; 9
Tatonetti (2023051609171039300_btab169-B26) 2012; 4
Ma (2023051609171039300_btab169-B16) 2018
Deac (2023051609171039300_btab169-B4) 2019
Tang (2023051609171039300_btab169-B24) 2015
Cheng (2023051609171039300_btab169-B3) 2014; 21
Gilmer (2023051609171039300_btab169-B6) 2017
Zhang (2023051609171039300_btab169-B35) 2017; 18
References_xml – volume: 19
  start-page: 1066
  year: 2012
  ident: 2023051609171039300_btab169-B29
  article-title: Drug–drug interaction through molecular structure similarity analysis
  publication-title: J. Am. Med. Informatics Assoc
  doi: 10.1136/amiajnl-2012-000935
– volume: 60
  start-page: 84
  year: 2017
  ident: 2023051609171039300_btab169-B13
  article-title: Imagenet classification with deep convolutional
  publication-title: Neural Netw
– year: 2013
  ident: 2023051609171039300_btab169-B17
– year: 2020
  ident: 2023051609171039300_btab169-B15
– volume: 19
  start-page: 79
  year: 2012
  ident: 2023051609171039300_btab169-B25
  article-title: A novel signal detection algorithm for identifying hidden drug–drug interactions in adverse event reports
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000214
– volume: 50
  start-page: 742
  year: 2010
  ident: 2023051609171039300_btab169-B21
  article-title: Extended-connectivity fingerprints
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci100050t
– year: 2020
  ident: 2023051609171039300_btab169-B37
– year: 2019
  ident: 2023051609171039300_btab169-B4
– year: 2005
  ident: 2023051609171039300_btab169-B27
– volume: 36
  start-page: 603
  year: 2020
  ident: 2023051609171039300_btab169-B18
  article-title: Discovering protein drug targets using knowledge graph embeddings
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz600
– start-page: 113
  year: 2019
  ident: 2023051609171039300_btab169-B12
– year: 2019
  ident: 2023051609171039300_btab169-B8
– volume: 34
  start-page: 771
  year: 2016
  ident: 2023051609171039300_btab169-B20
  article-title: A systematic review of economic evaluations of pharmacogenetic testing for prevention of adverse drug reactions
  publication-title: Pharmacoeconomics
  doi: 10.1007/s40273-016-0397-9
– start-page: 1067
  year: 2015
  ident: 2023051609171039300_btab169-B24
– volume: 446
  start-page: 975
  year: 2007
  ident: 2023051609171039300_btab169-B5
  article-title: When good drugs go bad
  publication-title: Nature
  doi: 10.1038/446975a
– volume: 9
  start-page: 2147
  year: 2014
  ident: 2023051609171039300_btab169-B30
  article-title: Similarity-based modeling in large-scale prediction of drug–drug interactions
  publication-title: Nat. Protoc
  doi: 10.1038/nprot.2014.151
– volume: 115
  start-page: E4304
  year: 2018
  ident: 2023051609171039300_btab169-B22
  article-title: Deep learning improves prediction of drug–drug and drug–food interactions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1803294115
– start-page: 2787
  year: 2013
  ident: 2023051609171039300_btab169-B2
  article-title: Translating embeddings for modeling multi-relational data
  publication-title: Adv. Neural Inf. Process. Syst
– volume: 8
  start-page: 592
  year: 2012
  ident: 2023051609171039300_btab169-B7
  article-title: INDI: a computational framework for inferring drug interactions and their associated recommendations
  publication-title: Nat. Rev. Drug Discov
– volume: 6
  start-page: 1
  year: 2020
  ident: 2023051609171039300_btab169-B36
  article-title: Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2
  publication-title: Cell Discov
  doi: 10.1038/s41421-020-0153-3
– volume: 35
  start-page: 5191
  year: 2019
  ident: 2023051609171039300_btab169-B34
  article-title: deepDR: a network-based deep learning approach to in silico drug repositioning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz418
– volume: 13
  start-page: 4207
  year: 2019
  ident: 2023051609171039300_btab169-B31
  article-title: Drug–drug interactions of amiodarone and quinidine on the pharmacokinetics of eliglustat in rats
  publication-title: Drug Des. Dev. Ther
  doi: 10.2147/DDDT.S226948
– volume: 10
  start-page: 1421
  year: 2005
  ident: 2023051609171039300_btab169-B32
  article-title: Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development
  publication-title: Drug Disc. Today
  doi: 10.1016/S1359-6446(05)03632-9
– year: 2016
  ident: 2023051609171039300_btab169-B28
– volume: 34
  start-page: i457
  year: 2018
  ident: 2023051609171039300_btab169-B38
  article-title: Modeling polypharmacy side effects with graph convolutional networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty294
– start-page: 701
  year: 2014
  ident: 2023051609171039300_btab169-B19
– volume: 4
  start-page: 125ra131
  year: 2012
  ident: 2023051609171039300_btab169-B26
  article-title: Data-driven prediction of drug effects and interactions
  publication-title: Sci. Transl. Med
  doi: 10.1126/scitranslmed.3003377
– volume: 21
  start-page: e2e278
  year: 2014
  ident: 2023051609171039300_btab169-B3
  article-title: Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties
  publication-title: J. Am. Med. Inform. Assoc
  doi: 10.1136/amiajnl-2013-002512
– year: 2020
  ident: 2023051609171039300_btab169-B10
– year: 2018
  ident: 2023051609171039300_btab169-B16
– volume: 28
  start-page: 27
  year: 2000
  ident: 2023051609171039300_btab169-B11
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 9
  start-page: 1
  year: 2017
  ident: 2023051609171039300_btab169-B23
  article-title: Predicting drug–drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge
  publication-title: J. Cheminform
  doi: 10.1186/s13321-017-0200-8
– volume: 46
  start-page: D1074
  year: 2018
  ident: 2023051609171039300_btab169-B33
  article-title: DrugBank 5.0: a major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1037
– volume: 34
  start-page: 702
  year: 2020
  ident: 2023051609171039300_btab169-B9
  article-title: CASTER: predicting Drug Interactions with Chemical Substructure Representation
  publication-title: Proc. AAAI Conf. Artif. Intell
– volume: 41
  start-page: 706
  year: 2008
  ident: 2023051609171039300_btab169-B1
  article-title: Bio2RDF: towards a mashup to build bioinformatics knowledge systems
  publication-title: J. Biomed. Inform
  doi: 10.1016/j.jbi.2008.03.004
– volume: 18
  start-page: 18
  year: 2017
  ident: 2023051609171039300_btab169-B35
  article-title: Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1415-9
– year: 2017
  ident: 2023051609171039300_btab169-B6
– volume: 31
  start-page: 2007
  year: 2015
  ident: 2023051609171039300_btab169-B14
  article-title: Large-scale exploration and analysis of drug combinations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv080
SSID ssj0005056
Score 2.648141
Snippet Abstract Motivation Adverse drug–drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of...
Adverse drug-drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2651
Title MUFFIN: multi-scale feature fusion for drug–drug interaction prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/33720331
https://www.proquest.com/docview/2501476152
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7LguBFfLu-iOBJKNs2aZp4E7HsCrtedmFvJUlTEaS7dNuDN_-D_9BfYqaPlVVEPbWHJikzKTPpN983CF36kiVCa2E94DGH8oA6XBjpMMGEoYwnRAF3eDRmgym9nwWzDvJaLsxXCF-QvnqaNyKiIFzcV4VUHgPKno3EoJY_eZh9FnW4Vb9W0CGzC7uk5QT_OM1aOFqjuH3LNKuIE22jrSZVxDe1b3dQx2S7aKNuHvmyh4ajaRQNx9e4qgl0ltbYBqemEurEaQl_wbB9EZzk5eP76xtcMIhD5DWVAS9ywGjgdh9No7vJ7cBpGiM4mgSkcATTHBi1qVGSKWYESxJlT8V-mCQB55qFKtVcaZu8SVdKm8Klknuh9hTVKrAB_gB1s3lmjhCmXCoVUk2oYlQHvvS0L1NF7cGBuUbyHgpa-8S6UQ2H5hXPcY1ek3jdrnFj1x7qr8Ytat2MX0dcWfP_-eGL1kux_R4A5JCZmZfL2AegNLR5mt9Dh7X7VnMSaMlDiHf8n6VO0KYPdSwAIolT1C3y0pzZRKRQ59Xe-wAvmeK2
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MUFFIN%3A+multi-scale+feature+fusion+for+drug-drug+interaction+prediction&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Chen%2C+Yujie&rft.au=Ma%2C+Tengfei&rft.au=Yang%2C+Xixi&rft.au=Wang%2C+Jianmin&rft.date=2021-09-09&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=37&rft.issue=17&rft.spage=2651&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtab169&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon